Integrating

Information Retrieval
&

Neural Networks

by

Victoria J. Hodge.

A dissertation submitted in partial fulfillment of the
requirements for the degree

Doctor of Philosophy.

University of York,

Department of Computer Science.

Sept, 2001

Abstract

Due to the proliferation of information in databases and on the Internet, users
are overwhelmed leading to Information Ouverload. It is impossible for humans
to index and search such a wealth of information by hand so automated in-
dexing and searching techniques are required. In this dissertation, we explore
current Information Retrieval (IR) techniques and their shortcomings and we
consider how more sophisticated approaches can be developed to aid retrieval.
Current techniques can be slow due to the sheer volume of the search space al-
though faster ones are being developed. Matching is often poor, as the quantity
of retrievals does not necessarily indicate quality retrievals. Many current ap-
proaches simply return the documents containing the greatest number of ‘query
words’. A methodology is desired to: process documents unsupervised; generate
an index using a data structure that is memory efficient, speedy, incremental and
scalable; identify spelling mistakes in the query and suggest alternative spellings;
handle paraphrasing of documents and synonyms for both indexing and search-
ing; to focus retrieval by minimising the search space; and, finally calculate the
query-document similarity from statistics autonomously derived from the text
corpus. We describe our IR system named MinerTaur, developed using both
the AURA modular neural system and a hierarchical, growing self-organising
neural technique based on Growing Cell Structures which we call TreeGCS. We
integrate three modules in MinerTaur: a spell checker; a hierarchical thesaurus
generated from corpus statistics inferred by the system; and, a word-document
matrix to efficiently store the associations between the documents and their con-
stituent words. We describe each module individually and evaluate each against
comparative data structures and benchmark implementations. We identify im-
proved memory usage, spelling recall accuracy, cluster quality and training and
recall times for the modules. Finally we compare MinerTaur against a bench-
mark IR system, SMART developed at Cornell University, and reveal superior

recall and precision for MinerTaur versus SMART.

Contents

1 Introduction 16
1.1 Introduction. 16
1.2 Thesis Contributions 16
1.3 Information Retrieval 17

1.3.1 Boolean 19
1.3.2 Statistical 19
1.3.3 Knowledge-Based 21
1.4 Current IR Systems oL 22
141 Boolean 23
1.4.2 Statistical o 24
143 KnowledgeBased. 30
1.5 Current IR System Analysis 38
1.6 The MinerTaur Integrated, Modular IR System 40
1.7 Outline of Dissertation 40

2 TreeGCS 45

2.1 Introduction. 45
2.1.1 Current Methods 47
2.1.2 Summary of Current Methods 51

2.2 Our MinerTaur Method 52
2.2.1 Pre-processing 52
2.2.2 GCS Algorithm 55
2.2.3 TreeGCS Algorithm 58

2.3 Evaluation. 61
2.3.1 Three Methods for Context Vector Generation 61
2.3.2 TreeGCS versus SOM Clustering Comparison 62
2.3.3 Text Corpus, Dendrogram and Thesaurus 62
234 Settings e 64
2.3.5 Ritter & Kohonen Method 65
2.3.6 WEBSOM 66
2.3.7 Our MinerTaur method 68

24 Analysis 69
2.4.1 Three Methods for Context Vector Generation 69

2.4.2 TreeGCS versus SOM Clustering Comparison 71

2.5 Conclusion and Future Work 73
AURA 75
3.1 Introduction to the AURA Neural Network 75
3.1.1 Input and Output Vectors 77
3.1.2 Vector Representations 78
3.1.3 Training the Network 78
3.1.4 Recalling from the Network 79
3.1.5 Orthogonal Codes 82
3.2 Conclusion 83
AURA Hybrid Spell Checker 84
4.1 Introduction. 85
4.2 Levenshtein Edit Distance 86
4.3 Agrep . .. 87
4.4 Phonetic Spell Checkers 87
441 Soundex 88
442 Phonix. e 88
4.5 Binary N-Grams 89
4.6 AURA . . . e 92
4.6.1 Our Methodology 92
4.6.2 Hamming Distance and N-Gram 93
4.6.3 Phonetic Spell Checking 94
4.6.4 Training the Network 97
4.6.5 Recalling from the Network - Hamming Distance 97
46.6 WordStems 98
4.6.7 Recalling from the Network - Shifting N-Grams 99
4.6.8 Recalling from the Network - Phonetic 100
4.6.9 Superimposed Outputs. 100
4.6.10 Integrating the Modules 101
47 Evaluation. 103
471 Memory Use 104
4.7.2 Training Time, 105
4.7.3 Retrieval Time, 105
4.7.4 Quality of Retrieval 107
4.8 CMM Size Evaluation 109
481 CMMSize. o e 109
4.9 Proposed Solutions for Large Datasets 112
4.9.1 Modularity oo 112
4.9.2 Compression 113
493 Binning L 115
4.10 Conclusion L 116

5 AURA Word-Document Association Data Structure
5.1 Introduction.
5.2 Data Structures
5.2.1 Inverted File List (IFL)
5.2.2 HashTable
5.2.3 Two Stage Hashing - Hash Table Compact
524 AURA
53 Analyses
54 Results. o e e e
5.4.1 Memory Usage
5.4.2 Training Times
54.3 Serial Match
54.4 PartialMatch o0,
5.5 Analysis
5.5.1 Memory Usage
5.5.2 Training Times
5.5.3 Serial Match Recall
5.5.4 Partial Match Recall
56 Conclusion e
6 Information Retrieval
6.1 Introduction.
6.2 The MinerTaur System
6.2.1 Query Processing
6.3 Evaluation.
6.3.1 Memory Usage Evaluation
6.3.2 Training Time Evaluation
6.3.3 Retrieval Time Evaluation
6.3.4 Recall and Precision Evaluation.
6.4 Results.
6.41 Memory Usage
6.4.2 Timing Statistics
6.4.3 Recall and Precision
6.5 Analysis
6.5.1 Memory Usage
6.5.2 Training Time
6.5.3 Retrieval Time
6.5.4 Recall and Precision

6.6 Conclusion

7 Overall Conclusions and the Future

119
119
123
123
125
128
129
131
133
133
136
137
137
137
137
139
139
140
142

144
144
145
147
156
156
157
158
158
168
168
169
170
174
174
175
177
180
185

188

A Code Listing 198

A.1 Code Listing for the Data Structures Evaluated 198
A11 ArrayofLists 198
A.1.2 Inverted File List - Word Array 199
A.1.3 Hash Table of Words : Length 20023 200
Al4 Arrayof Lists oo 202
A.1.5 Hash Table Compact 203

List of Figures

1.1
1.2

1.3

14

2.1
2.2

2.3

2.4

2.5

2.6

Figure illustrating the INQUERY Bayesian network
Figure illustrating our integrated modular MinerTaur system dur-
ing training. The dashed boxes indicate artefacts and the solid
boxes illustrate the three system modules.
Figure illustrating our integrated modular MinerTaur system for
querying. The dashed boxes indicate artefacts and the solid boxes
illustrate the three system modules.
Figure illustrating our semantic hierarchy generation module.
The dashed boxes indicate artefacts and the solid boxes illustrate

the system modules and processes.

Figure showing SAINT’s hierarchical architecture.
Figure illustrating the average context vector and synonym hi-
erarchy production process in our hierarchy generation module.
The dashed boxes indicate artefacts and the solid boxes illustrate
modules and processes.o e e e
Figure illustrating the moving word window. The initial capital
letter will be converted to lower case to ensure the ‘he’s match.
Both instances of ‘he’ are represented by the same vector. The
vectors associated with each word are concatenated to form the
context vector for the target word ‘he’.
Figure illustrating cell insertion. A new cell and associated con-
nections are inserted at each step.
Figure illustrating cell deletion. Cell A is deleted. Cells B and
C are within the neighbourhood of A and would be left dangling
by the removal of the five connections surrounding A so B and C
arealsodeleted. Lo
Figure illustrating cluster subdivision. One cluster splits to form
two clusters and the hierarchy is adjusted. The leftmost cluster

then splits again. oL

42

99

2.7 Figure illustrating cluster deletion. The rightmost cell cluster is
deleted during an epoch (step 2) - this leaves a dangling pointer.
The node with the dangling pointer is removed (step 3), leaving
redundancy in the hierarchy. The redundancy is removed in the
final step.
2.8 The cells in the GCS layer are labelled with the words they rep-
TESENt. i o e e e e e e e e e e e
2.9 Figure depicting the TreeGCS cluster topology produced using
the Ritter & Kohonen method of average context vector gener-
ation. The words in bold indicate the top 25 words selected by
the dendrogram. oL oo
2.10 Figure depicting the SOM mapping produced from the Ritter

& Kohonen method for average context vector generation. The

words in bold indicate the top 25 words selected by the dendrogram 67

2.11 Figure showing the TreeGCS cluster generated from the WEB-
SOM method for average context vector generation. The words
in bold are the top 25 words selected by the dendrogram.

2.12 Figure showing the SOM mapping for the average context vec-
tors generated using the WEBSOM method. The words in bold
indicate the top 25 words selected by the dendrogram

2.13 Figure illustrating the TreeGCS cluster generated from the av-
erage context vectors produced using our method. The words in
bold are the top 25 words selected by the dendrogram.

2.14 Figure illustrating the SOM mapping of the average context vec-
tors generated with our method. The words in bold indicate the
top 25 words selected by the dendrogram.

2.15 Figure illustrating the Sammon map generated for 90-dimensional
vectors with context window =7..

2.16 Graph of the distribution of words through the Bookshelf sets
using the top 25 words identified by the dendrogram for each of
the three average vector generation methods. For example, 5 of
the top 25 words from our context vector dendrogram are found
in Bookshelf cluster 1. The numbers on the x-axis are the cluster

numbers from section 2.3.3.

3.1 The input vector 7 addresses the rows of the CMM and the output
vector o addresses the columns.
3.2 Diagram showing three stages of network training
3.3 Diagram showing system recall. The input pattern has 1 bit set
so the CMM is thresholded at 1.
3.4 Diagram showing system recall. The input pattern is corrupted
and should be 00101000. However, the output vector pattern
generated by AURA is still correct.

68

71

73

3.5
3.6

3.7

4.1
4.2

4.3
4.4
4.5
4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13

4.14
4.15

Diagram showing the superimposition of input vectors. 81
Figure showing a partial match retrieval. We want to find all
outputs matching at least two of the four superimposed inputs
so we threshold the output activation vector at 2. 81
Figure showing CMM recall where thresholded output vector is
a superimposition of multiple orthogonal output vectors. As the
all output vectors in the system described in this dissertation
are orthogonal the individual output vectors are easily identified

from the superimposed output vector. 82

Figure listing the Soundex code mappings. 88
Figure listing the Soundex algorithm in pseudocode. Skip jumps

to the next loop iteration. The function Soundex() returns the

appropriate code mapping for the letter. 88
Figure listing the Phonix codes for each letter. 89
Diagram showing the triple mapping process 91

Table indicating which bit is set in the 30-bit chunk representing

each character. oL L. 92
Diagram of the hybrid spell checker as implemented in the AURA
modular system.o 93
Figure giving our algorithm in pseudocode. The function Soundex()
returns the code value for the letter as detailed in figure 4.8. Skip
jumps to the next loop iteration. 96
Figure giving our codes for each letter: (c, q and x do not have

a code as they are always mapped to other letters by the trans-
formation rules: c—s or c—k, q—k and x—z or x—ks). 96

Diagram showing system recall. The input pattern has 1 bit set

so the CMM is thresholded at 1. 97
Diagram showing Hamming Distance matching 98
Diagram showing word stem matching 98
Diagram showing a 3-gram shifting right 100

Diagram showing matching word retrieval using the bits set in the
thresholded output vector as positional indices in to the word array.101
Graph of the CMM memory usage for each of the lexicon sizes. . 110
Graph of the retrieval times for the three benchmark words with
each of the lexicon sizes. The best match search for a long word
(foccinaucinihilipilification) not present in the stored lexicon is
the worst case retrieval time and hence the retrieval time is much
higher than an exact match for shorter words present in the lex-

icon which do not require the slower shifting n-gram retrieval. . . 111

5.1

5.2

5.3
5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

Diagram showing the fraction of all documents that contain each
word. Each word has an integer ID indexed from 0 to 9,490
according to its position in the alphabetically sorted list of all
words. e e e e
Diagram showing the inverted file list data structure. We imple-
mented two separate, linked data structures to preserve similarity
between this data structure and the hash table structure. The
speed of training and retrieval are dependent on implementation.
By maintaining similarity, we attempt to eliminate as many dif-
ferences as possible to permit comparisons between the different
data structures. oL
Diagram showing the hash table data structure.
Diagram showing the hash table data structure. The integer lo-
cation of the word’s list is stored with the word in the first data
structure and may then be used to access the contents of the list.
Diagram showing system recall. The input pattern has 1 bit set
so the CMM is thresholded at 1.
Diagram showing the total number of the first 100 words from
the canonical word list present in each document. A word that
occurs multiple times in a particular document is only counted
once for that document. Each document has an integer ID.
Diagram showing the number of words counted in each document
when taking every 50th word from the list of all words. Again,
any word that occurs multiple times in a particular document
is only counted once for that document. Each document has an
integer ID.
Diagram showing the number of frequent words (those in at least
20% of the documents) occurring in each document. Again, any
word that occurs multiple times in a particular document is only
counted once for that document. Each document has an integer
ID indexed from 0 to 18,248. N.B. Figure 5.8 has three lower fre-
quency troughs between document ID 9000 and ID 13000. This
is due to the documents in this section of the Reuters corpus
containing relatively few of the common words and many abbre-

viations; there are many shorter documents between 9,000 and

Graph of the retrieval time for M of N matching with the first
100 words from the list of all words.
Graph of the retrieval times for M of N matching when taking
every 50th word from the list of all words.
Graph of the retrieval times for M of N matching with frequent

words (those in at least 20% of the documents).

. 134

5.12

6.1

6.2

6.3
6.4

6.5

6.6

6.7

6.8

6.9

6.10

Graph of the speedup of the CMM versus the other three data
structures when retrieving frequent words (those in at least 20%
of the documents). The CMM is up to 24 times faster than the

other data structures for identical partial matching. 141

Figure illustrating the modular architecture of our MinerTaur
system and illustrating the training process. The dashed boxes
indicate artefacts and the solid boxes illustrate system processes
and modules. L 145
Figure illustrating the modular architecture of our MinerTaur
system and illustrating the querying process. The dashed boxes
indicate artefacts and the solid boxes illustrate system processes
andmodules. oL 146
Figure illustrating a GCS cluster and the cell distances. 150
Figure illustrating the TreeGCS hierarchy scoring traversal. The
word we are searching for is in cluster G. We assign scores to
all words in cluster G according to the cumulative Euclidean
distances in the cluster. We then score all other words in the
hierarchy by assigning scores to the clusters. All clusters and
cells categorised together are awarded identical scores. All cells
in descendent clusters of node D would be awarded identical scores.151
Graph illustrating the recall figures for all system configurations
evaluated for the top 15 to top 50 matches retrieved. The recall
figures are given in table 6.10. 173
Graph illustrating the precision figures for all system configura-
tions evaluated for the top 15 to top 50 matches retrieved. The
precision figures are given in table 6.11. 174
Graph illustrating the recall figures for all system configurations
evaluated for the top 15 matches with queries categorised by
meta-topic.l 175
Graph illustrating the recall figures for all system configurations
evaluated for the top 15 matches with queries categorised by the
number of matching documents. 176
Graph illustrating the recall figures for all system configurations
evaluated for the top 15 matches with queries categorised by the
number of matching documents. L. 177
Stacked column graph illustrating the contribution of each query
category for the top 15 matches with queries categorised by their
respective meta-topics. The right-hand column represents the
maximum number of documents associated with each query cat-

egory as defined by the Reuters’ topic assignments. 178

6.11 Stacked column graph illustrating the contribution of each query
category for the top 15 matches with queries categorised by the
number of matching documents. The right-hand column repre-
sents the maximum number of documents associated with each
query category as defined by the Reuters’ topic assignments. . . 179

6.12 Stacked column graph illustrating the contribution of each query
category for the top 15 matches with queries categorised by the
number of words in the query. The right-hand column represents
the maximum number of documents associated with each query

category as defined by the Reuters’ topic assignments. 180

10

List of Tables

2.1

2.2

2.3

4.1

4.2

4.3

44

Table comparing the settings for the context vector generation in
each of the three methods evaluated.
Table comparing the parameter settings for the SOM algorithm to
generate the map for each of the three context vector generation
methods evaluated. « is the initial learning rate parameter which
reduces to 0 during training and the radius is the neighbourhood
of cells that are adapted in the SOM adaptation phase. The
radius iteratively reduces to 0 during training.
Table comparing the parameter settings for the TreeGCS algo-
rithm to generate the cluster hierarchy for each of the three con-
text vector generation methods evaluated. N.B. Conns is an ab-

breviation for connections.

Table of the phonetic transformation rules in our system. We
obtained a few rules from Aspell [4] and Phonix [40], for the re-
maining rules we studied the lexicon and English grammar. Ital-
icised letters are phonetic codes - all other letters are standard
alphabetical letters. “indicates ‘the beginning of a word’, $ indi-
cates ‘the end of the word’ and + indicates ‘1 or more letters’.
Rule 1 is applied beforerule 2.
Table listing the memory sizes of comparable data structures used
to store words and their spellings.
Table listing the exact match retrieval times for the systems eval-
uated. Our hybrid system uses the logical AND of the output
vectors from the Hamming Distance and length match for the
exact match procedure.o
Table listing the best match retrieval times for the systems eval-
uated. Our ‘Hybrid CMM’ approach combines the results of the
phonetic match, n-gram match and Hamming Distance match
using our scoring equation to identify the best matching lexicon

WOrdS. . . . e e e e e e e e

11

106

4.5 The table indicates the recall accuracy of the methodologies eval-
uated. Column 1 gives the number of correct matches within the
top 10 matches returned for each word, column 2 shows the num-
ber of correct matches in first place, column 3 gives the number
of spelling variants already present in the lexicon, column 4 gives
the number of words not correctly found in the top 10. Column
5 provides a recall accuracy percentage (the number of top 10
matches / (600 - number of words present)) and column 6 lists
the average number of words returned per query.

4.6 Table of the CMM sizes in bytes for the various lexicon sizes
trained in to the CMM.

6.1 Table from [107] identifying the relevant and retrieved sets.

6.2 Table listing the meta-topic categories, the number of queries
in each category and the number of documents assigned to the
queries in the category. Lo oL,

6.3 Table listing the categories, the number of queries in each cate-
gory and the number of documents assigned to the queries in the
CAteGOry. . . . v o o e e

6.4 Table listing the number of words in each query, the number of
queries in each category and the number of documents assigned
to the queries in the category.

6.5 Table listing the memory usage statistics for the modules in our
System. e e e e

6.6 Table listing the CMM sizes and the file sizes of the corresponding

6.7 Table listing the training times for the modules in our system.

. 169

6.8 Table listing the training times for our system compared to SMART.170

6.9 Table listing the retrieval times of the various modules of our sys-
tem. The synonym column denotes whether synonym traversal
was activated and how many words were present in the synonym
hierarchy (i.e., how many times the hierarchy was traversed), the
stemming column denotes whether stemming was activated and
the spelling column denotes whether input words were misspelt
and how many were misspelt.

6.10 Table listing the recall figures for the systems and their respective
configurations. For ‘basic’ we only retrieved the single set of best
partial matching documents so only a top 15 figure is given. . . .

6.11 Table listing the precision figures for the systems and their re-
spective configurations. For ‘basic’ we only retrieved the single
set of best partial matching documents so only a top 15 figure is

GiVen.

12

171

172

6.12 Table listing the recall and precision figures for our system with

spelling activated and deactivated.

7.1 POS combinations from [53] for detecting phrases and names. . .

13

Acknowledgements

I wish to thank my supervisor Jim Austin for his invaluable assistance and
support throughout my research. I would like to thank my assessor Suresh

Manandhar for his feedback and assistance with my manuscripts.

I would also like to thank all members of the A.C.A.G. group, Department
of Computer Science at the University of York, past and present for their in-

valuable comments and assistance with my work leading to this dissertation.

Author’s Declaration

We include a list of our published papers below and indicate the chapters to

which they are relevant.

1. V.J. Hodge & J. Austin,
Hierarchical Growing Cell Structures: TreeGCS,
In, Proceedings of the Fourth International Conference on Knowledge-

Based Intelligent Engineering Systems, August 30th to September 1st 2000,

2. V.J. Hodge & J. Austin,
Hierarchical Growing Cell Structures: TreeGCS,
IEEE Transactions on Knowledge and Data Engineering, 13(2), Special

Issue on Connectionist Models for Learning in Structured Domains, 2001,

3. V.J. Hodge & J. Austin,
An Evaluation of Standard Retrieval Algorithms and a Weightless Neural
Approach,
In, Proceedings of the IEEE-INNS-ENNS' International Joint Conference
on Neural Networks, 24-27 July, 2000,

4. V.J. Hodge & J. Austin,
An Evaluation of Standard Retrieval Algorithms and a Binary Neural
Approach,
Neural Networks, 14(3), Elsevier Science Ltd, 2001,

5. V.J. Hodge & J. Austin,
An Integrated Neural IR System.
Proceedings of the 9th European Symposium on Artificial Neural Networks,
Bruges, April 2001.

6. V.J. Hodge & J. Austin,
A Novel Binary Spell Checker.
In, Proceedings of the International Conference on Artificial Neural Net-
works (ICANN2001), Vienna, August 2001. Eds G. Dorffner, H. Bischof,
& K. Hornik, LNCS 2130, pp 1199-1205: Springer- Verlag.

14

7. V.J. Hodge & J. Austin,
A Comparison of a Novel Spell Checker and Standard Spell Checking
Algorithms.

Accepted for publication, Pattern Recognition, Elsevier Science.

8. V.J. Hodge & J. Austin,
An Evaluation of Standard Spell Checking Algorithms and a Binary Neu-
ral Approach.,
Accepted for publication, IEEE Transactions on Knowledge and Data En-

gineering.

9. V.J. Hodge & J. Austin,
Hierarchical Word Clustering - automatic thesaurus generation.

Accepted for publication, NeuroComputing, Elsevier Science.

Chapter 2 builds upon the TreeGCS algorithm developed in paper 2 and paper
1. Paper 1 is a concise version of paper 2. Chapter 2 is largely based on paper
9 with minor changes to the presentation. Chapter 5 is largely based on paper
4 with small amendments. Paper 3 is an abridged version of paper 4. Chapter
4 covers papers 6, 7 and 8. Paper 7 describes an earlier version of the spell

checker while paper 6 is a concise version of paper 8.

15

Chapter 1

Introduction

1.1 Introduction

In this chapter, we initially state the contributions of the thesis. We then
identify the challenges for Information Retrieval (IR) systems, we categorise
and assess current IR approaches and outline and compare our IR system that
we are developing (named MinerTaur) to the existing techniques. The name is

derived from: “a Miner for Text built using the aura modular neural system”.

1.2 Thesis Contributions

The main contribution of the thesis is the implementation and analysis of an
integrated modular neural Information Retrieval architecture. We seamlessly
integrate a binary matrix-based neural network architecture with a dynamic
growing self-organising neural network architecture to implement an Informa-

tion Retrieval system.

We implement and analyse a novel binary neural spell checker which validates
the query words, suggests correct spellings and provides a user-driven stem-
ming capability. We use a binary matrix architecture for the spell checker and
integrate three different spelling approaches with a novel scoring scheme to
seamlessly amalgamate the sets of matching words retrieved by each individual

approach.

We employ a dynamic growing neural module to hierarchically cluster words
according to their co-occurrence statistics in the text corpus. We develop a
novel hierarchical clustering method ‘TreeGCS’ which extends an existing flat
clustering approach by dynamically superimposing a hierarchy. We can then
cluster word co-occurrence vectors from the text corpus to generate a synonym
hierarchy which we use at various levels of abstraction to score word similarity

in MinerTaur.

16

We implement and analyse a binary neural matrix which indexes the words
and documents allowing the query words and their respective synonyms to be
matched against the stored documents and a ranked list of matching documents

retrieved.

Our overall system is a completely integrated, modular IR system. The or-
ganisation and technique developed is unique as far as we know with respect to
the modules integrated and the model produced. The individual modules can
be used stand-alone or may be plugged into other systems - all three modules
are self-contained. The only processing necessary for the modules is to produce
the context vectors for the hierarchical clustering and the binary vectors for the

word-document matrix.

1.3 Information Retrieval

Over the years the amount of electronic information stored in databases and on
the Internet has expanded rapidly to the current state where vast repositories
of information on almost every conceivable subject are available, overwhelming
users and producing Information QOverload. Information Retrieval from these
repositories is based on the pinpointing of words in the text using word-based
queries generated by the users. It is impossible for humans to index and search
such a proliferation of information by hand so automated indexing and search-
ing techniques are required. It is certainly impractical and probably impossible
to index the repositories dynamically while the user query is serviced due to the
immense volume of data so the index must be pre-compiled and stored in an

appropriate data structure.

Much of the text in the repositories is unstructured beyond the grammatical
level (sentences and paragraphs) and provides little assistance for indexing other
than word and document associations. Producing a suitable representation for
the index is difficult due to the colossal number of associations between terms
and documents that must be stored. The data structure needs to have both a
compact, memory efficient representation and permit rapid retrieval. The index
must have broad coverage (indexing coverage), recognising most of the words
and concepts stored in the documents yet also permit various levels of indexing
(term specificity) from general high-level concepts to specific words and allow
the words and concepts to be linked to documents and thus located by the user.
A simple flat index with no abstraction would be insufficient for the enormous
repositories as searching a flat index would not be feasible and cross-referencing
between indexed terms impossible for the user. The information in the reposito-

ries is often human generated and grammatical and spelling errors are common

17

so any indexing or searching technique must be able to overcome such errors.
Document repositories are dynamic so any index must be incremental. If a new
document is added or a document is altered, processing the entire repository to

recompile the whole index is intractable.

Although humans have excellent information processing and error correcting
capabilities, the sheer volume prevents a user being able to search the reposi-
tories and locate their required information even when hierarchical repository
indexes are available. Sophisticated search tools are required to dovetail with
the index data structure and filter the information reducing the search to a
manageable size and facilitating the retrieval task. The search tools must be
able to cope with the vast quantities of information, the vagaries and ambigu-
ities of language, mistakes in the query and the possibility that the user may
have only a vague description of the information they seek. Current search tech-
niques can be slow due to the sheer volume of the search space although faster
ones are being developed. Matching is often poor, as the quantity of retrievals
does not necessarily indicate quality retrievals. Searches can return millions
of potential matches to user queries and many matches retrieved are irrelevant.
Many current search engines use simple Boolean keyword pattern matching that
takes no account of spelling mistakes in the query terms, alternative spelling of
the query terms (for example ‘grey’ and ‘gray’), possible synonyms, alternative
word meanings or the relevance of each query term. They simply return the

document containing the greatest number of ‘query words’.

There are three methods of retrieval tools that have been developed:
ad hoc retrieval uses a static corpus but allows dynamic queries,

filtering employs a dynamic corpus but uses a static query and the matching

is Boolean where documents either match or they do not match,

routing may be viewed as filtering with ranked matching - all matching doc-
uments are ranked by a similarity metric according to their similarity to

the query.

In this dissertation, we focus on techniques that automatically index the repos-
itories and employ ad hoc retrieval - matching documents in a static corpus
against dynamic user queries. There are three main approaches for ad hoc In-
formation Retrieval: Boolean searches approach the text retrieval problem at
the character string level, statistical methods approach it at the word unit level
and knowledge based methods approach it at the word meaning level. The three
categories are not strictly delineated. There is a degree of overlap between the
categories. We have indicated where we feel systems fall into more than one

category in the system descriptions in section 1.4.

18

1.3.1 Boolean

Boolean searches approach the text retrieval problem at the character-string
level by treating query terms as symbols linked by logical functions. Boolean
systems match the terms using string-matching algorithms and apply the appro-
priate logical conjunctives to the sets of documents retrieved from each string
match. The documents may simply be stored in an indexed data structure (for
example, a conventional hash table [44] or an inverted file list as in Glimpse
[70]) and searched by Boolean keyword matching. However, Boolean searching
cannot rank documents according to a relevance metric; the documents either
match or they do not. We desire a ranked match list to score documents for the
user. Boolean searching cannot account for word meaning or word variations; it
takes no account of possible synonyms, alternative spellings, alternative forms
such as singular and plural nouns or the polysemy of language as the most fre-
quently used words in the English language have multiple meanings [104]. It
matches purely on the words in the query. Boolean matching usually returns too
many low quality matches. Simply retrieving a list of matching documents with
no finer-grained differentiation quickly becomes unmanageable, as the number
of matching documents for standard Boolean querying is often incomprehensibly

large for the gigabytes or even terabytes of documents stored in many corpora.

1.3.2 Statistical

Statistical methods approach retrieval at the word-unit level, frequently linking
words to documents in an appropriate data structure such as a matrix weighted
according to a function of the frequency of occurrence of the word in the docu-
ment (see for example [43] or [92]). This weighted approach suffers the difficulty
of selecting the term weight parameters correctly. We demonstrate in our em-
pirical evaluation in chapter 6 the criticality of the vector representation for
the SMART [92] system. If the weights need to be extracted from a knowledge
engineer then the process is too time-consuming and subjective. Alternative
stochastic systems store n-gram to document associations [16], [17] and [28].
We described n-grams in chapter 4. A vector represents each document with
each attribute denoting the presence or absence of a particular n-gram in the

document.

All vector-based approaches return a document that most closely approximates
the query given that both query and documents are vectors defined in the same
vector space. The storage overhead can be large depending on the efficiency of
the representation. Word-vector approaches frequently return very short doc-
uments that are the query plus a few words as the degree of vector similarity
is much higher than for a longer document that will have many other words
present. Word-based vector approaches cannot handle spelling errors, alter-

native spellings, synonyms, word stemming, (for example, ‘engine’; ‘engines’,

19

‘engineer’ etc.) or higher-level concepts. The n-gram approach allows spelling
errors to be overcome, does not favour short documents but has a large stor-
age overhead if all possible n-grams are stored, as many never occur in the
English language. Many implementations eliminate any atypical n-grams from
the storage and thus perform dimensionality reduction. However, storage is
usually higher than a comparative word-document association system as there
are generally more n-grams than words in a document. For all approaches, the
matrix is a single level representation that does not account for any semantic

relationships of the words; there is no synonymy.

Many neural network systems use the multi-layer perceptron network (see for
example [25], [8] or [87], [88]). The network is divided into three layers with an
input layer of nodes representing the words, an output layer of nodes represent-
ing the documents and a layer of hidden nodes between them with weighted links
connecting the layers. The link weights represent the relevance of the words to
the documents as measured by some relevance metric. The appropriate input
nodes are activated during retrieval, the activation propagates through the net-
work to the document nodes. This produces a network representation that is
essentially similar to the word-document matrix described above. The approach

suffers similar limitations to the word-document matrix.

The statistical vector space approach has been extended to a more knowledge-
based approach by methods such as Latent Semantic Indexing (LST) [30]. Through
matrix decomposition, LSI aims to represent meta-level information rather than
the purely text information of the standard vector approach and reveal the
terms’ higher-level semantic relationships. As the document representation is
decomposed, low-level differences in the documents are factored out and LSI
enables topics to be extracted from the data. The vector space may then be
queried through topic rather than pure keyword matching. LST increases recall
and precision compared to conventional vector-based approaches but at a very

high computational cost as noted by [59].

Another approach is a Bayesian Network of nodes, for example [15] represent-
ing words, concepts and documents linked by weighted arcs. The knowledge
representation is not hierarchical, it is still essentially a flat representation - the
only meta-level information is provided by concept nodes representing numbers,
dates and company names. Bayesian networks cannot handle spelling errors or
synonyms unless additional modules are added to the system. The approach
also suffers from an exponential growth of nodes; as the number of documents
grows a new node must be added for each new document and also any new con-
cepts relevant to the new document. The number of document grows linearly

with the size of the document repository and the number of concept nodes may

20

grow exponentially.

1.3.3 Knowledge-Based

Knowledge-based methods approach retrieval at the word meaning level, fre-
quently integrating thesauri or knowledge hierarchies to permit more sophisti-
cated and flexible matching strategies at variable levels of concept abstraction.
The search space can be partitioned during retrieval and the focus of retrieval
varied between very specific concepts to very general concepts. They elicit
knowledge from source data rather than relying on knowledge extracted from

human experts.

A knowledge-based approach that satisfies the criteria of knowledge abstrac-
tion, high flexibility and knowledge partitioning is an automatically generated
hierarchical representation of the domain. The advantage of the hierarchy lies
in its multi-level expressive power, its simplicity and flexibility and its ability
to partition the index and searching, discrete regions of the hierarchy can be
stored and searched separately. There are two alternative hierarchical topolo-

gies: a hierarchy of documents or a hierarchy of words.

The documents are clustered into a document hierarchy using a suitable un-
supervised clustering algorithm see [45], [26], [108], [89], [21] or [71] Alterna-
tively, the corpora may be classified using a suitable train and test hierarchical
classification algorithm such as those in [52] or [116]. The words present in
the documents generate word probability distributions for each document and
these form the input space for the clustering algorithm. Clustering and clas-
sification induce a hierarchical abstraction model of the document collection
allowing browsing of the repository by the user at their preferred level of ab-
straction from specific words to high-level concepts and the retrieval of similar
documents when a document is supplied as a query to the system. The user’s
search can be progressively refined and focussed according to the hierarchal
structure and the users can also browse the structure to identify individual or
groups of documents on their required subject. It provides a unique insight into
the topological structure of the document collection allowing high-level (topic)
based relationships to be revealed as with LSI. However, it is difficult to get
clean clusters as there is usually a great deal of overlap in the data. For a
large document collection there will be so many document vectors in the repos-
itory’s data space that clustering is intractable. A document hierarchy does not
account for synonyms, misspellings (unless the entire corpus is spell checked),
parts-of-speech, tenses and plurals in the document text. Each word has unique
attribute in the document vector unless the vectors are pre-processed with singu-
lar valued decomposition [30] for example, to obtain a meta-level representation

of the documents, to factor out low-level differences and to focus on higher-level

21

similarities. To permit word-based querying a separate data structure and re-
trieval algorithm is necessary to index the corpus and associate the documents

with their constituent words.

The complexity of Information Retrieval resides in the complex semantic re-
lationships rather than in the data itself. In a word hierarchy, the semantics
of the words are realised by the cluster relationships. A word hierarchy reveals
much about the information and topics covered by the collection from high-level
concepts down to the fine-grained level of words and phrases that a document
hierarchy cannot extract. The similarity of two concepts in the hierarchy is a
function of the reciprocal (1/x) distance between them. Using a hierarchical
representation, the focus of word retrieval can be enlarged or restricted by ex-
panding or contracting the portion of the hierarchy examined. In the hierarchy,
specific terms produce maximal precision but lower recall as similar concepts
may be missed by the narrow focus of retrieval. Conversely, high-level concepts
produce higher recall with lower precision as the documents retrieved are more
diverse but are less tightly coupled. We need a hierarchical clustering method
to automatically generate the hierarchy, as it would be impossible for a human
to generate such a word hierarchy rapidly, domain-dependently and objectively.
The word hierarchy may then be linked to a separate document data struc-
ture at the fine-grained level to store the word-document associations. Many
systems use the pre-generated semantic hierarchy of WordNet. However, Word-
Net subdivides word senses, is subjective and requires supervised association of
the corpus words to the relevant WordNet categories. The WEBSOM [48],[59]
system generates a semantic category map using statistics extracted from the
document corpus but the representation is flat. Our MinerTaur system gener-
ates a semantic category hierarchy automatically and from statistics extracted

from the corpus requiring no human intervention.

1.4 Current IR Systems

The motivations of the systems detailed below encompass word sense disam-
biguation, synonym inferencing, query-document and document-document sim-
ilarity estimation and both classification and clustering. Most of the meth-
ods described below are vector-based or knowledge-based with the exception of
Chen & Honavar [19] and Glimpse [70] which are Boolean. The methods include
contextual methods, n-gram methods, WordNet hierarchy methods, sentential
structure methods, Bayesian network methods, document and term frequency,
machine learning and neural network methods. The following list is not exhaus-
tive but is intended to be broad and provide reasonable coverage and insight
into the premises underlying each system. Van Rijsbergen [107] described the
state-of-the-art IR, systems at the time of writing (1979). The number of sys-

22

tems has increased exponentially since the book was written but the central
tenets and concepts outlined in the book still hold. Chen [20] provides a concise

description of more contemporary systems.

1.4.1 Boolean

Boolean IR systems suffer the disadvantages described above in section 1.3.1.
Also, many users consider Boolean logical conjunctives as ‘unfriendly’, unintu-
itive and confusing and do not properly understand their implications to the

matching process.

Glimpse [70] is not limited to solely Boolean querying. It allows full-text
retrieval using Boolean queries, approximate query word matching and even
regular expressions. It is essentially an approximate matching front-end pre-
processor using Agrep (see [115], [114] and chapter 4) for approximate string
matching of the query words linked to a two-level document index. The two-
level index is extremely small, only 2-4% of the original text size. The index is
a hybrid between a full text index and sequential searching through the data
with no indexing. The index stores pointers to areas (blocks) where the data
may be found. The system initially pinpoints the appropriate block to search
and sequentially searches the indicated block to exactly locate the required in-
formation. This two-level approach keeps the index size to a practical minimum
while limiting the search time to an acceptable length (the time for a block
search). If a word is found more than once in a block only one association needs
to be stored in the index as the sequential search will find all occurrences. The
two-level index scheme is a trade-off: it needs to minimise storage by main-
taining large block sizes but needs the block size to be sufficiently small to
permit tractable sequential search. The system is essentially Boolean but the
approximate word matching in Agrep allows best match querying; the system
can retrieve the document with the minimum number of errors compared to the
user query. The system is relatively slow for large databases and is limited to
primitive querying. It is ideal for a personal file collection but probably too lim-
ited for a full IR system where a greater degree of query sophistication (such as
synonym matching) is required to pinpoint the exact information and minimise

false matches.

Chen & Honavar [19] use an associative memory based on a 2-layer per-
ceptron with a layer of input neurons, a layer of hidden neurons and a layer of
output neurons; and hence, two layers of connection weights. Bipolar input vec-
tors representing the information are associated with binary output vectors in a
supervised training process. When the input pattern is presented to the network
during recall, one of the stored input patterns is returned as the binary output

of the network. If multiple patterns match the input, then the output pattern

23

will be a superposition of the associated output patterns. With the addition of
appropriate control circuitry the network may be modified to produce sequential
recall of one or more stored, matching patterns. The network has a high fan-out
for input neurons and high fan-in for output neurons, so for hardware realisa-
tions the network may be subdivided into modules linked by a shared input and
output bus allowing simple expansion of the database. The approach is not ro-
bust. It is susceptible to spelling errors and cannot accommodate synonymy or
paraphrasing. The approach is somewhat similar to our word-document matrix
module but we incorporate further spelling and hierarchical synonymy modules

into our MinerTaur system.

1.4.2 Statistical

The statistical techniques suffer the limitations outlined in section 1.3.2.

Vector-Based Approaches

The N most frequent words in a corpus form the n dimensions of a document vec-
tor producing a uniform representation for all documents. The attribute value
is a function of the term frequency or a Boolean denoting the presence/absence

of the word in the document for Boolean vectors.

SMART [92], [93], [94] was developed as one of the first IR systems. It
uses a vector space model to represent documents. SMART performs auto-
matic indexing by removing stop-words using a pre-determined list, stemming
via suffix deletion, (optionally terms may be grouped using statistical word co-
occurrence) and weighting. Various vector-weighting schemes have been utilised
in SMART [93]. The most common variant is the term frequency * inverse doc-
ument frequency (tfidf) weighting configuration. For tfidf, terms are assigned
higher weights if they occur frequently in any particular document (term fre-
quency), as they are considered important to that document but the weight is
penalised if the term occurs in many documents (inverse document frequency).
Terms that occur infrequently across a corpus are deemed relatively unimportant
as they contribute little to document similarities. This contradicts Shannon’s
Theory that states that the more infrequent a word the more information it
conveys. The vector weights are normalised to penalise long documents, as the

weighting would unfairly favour them with their high term frequency.

term freq xinv doc freq

o th g i . 1.1
werg Of (3 erm 1n aocumen Euclidean length Of doc ()

Given a new query, it converts it to a vector, and then uses a similarity measure
such as cosine normalisation [93] to compare it to the documents in the vector

space.

Sim(Q, D;) = Z gj * dij (1.2)

Common terms t;

24

SMART ranks the documents, and returns the top ranked documents to the
user. SMART can perform relevance feedback based on the user feedback of the
quality of the retrieval. We identify in our later empirical evaluation that the
SMART system is susceptible to the choice of vector configuration. SMART also
implements global stemming that may introduce errors into the representation.
We feel stemming should be supervised and specific to the query to prevent
errors such as ‘trainers’ = sports’ shoes being stemmed to ‘train’ = mode of

transport.

Goldszmidt & Sahami’s [43] approach uses document vector overlap to esti-
mate document similarity. The authors remove the most infrequent words. Each
document is then associated with an N-dimensional vector d;. Each dimension
corresponds to a distinct word in the union of all words in the corpus. The
value of the jth component corresponds to the number of times the associated
word appears in the document. The similarity of two documents is calculated
as the degree of overlap of their vectors using normalised geometric mean and
a scaling factor for the axes of the word space. This ensures that long docu-
ments will not be favoured by the word frequency attribute of the document
vector over shorter and possibly more relevant texts. The documents vectors
may also be clustered using hierarchical agglomerative clustering followed by
iterative optimisation to generate a document hierarchy. From Zipf’s Law [120],
there are very few frequent terms and many infrequent terms in a corpus so the
document vectors will comprise mainly 0’s even after the most infrequent words
have been eliminated. The few frequent terms occur in most documents so will
have a vector attribute value > 0 for most document vectors. This produces a
low similarity between document vectors and thus paraphrased documents are
assigned low similarities. The method takes no account of semantic similarity

and synonyms.

In Koller & Sahami’s system [61], each document is represented by a Boolean
vector where each vector element denotes the presence or absence of all words
that appear in the corpus following the removal of infrequent words. Boolean
vectors should have a lower storage overhead than the standard term weight
vectors as a Boolean is cheaper to store than an integer or floating-point term
weight. A hierarchy of classifiers is generated using feature selection to tailor the
feature set of each classifier to its task. The approach is utilised in Sahami, Du-
mais, Heckerman & Horvitz [91] to filter junk e-mail from other desired e-mail.
Here, additional features are assimilated into the vectors - words, phrases and
domain specific features. Such a hierarchy of classifiers is susceptible to classifi-
cation errors higher in the hierarchy. It is impossible to generate new classes for
documents that do not fit any existing class. The methodology may also suffer

the scalability problem. The approach is supervised; for the e-mail filter the

25

system must be trained with pre-classified exemplars to enable the classifiers to
learn and classify. The method suffers the same problem as [43] with respect
to Zipf’s Law and the frequency of term occurrence. It takes no account of

semantic similarity and paraphrased documents have low vector overlap.

Deerwester et al. [30] have developed Latent Semantic Indexing (LSI)
that aims to determine structure in the pattern of word usage in documents.
It uses statistical techniques to estimate the structure. The approach is more
knowledge-based but uses global context statistics. Hence we have chosen to
classify LSI as statistical although it may also be considered knowledge-based.
LSI exploits dependencies between terms and explicitly utilises them in the
representation and during retrieval. Terms that occur in similar contexts re-
ceive similar vector representations; context is document wide, not just local
neighbourhoods as with WEBSOM [84] or MatchPlus [13]. LSI uses a rect-
angular matrix of terms and documents. The matrix is decomposed through
singular-value decomposition (SVD - see [30]). The dimensionality is reduced
(minimising storage) as many matrix components are small and may be ig-
nored. Due to the dimensionality reduction, documents with differing term
usage profiles may be mapped onto the same vector of factor values. A query
is represented as the weighted sum of its component vectors and compared us-
ing the dot-product against all document vectors. The n documents with the
highest cosines are returned as the best matches. LSI increases the recall and
precision but at a high computational cost to the system. The SVD analysis is
time consuming and computationally expensive [59] so updating the database
of document representations is inefficient. LSI is best suited to static document
collections. If the document collection is dynamic or even if there is only a slight
change, the compressed representation has to be recomputed using SVD. The
method handles synonymy but only partially accommodates polysemic word
disambiguation. Polysemic words are represented by a weighted average of the
different meanings. If none of the real meanings are similar to the average, the
semantics are distorted. We noted a similar deficiency with our average con-
text vector generation method in chapter 2 but posit possible improvements to

surmount the problem in chapter 7

N-Gram Methods

N-grams are flexible, they require no linguistic pre-processing of the corpus and
are language-independent. However, n-gram approaches have low recall and
precision and return many false positives. We demonstrate in chapter 4 the low

recall and precision of a conventional n-gram spelling technique.

Damashek [50], [28] initially pre-processes the text to transform all alpha-

betic characters to upper-case. Damashek employs 5-gram subsets. The text

26

is converted to 5 character sequences using a moving window that is advanced
through the text one character at a time until all text has been processed. This
stage produces a hash table indexed by the 5-grams and storing their respec-
tive frequencies in the text. When the entire corpus has been processed the
frequency count stored in the hash table is normalised to replace the absolute
count with a relative count. Normalisation ensures that different length but
similar documents have similar hash tables. The difference between two doc-
uments is their scalar product divided by their lengths. The scalar product is
the sum of the products of the common elements (5-grams). This is identical
to the cosine of the document vectors used in SMART [93] described earlier.
The main drawback of the approach is the need to limit the hash table size.
There are 27*%27*27*27*%27=14,348,906 possible 5-grams in purely alphabetical
text (26 letters plus [space]). To reduce the storage the hash table is limited to
262,144 positions. Many 5-grams map onto the same position and hashing col-
lisions inevitably arise. Even though many 5-grams never occur in the language
there are sufficient present to create collisions. This slows both insertion and

retrieval and produces false positive matches due to the 5-gram hashing overlap.

Cavnar [16], [17] proposes an n-gram based document representation coupled
with a vector processing hybrid approach. Each document is divided in to its
constituent n-grams (4-grams) to produce a frequency histogram representing
the document. All document vectors are normalised to unit length. A dictionary
denoting the number of occurrences of each 4-gram in the entire corpus and how
many documents contain the 4-gram is also generated. If the 37 characters [a-z]
[0-9] [space] are represented, there are 37*37*37*37=1,874,161 possible 4-grams.
To reduce the document vector dimensionality only 4-grams with an inverse doc-
ument frequency of > 2.75 are stored in each document vector, compressing the
storage. Cavnar notes that this essentially equates to stop-word removal and
word stemming in a conventional vector-based approach. In a system query the
4-gram weight is the normalised frequency*inverse document frequency. The
similarity of the document to a query is the cosine of the angle between the vec-
tors - as the vectors are normalised this similarity measure reduces to computing
the dot product. The fundamental drawbacks of Cavnar’s method are the gen-
eration of false positive matches which necessitate a post-processing stage to
eliminate the false positives. Cavnar’s n-gram method is not positional [106]
and matches the n-grams anywhere in the words regardless of their respective
positions; one n-gram at the beginning of the query word will match the same
n-gram even of it is situated at the end of a long lexicon word. N-grams intro-
duce a huge storage overhead and require the storage of an association for every
n-gram from every document. Even though Cavnar eliminates some n-grams by

using the IDF factor the storage overhead is still prohibitive.

27

Bayesian Network

INQUERY [15], [14], [11] forms a network from the documents and the queries

(see figure 1.1). The value of a document node (true or false) represents the

Document Node .-+

Document network
Document Content Node .-~~~

uery Concept Node .-~~~
Query Concep Query network

Query Node. .-~
Figure 1.1: Figure illustrating the INQUERY Bayesian network

proposition that a document satisfies a query passed to the network during query
processing. Content nodes represent meta-level information ranging from words
to dates to company names. The content nodes are generated automatically by
the system so there is no requirement for human intervention or knowledge en-
gineering. Query concept nodes represent the concepts passed from the query.
Query nodes are linked to their corresponding query concept nodes and are
always true. All other arc weights are calculated from corpus statistics or es-
timated by the system. These weights need to be estimated accurately as it is
critical to the retrieval process. The arcs linking document and content nodes
are stored as an inverted index that is sorted to speed retrieval. We show in
chapter 5 that Inverted File Lists are slower for retrieval than our binary ma-
trix index structure. The arc weight must be estimated at query time and thus
relies on the statistical model used to generate the estimate. During retrieval,
the INQUERY system evaluates the query node and returns a belief list cata-
loguing the documents and their corresponding beliefs, i.e., the probabilities of
the documents meeting the query. INQUERY cannot handle synonyms. How-
ever, a synonym module has been amalgamated to expand queries but it is not
generated by the system and must to be produced in advance. There is no spell
checking mechanism to handle typographical and grammatical spelling errors in
the documents or queries although again such a module could be incorporated
to spell check the query terms. INQUERY suffers the explosion of informa-
tion as the number of document nodes grows linearly with the corpus size and
the number of concept nodes could grow exponentially as new documents are
added to the corpus. The representation is essentially flat, although meta-level
information is extracted during the lexical and syntactic analyses, there is no

knowledge abstraction to produce a hierarchical representation.

28

Statistical Neural Network Methods

Statistic-based neural network methods are exemplified by Multi-Layer Percep-
tron (MLP) networks. In addition to the limitations described in section 1.3.2,
the statistic-based neural network methods all suffer from the small training
problem, i.e., there is only a small amount of training data available and it is
likely to represent only a small portion of the corpus - much generalisation is
required to extrapolate the training data to encompass the entire corpus. Yang
[117] observed inferior performance for MLPs compared to Support Vector Ma-
chines [52] or k-Nearest Neighbour, where the performance is calculated as a
function of the training set category frequency, system robustness and the abil-
ity to handle skewed category distributions. Node-based neural networks also
suffer from the computational complexity explosion due to the large number of
documents in text corpora. One node in the network represents one document
in the corpus and one node represents every unique word in the corpus. For a
large text collection there will be millions of document containing millions of

unique words so the network size may be intractable.

Belew’s AIR [8] employs a weighted graph as the fundamental representation.
The representation is modified via user feedback with users recommending their
likes and dislikes and suggesting where to expand/ prune the search. The system
comprises three layers with nodes in the three layers representing documents,
keywords and authors respectively. All links are symmetrical and weighted.
They are formed between documents and their associated keywords and docu-
ments and their authors. The weights of the document-keyword links are set
according to the inverse frequency equation. The system relies on sub-symbolic,
weak information to ensure stability and robustness against input errors, noise
and system failure. The system is totally supervised and requires teaching at

all stages.

Rose [87], [88] employs Belew’s [8] AIR system as a foundation for the SCALIR
legal retrieval system. SCALIR incorporates spreading activation into inter-
leaved connectionist and semantic networks upholding the belief that activity is
proportional to relevance. System nodes represent terms and documents (both
legal cases and legal statutes). They may be hierarchically structured represent-
ing meta-terms (concepts) and meta-statute sections (chapters). They form tree
structures and the structural information has to be manually entered although
the actual nodes representing the hierarchy are created automatically by the
system. All system links are directed, non-symmetrical and weighted. The con-
nectionist links illustrate statistical regularities discovered by the system during
indexing. The connectionist link weights are adjusted according to user feed-
back. The connectionist network represents micro-features (sub-symbolic infor-

mation) and represents indexed links between words and documents (both legal

29

cases and statutes) that contain them using the TFIDF weighting scheme. The
symbolic links represent knowledge generated by knowledge engineers - features
and symbolic information. They represent case-to-case links. The methodology
extracts a hierarchical knowledge representation using corpus statistics. The
network construction is essentially supervised, a limiting factor of the underly-
ing AIR [8] network.

Crestani [25] describes an experimental system using a 3-layer feed-forward
model. The three layers correspond to the query descriptor, concepts and doc-
uments. The structure of the query layer is derived directly from queries and
there is an indirect connection (via the concept layer) between the query de-
scriptor and any relevant document in the final layer - the document layer. The
connection is weighted according to the similarity between the query descriptor
and the document. Documents have weighted links to other documents if they
are cited by that document. The concept layer forms an intermediate layer
representing meta-knowledge that is independent from the language and sym-
bolism. Queries and documents are linked to concepts they describe. Concepts
are inter-related by weighted connections. Learning is performed via the Back-
Propagation rule. The network has very similar topology to the INQUERY

Bayesian network [15] and suffers similar limitations.

Gedeon [42] employs a neural approach to learn synonyms and related clusters
of words defining similar concepts from a text corpus in the legal domain. The
MLP network has an input and output node for each keyword selected from text
corpus. A layer of hidden units in the neural network connects the input nodes
to the output nodes. For each keyword in a document, the corresponding input
node is activated and the output vector trained as the word frequency of all
keywords in the document under consideration (i.e., each corresponding output
node is activated with respect to the frequency of that keyword in the docu-
ment). The Back Propagation algorithm produces generalisation of outputs for
each input word. The usefulness of the system remains to be tested in practise
to assess the value of the associations. The central tenet of the approach is the
neural network’s ability to generalise to encompass unseen concepts. The clus-
ters are not synonyms but in fact semantic associations specific to the corpus.
Common words are more often included in clusters than infrequent words and

this trait needs further investigation.

1.4.3 Knowledge-Based

The principal advantages and disadvantages of the knowledge-based were de-

scribed in section 1.3.3.

30

Contextual Methods

These approaches utilise the local neighbourhood of words to generate vectors
to represent the word and its context. The systems use stochastic and neural
network clustering to establish the similarity of words. They can thus impute
document similarity from the similarity of their contained words. They are es-
sentially statistical techniques but to some degree they are knowledge-based as

many generate a thesaurus from the word contexts.

MatchPlus [13] uses local context (to ensure neighbouring words have more in-
fluence) rather than the document wide context of LSI. Stop-words are initially
discarded from the document and the remaining words are stemmed. MatchPlus
represents each stem by a context vector of about 300 numeric features. A boot-
strapping step uses a neural network to generate the context vectors sensitive
to similar word usage but requires several passes to discover such higher order
relationships i.e., synonymy. Once a dictionary of context vectors is generated,
document representations can be calculated from the weighted sum of the term
context vectors. Context vectors are used for terms, documents, and queries,
allowing comparisons between any pair using a neural network. Similarity is de-
termined by the dot product of context vectors. MatchPlus intuitively captures
higher order relationships and light paraphrasing through similarity. It is fully
automated but the bootstrapping requires several passes over the entire corpus.
Global stemming introduces errors, for example, ‘glasses’ meaning ‘spectacles’
is stemmed to ‘glass’ and confused with ‘a drinking vessel’ or ‘a vitreous sub-

stance’.

Cheng & Wilensky’s IAGO! [22] is an Internet search engine and cate-
gorises documents by exploiting thesaurus categories. A lexical disambiguation
algorithm establishes a moving window of 50 words around a target word and
associates each thesaurus category to which the target word belongs with each
word in the surrounding window. The algorithm produces a matrix of nor-
malised word category associations. To assign a category to a document, the
classifier generates a vector of all thesaurus categories and each word in the doc-
ument adds its category association vector. The algorithm outputs the strongest
component as the category of the document. The algorithm will only classify
text into the categories given by a thesaurus that are sometimes questionable -
they fragment single senses and omit other senses. It only assigns one category
per document although this could easily be extended by, for example, assigning

the N strongest components as the topic.

WordNet Hierarchy

These methods rely on the pre-compiled hierarchical categorisation of synonyms,
hyponyms (IS-A) and metonyms (PART-OF) of WordNet to estimate word sim-

31

ilarity and the most appropriate word sense (WordNet lists all senses of words
with the most frequently occurring listed first). These techniques use the seman-
tic hierarchy of WordNet so may be categorised as knowledge-based although

they do not actually derive the knowledge-based thesaurus themselves.

Scott & Matwin’s [97] approach exploits WordNet categories to induce document-
document similarity. The methodology comprises three phases: Assign part-of-
speech tags to each word in the corpus and discard all words except nouns and
verbs. Use WordNet to assemble a global list of synonym and hyponym sets.
Calculate the density of each synonym set present in each document (number
of occurrences / number of words in document) to produce a set of numerical
features. This can be utilised to determine the document-document similarity -
the authors do not specify a methodology for this step. The method described
requires a pre-determined hierarchy to operate and is susceptible to any errors
or inconsistencies in the hierarchy. The method is optimal for classes that are

broadly defined and/or semantically related but less than optimal otherwise.

Sentential Structure

Sentences are parsed to generate parse trees that are used in isomorphic match-
ing to estimate query-document similarity. This technique is knowledge based
as similar words will have similar parse trees so the technique takes account of

some semantics although no word sense disambiguation is performed.

Smeaton, Donnell & Kelledy [100] use a linguistic approach to IR. Each
clause in a text corpus generates a list where each item is a verb, adverb, adjec-
tive, stop-word or TSA (tree structures derived from syntactic analysis and used
to encode ambiguities). Each user query is scored against each document by
matching at three levels: leaf-node level - identical or related syntactic function
labels; structural level - scores for inexact matches caused by ambiguities and
combining node scores in to an overall TSA score for clause matches; document
level - addressing how clause TSA scores are combined to produce document
scores. The empirical evaluation indicated that the method functioned poorly.
The approach suffers the inherent problem of complexity. The language dif-
ferences between queries and documents, i.e., interrogative versus descriptive

language combine to inhibit the methodology.

Document Classification

The approach is supervised and needs a train and validate learning phase to
generate the hierarchy. Such pre-classified corpora are limited to specific pre-
classified collections such as the Reuters collection used for our evaluations [82].
Pre-classified documents may be inconsistent and subjective due to the inconsis-

tency and subjectivity of the human’s specifying the document categories. The

32

Reuters collection contains many such anomalies, acknowledged in the documen-
tation accompanying the collection. Classification systems are totally reliant on

the categories awarded.

Joachim’s [52] aim is a robust document classifier that can handle non-separable
problems. The system uses Support Vector Machines (SVMs) to determine hy-
potheses that guarantee the lowest true error. They find a set of coefficients
that separates the training data and has the shortest weight vector. Only ex-
amples where the co-efficient is greater then zero contribute - support vectors.
SVMs can additionally learn non-linear hypotheses by incorporating convolu-
tion functions, learning (polynomial classifiers, Radial Basis Function classifiers
[9] or 2-layer sigmoid neural networks [7]). They can handle non-separable prob-
lems by discarding training examples that contribute to inseparability. SVMs
eliminate the need for feature selection which is required in other classifiers for
instance inductive learning systems such as Yang’s system [116] described be-
low. SVMs are robust and do not require parameter tuning. However, they are
purely supervised - they require a fixed number of predetermined categories to
classify. The methodology used by Joachims is slow due to the quadratic opti-
misation (hypothesis) problem. However, Dumais et al. [31] integrate a method
that subdivides the large QP problem into smaller problems that may be solved
analytically and produces a 30-fold speed-up.

Yang’s system [116] uses a symbolic learning, decision tree approach adapted
from the C4.5 algorithm. Inductive learning induces a decision tree using the
attributes of pre-classified exemplars, systematically maximising the informa-
tion gain on each iteration of the algorithm. A binary vector represents each
document with attributes set to 1 denoting the presence of a specific word in
the document and attributes set to 0 where the corresponding word is absent.
The attribute with maximal information gain forms the decision tree root and
the training exemplars are subdivided according to the attribute. Then for each
branch, the algorithm recursively determines the attribute that maximises the
information gain until the training corpus is hierarchically categorised. The de-
cision tree produced correctly categorises all exemplars. Although Yang [116]
postulates that the number of training examples required is small to ensure cor-

rect classification, the approach still entails a pre-classified corpus for training.

Document Clustering

Document clusters are intended for browsing, identifying concepts and domain
knowledge in the document collection and searching the corpus rather than
purely for matching user queries. The document cluster topology is not incre-
mental and must be recompiled if the knowledge base changes, i.e. the system

must re-cluster the entire corpus.

33

Hofmann’s [45] system hierarchically clusters documents from statistical anal-
yses of word distributions. The text corpus is pre-processed with a word stem-
mer and the most and least frequent words are eliminated. A cluster abstraction
model, annealed EM (a statistical mixture model similar to deterministic an-
nealing see [45] which prevents over-fitting, reduces sensitivity to local maxima
and specifies the maximum number of terminal cluster nodes) organises groups
of documents into a hierarchy. The probability document i belongs to cluster C'
is dependent on the cluster specific word probability distributions in conjunction
with the words present in the document. The word probability of document
is modelled as a mixture of exemplars from different abstraction levels. Each
document contains a mixture of hierarchical mappings ranging from general
language to highly specific technical terminology. The hierarchy allows users
to browse or query the document collection at the desired level of abstraction.

The approach has only been tested on small to medium sized collections.

HyPursuit [108] is a hierarchical network search engine that clusters Web
documents and identifies the structure of the domain to allow user browsing
and searching at their required level of abstraction. The hierarchical clustering
is based on the documents contents and also the link structure of the hyper-
text links that link the document to other documents on the Web. HyPursuit
uses the complete-link dendrogram method [33] to cluster the documents. The
similarity of documents is calculated using a function of both hyper-links and
the document term vector (as used in SMART [93]) given in equation 1.3. The

current system uses the maz function in equation 1.3.

Siy = F(SkTme, Stinke) (1.3)

The link similarity S;Zn s i equation 1.4 is a weighted function of the number of

descendant documents that documents 4 and j refer to S{‘g-“, the shortest path
between the two documents S;} ! and the number of ancestor documents that

refer to both documents Sfj"c.
Stinks = W, - Sfee 4 W, - Sgne + W, - S;¥' (1.4)

The document similarity is calculated from the normalised dot product of the
term vectors for each document and uses the SMART [93] term similarity func-

tion given in equation 1.5.
Sf;Tms = Zwik * Wik (1.5)
k

The system is scalable. The user is able to interact at their required level of
specificity. However, only a limited evaluation has been performed on the sys-
tem by the authors and there have been no comparisons against existing systems

or methodologies.

34

The Scatter/Gather system [26] has two components: a hierarchical cluster-
ing of the document corpus to enable user browsing and a k-nearest neighbour
word-based text search to query the corpus. A vector represents each document
with each attribute representing the frequency of occurrence of a specific word
in that document. The paper presents two possible hierarchical clustering meth-
ods which are used in Scatter/Gather to generate a hierarchical cluster topology
representing the text corpus at various levels of abstraction. A more accurate
but slower clustering algorithm, fractionation [26] followed by group average
agglomerative clustering, groups the document corpus off-line. For interactive
user clustering, the user browses the pre-compiled hierarchical document clus-
ter, selects the clusters they wish to explore further and Scatter/Gather employs
a cheaper less accurate clustering algorithm, Buckshot [26] followed by group
average agglomerative clustering to iteratively re-cluster the selected documents
to the user’s desired level of specificity. The approach imputes a hierarchical
topology to identify the structure of the corpus but is limited to pre-classified

datasets.

Knowledge-Based Neural Network Methods

Knowledge-based neural network approaches are exemplified by systems based
on self-organising neural networks. Word vectors or document vectors form the
input vector space of the neural network to infer similarity and categorise words
and documents. WEBSOM [48],[59] and our methodology (see section 6.2) aim
to progress one step further towards a knowledge-based approach by generating
a thesaurus representation from the word contexts to incorporate synonyms into

the retrieval process although neither uses word sense disambiguation.

Wermter, Arevian & Panchev [109], [110] use a recurrent network with
internal recurrent hysteresis connections augmented with a dynamic short-term
memory that is trained using supervised learning of semantic category vectors.
A document title is represented by a sequence of significance vectors concate-
nated together with the outputs set as the topic of the document in the corpus.
The recurrent connections are multiply layered and encode contexts based on
the frequency of the words in different semantic categories normalised against
the frequency of occurrence of the target word in the corpus. The context near
the output of the network is more general and less dynamic than the contexts
near the input. These networks are used for the text routeing of news wire doc-
uments. The networks have a high recall and precision rate, above 92 percent.
The internal representation may also be analysed. The neural network per-
forms supervised classification as the document topics form the outputs with
the significant words forming the inputs to the neural network. This relies

on pre-classified data being available to train and test the system during the

35

learning phase. We desire an unsupervised, autonomous learning approach that
does not require pre-classified data but learns purely from statistics gathered
from unstructured text. However, the approach uses semantic categories and
knowledge abstraction and we feel such higher-level knowledge is essential for
contemporary systems. The system lacks a spell-checking module so spelling

errors in the corpus or a query may detrimentally affect the retrieval rates.

Wiener et al. [111] present a system using non-linear neural networks to
model higher-order relations between document words and simultaneously pre-
dict multiple document subjects from common hidden features. The data must
be pre-processed to reduce the dimensionality to ensure tractability of the input
vectors for the neural network. The neural network relates the input vectors
(reduced document features) to a binary output representing the topic assign-
ment. There is one network per category. The use of a non-linear neural network
permits multiple subjects to be assigned. The paper [111] describes prototypes
utilising both an MLP neural network with a hidden layer and an MLP net-
work with no hidden layer. The system is limited to pre-categorised document
collections to enable the network topology to be derived and requires a highly
supervised approach. The dimensionality reduction phase can factor out fine-
grained knowledge from the system which may be important in ranking retrieved

documents.

Roussinov & Chen [89] and Chen, Shuffels & Orwig [21] employ a SOM-
based approach. The implementation adapts SOMs to produce a hierarchical
taxonomy of maps representing document clusters down to concept clusters.
The aim is a hierarchical clustering of progressively finer-grained concepts. Each
document is represented by an N-dimensional vector denoting whether the N
most frequently occurring terms are present or absent. Documents belong-
ing to the same category are recursively decomposed to produce finer-grained
maps corresponding to deeper levels in the hierarchy. The same process clus-
ters both documents and concepts thus eliminating any bias. The concepts
represent a spectrum of semantically similar words with an associated label.
The authors improve the efficiency of the traditional SOM by computing the
Euclidean distance to all nodes and updating the weights proportional to the
number of non-zero co-ordinates rather than the total number of co-ordinates.
The methodology uses the N most frequent terms to describe documents but
such an approach plays in to the hands of the vocabulary problem (paraphrased
documents would be less likely to be judged similar as their most frequent terms
would vary). SOMs map more than one input (document or concept) onto each

node so this precludes unique identification of documents and concepts.

Merkl [71], [72] aims to identify similarities between documents and produce

36

a hierarchical representation and visualisation of the document collection. The
representation gets progressively more specialised top-down. A representative
number of terms (keywords) are identified for the document collection. Binary
vectors are produced for each document where each attribute represents the
presence or absence of the corresponding keyword in that particular document.
The vectors are then trained into the highest layer SOM. For each output unit
in the SOM, a map is added to the layer below and so on down through the
hierarchy. Any vectors that map onto the unit in one layer form the input to
the map on the layer below. Each map is trained with specialised data enabling
a hierarchical document taxonomy to be inferred. The document similarities
are mapped on to the 2-D maps and thus are easily visualised. The representa-
tion also reduces training time compared to the single-layered SOM. For each
more specialised layer, the common attributes from the vectors for each input
vector space may be removed. Only varying attributes need be trained. The
dimensionality reduction reduces the training time as the similarities are cal-
culated on a per dimension basis so any reduction in dimensionality simplifies
the calculation. The training time is further reduced, as there is no neigh-
bourhood interference. In a single-layered SOM each cluster interferes with the
self-organisation of its topological neighbours, particularly boundary units. Due
to the hierarchical topology, much of the overall structure is maintained by the
architecture. However, the topology is very rigid. The author concedes that the
hierarchy needs to be pre-determined. The map dimensions and hierarchical
topology must be preset which requires knowledge of the data and its required
structure and tends towards a supervised approach. Our TreeGCS clustering
approach is both dynamic and hierarchical, with very few structure parameters,

only the desired number of GCS cells needs to be specified.

WEBSOM [49], [64], [47], [46], [48], [59] [65] categorises over one million docu-
ments. The system discards punctuation, stop-words, numbers, the most com-
mon words and the most infrequent words. The system initially produces a
semantic category map using 270-dimensional average word context vectors in-
put to a SOM as described in chapter 2. Document vectors are generated from
the word locations in the semantic category map. The vectors represent a his-
togram of word categories identified by SOM grid location. The word attributes
in the document vector can be weighted by inverse document frequency. The
word category histograms are then projected randomly to form 315-dimensional
statistical document vectors that form the inputs to a document SOM. The
SOM arranges the statistical document vectors in to the document map. The
word category histograms can be computed much faster than the topic vec-
tors of LSI [59]. The indexing data structure is incremental in WEBSOM.
WEBSOM is entirely unsupervised and parallelisable enabling computational
speedup. However, the topography is single-layered and the SOMs cannot form

37

discrete clusters; the cluster boundaries have to be determined by a posteriori
inspection. Our TreeGCS clustering algorithm for producing synonym networks
(thesauri) is implicitly hierarchical and forms discrete clusters with no recourse

to a posteriori inspection.

1.5 Current IR System Analysis

We feel the systems described in the previous section all suffer from at least
one deficiency. Many of the methodologies exposited above eliminate high fre-
quency and low frequency words that have low discriminatory power according
to Luhn and noted in [107]. For systems that represent the corpus as a matrix of
document vectors with a vector attribute representing each unique vocabulary
word it is imperative to reduce the vocabulary to be indexed to minimise the
dimensionality of the document vectors and reduce the storage requirement of
the matrix. However, our MinerTaur system uses binary matrices (see chapter
3) to store the word-document associations which do not store null attributes,
if a specific word does not occur in a particular document the storage for the
association is nil. If we store infrequent words we do not unduly increase the
overall system storage as these words occur in only a few documents so only
a few index locations need be stored. We in fact only eliminate a small set
of stop-words (extremely common words) such as {‘and’ or ‘the’} that have
absolutely minimal discriminatory power. We feel that elimination of high or
low frequency words may discard essential information. We note that although
low frequency words have a low discriminatory power with respect to the entire
corpus, they have a high discriminatory power for the documents that contain
them. They often uniquely differentiate a particular document so we feel they
are essential to the retrieval process. Shannon’s theory concurs that singleton
words are important for indexing. Some systems even implement global word
stemming to reduce the vocabulary yet further and thus reduce the number of

terms to be indexed further. Van Rijsbergen quotes Salton [107]

“... on the average the simplest indexing procedures which identify a

given document or query by a set of terms, weighted or unweighted,

obtained from a document or query text are also the most effective.”

For most systems, the index is the portal to the text corpus, so the index must
be complete and comprehensive. The searching and matching algorithms ex-
ploit the index so any errors or omissions due to word elimination will reduce

the effectiveness of the system to the user.

Few systems have a hierarchical knowledge representation or hierarchical the-
saurus integrated into the system. The systems that incorporate a knowledge
or word abstraction generally rely on a pre-compiled hierarchy such as Word-

Net which may be too general, including many word senses not relevant to the

38

corpus while omitting domain specific terminology. Many systems extract some
meta-level information such as dates and company names in INQUERY or topic
extraction in LSI but neither are hierarchical. We generate a word hierarchy

solely from corpus word co-occurrence statistics in chapter 2.

Few systems spell check the input or accommodate spelling errors. The Glimpse
system uses the Agrep approximate string-matching algorithm to identify the
best matching words and can retrieve the best matching documents from ap-
proximate matching words. N-gram based systems can also perform approxi-
mate string matching to identify the best matching word and overcome spelling
errors in the query or the corpus. INQUERY incorporates a spell checker as a
plug-in module but it is not an integral part of the system. Our spell checker is
implemented in the same architecture as the word-document matrix to allow a
simple transition from spell checking to document retrieval. The binary vectors
representing the matching set of words from the spell checker form the inputs
to the word-document matrix with no translation necessary thus maximising

retrieval speed for this stage of system retrieval.

Few systems allow local, user-driven stemming of query words. Many systems

implement global word stemming. Gale, Church & Yarowsky [41] noted that

“the use of three general purpose stemming algorithms did not result
in improvements in retrieval performance in the three text collections

examined, as measured by classical evaluation techniques.”

and van Rijsbergen [107] observed that stemming introduced errors. We allow
a query word stemming stage in our retrieval process using local stemming se-
lected by the user. We detail our spell checker’s ability to match word stems
in chapter 4. The Glimpse system could exploit Agrep’s word stemming capa-
bilities but none of the other systems discussed incorporates such a user-driven

facility.

Many systems employ inefficient data structures. Glimpse uses a two-level index
that is only suitable for small system storage. Bayesian networks and node-based
neural-networks suffer the explosion of nodes as the number of nodes increases
exponentially with the number of documents stored unless the network is sub-
divided and stored and processed in separate modules. However, differentiated
modules need to be re-integrated (the results need to be amalgamated) and
this amalgamation process can slow retrieval. Other systems minimise storage
by incorporating various data compression techniques. LSI reduces the size of
the word-document matrix through singular valued decomposition and in the
process extract meta-level information. However, low-level information may be
factored out, simple word-document associations are lost. The process is also ex-

ceedingly time consuming and computationally expensive [59]. The WEBSOM

39

system compresses the dimensionality of the word histograms that represent
each document to a suitable level for processing. Again much low-level informa-
tion may be lost. We use an efficient and accurate binary matrix data structure
described in chapter 3 for the spelling and indexing modules. Our approach has
faster training, faster retrieval and equivalent storage requirements compared to
other similar data structures used in IR systems, see chapter 5. Our approach
retrieves all expected matches and does not retrieve any false matches unlike

similar compressed representations described in chapter 5.

1.6 The MinerTaur Integrated, Modular IR Sys-

tem

We elected to store the data repository using a word hierarchy for synonym
retrieval linked to a word-document matrix to index the repository with a front-
end spell checker to validate the query terms. See figure 1.2 for an overview of
the MinerTaur system architecture during training and figure 1.3 for an overview

of the MinerTaur system architecture during query matching.

List of
i Documents

S){nonym Spell Checker Word to Document
—>» | Hierarchy Index
(TreeGCS) Module Module

Figure 1.2: Figure illustrating our integrated modular MinerTaur system during
training. The dashed boxes indicate artefacts and the solid boxes illustrate the

three system modules.

1.7 Outline of Dissertation

We describe each of the modules that integrate to produce the overall MinerTaur
system in separate chapters of the dissertation. Chapter 2 describes ‘TreeGCS’
and evaluates our technique for context vector generation and clustering against
contemporary systems and techniques. TreeGCS processes the semantics of the
words by exploiting the patterns present in text. These patterns produce sta-
tistical correlations in the context patterns of individual words. We represent

the word context as real-valued vectors and thus infer the similarities of words

40

Query Words i

Synonym Spell Checker
Hierarchy
(TreeGCS) Module

Iy

TTTT oo] Word to Document
' “Searchword' list |———————— % | Index
L Module

Figure 1.3: Figure illustrating our integrated modular MinerTaur system for
querying. The dashed boxes indicate artefacts and the solid boxes illustrate the

three system modules.

through vector similarity as similar words (synonyms) will have similar contexts
and thus similar vectors. TreeGCS is an unsupervised, growing, self-organising
hierarchy of nodes able to form discrete clusters. TreeGCS refines and extends
the Growing Cell Structure algorithm of Fritzke [34], [36], [35], [37], [38]. We
superimpose a hierarchy on top of the existing GCS neural network. The hi-
erarchy forms as the GCS network grows and splits beneath. In TreeGCS the
word context vectors are mapped onto a 2-D hierarchy reflecting the topological
ordering of the input space. TreeGCS maps the data space in an evolutionary
fashion, starting with a small number of cells and gradually generating new
cells, validating the accuracy of the topological representation and removing
superfluous cells while building a hierarchy on top of the evolving cell structure.
The hierarchy branches and divides with the cell structure beneath. The word
hierarchy acts as a pre-processing module for MinerTaur, see figure 1.4 for an
overview. Proponents posit that humans intuitively cluster information such as
words and concepts into a generalisation hierarchy [62] to allow understanding
and both matching and retrieval of concepts. Manual creation of such a the-
saurus would be formidable challenge; it is extremely time consuming and has
massive complexity. The MinerTaur approach is entirely automated and uses
only unstructured text corpora as data; no knowledge engineering is required

and there is no requirement to pre-process the data into a structured format.

The hierarchy is searchable as soon as the context vectors have been gener-
ated and the TreeGCS hierarchical thesaurus neural network run for a small
number of epochs to produce an initial hierarchy. TreeGCS may be interrupted
at any time and the hierarchy exploited at that stage. Obviously the quality
of mapping from the input vectors to the nodes in the hierarchy will improve
as the number of epochs completed increases and the hierarchy settles into an
accurate topological representation. Each node in the hierarchy represents a

small group of synonyms at the lowest level and progressively larger groups of

41

Text Corpus !

.

p—

Generate average

context vectors

* Synonym

TreeGCS Hierarchy
Module

Figure 1.4: Figure illustrating our semantic hierarchy generation module. The
dashed boxes indicate artefacts and the solid boxes illustrate the system modules

and processes.

related words up through the hierarchy.

Our approach does not have to use its own word hierarchy. We could simply
plug-in a pre-specified hierarchy. It is readily applicable to existing hierarchies
as long as some scoring metric is available e.g. WordNet can produce scoring [97]
so would be suitable. We demonstrate the necessity of using high-dimensional
vectors to represent the individual words in the documents. High dimensional
vectors ensure that the word vectors are approximately orthogonal and there
are no implicit word dependencies or relationships in the vectors representing
the individual words. Therefore all dependencies and relationships are imputed
purely from the relationships between the document words. We demonstrate
the superiority of a wider context window when generating the context vectors,
illustrating the superior quality clusters and higher stability of the cluster topol-
ogy produced. Finally we establish the higher quality of the clusters produced
by TreeGCS compared to contemporary clustering approaches. The clusters
produced from TreeGCS are similar to the clusters extracted from a benchmark

human generated thesaurus.

42

Chapter 3 is a description of the AURA neural network architecture that forms
the foundation for our MinerTaur system. AURA is a modular neural network
allowing high flexibility of the system architecture produced. AURA provides
rapid, single epoch training of associations and single step matching of inputs.
AURA uses binary, unsupervised matrix memories. New associations are su-
perimposed, i.e., new inputs are overlaid over existing trained associations so
the network size is not altered allowing new associations to be added to the
existing structure incrementally without any recompilation. The matrix may
be very sparse or saturated as required by the application. AURA allows us to
use multiple bits set in the bit vectors to increase storage capacity but in the
system described in this dissertation we use orthogonal (single-bit set) vectors
as the system memory usage is relatively low and there are no false positives
when orthogonal bit vectors are used. AURA allows multiple input vectors to
be overlaid, input to the system and matched simultaneously. We can even

perform multiple, simultaneous partial matching.

A further pre-processing module is a spell-checking algorithm: to verify the
query terms, identify spelling mistakes, to make recommendations for spelling
corrections and to suggest alternative spellings. A spell checking pre-processor
introduces fault tolerance as user errors can be corrected at source and robust-
ness as the system will still function even with user errors. As any reader who
has misspelt their query can attest, current search techniques are unforgiving
of query spelling errors and do not attempt to spell check the individual query
terms before commencing searching. The spell checker prevents user frustration
as we are able to validate query terms before they are input to the system and
recommend alternative spellings for the user, saving user time and processing
time. Our innovative spell checker also allows word stemming to suggest all
alternative stemming variants from a word stem supplied by user, for exam-
ple if the user requests ‘engine’ the stemmer will suggest ‘engines’; ‘engineer’,
‘engineering’ etc. We implement such a spell checking methodology by devel-
oping an associative-memory based hybrid spelling technique in chapter 4. The
approach uses the AURA associative memory used in the word-document asso-
ciation matrix so it integrates elegantly. We demonstrate the high recall of the
methods integrated into the spell checker and also the high recall and precision
achieved by our integrated, hybrid spell checker in comparison to a selection of
benchmark algorithms. The words retrieved from the spell checker form part of

the input to the word-document association matrix.

In chapter 4 we also empirically evaluate the affect of lexicon size on the re-
trieval efficiency of the spelling CMM to assess the scalability of our MinerTaur
system. IR systems have to store vast repositories of textual information so

a scalable system is imperative to accommodate huge vocabularies and lists of

43

word-document associations. We tabulate the memory usage statistics and the
retrieval times for a range of vocabulary sizes. We identify a critical lexicon size
where the time to retrieve the spelling candidate matches from a misspelt input
exceeds our desired maximum of 2 seconds [74]. We postulate options for the
storage of lexicons that exceed the maximum threshold and identify two pre-
ferred solutions depending on the constraints imposed. The choice is a trade-off

between memory requirements against rapid retrieval with no false matches.

All TR systems need a method to index the data repository and to identify
the word-document associations - a list of which words occur in each docu-
ment to allow user queries to be serviced. This list of associations is extremely
large in even a moderate IR system so the storage technique must be memory-
efficient yet allow rapid and simple training and retrieval. LSI [30] decomposes
the word-document matrix to decrease storage and in the process extracts the
meta-level semantic relationships. However, the low-level word-document infor-
mation is lost. In chapter 5, we develop an association matrix in the associative
memory-based AURA neural network architecture to store the associations. By
implementing our word-document matrix in AURA we can utilise AURA’s sin-
gle epoch training capabilities, superimposed coding, associative matching and
AURA also enables partial matching in a single retrieval step. We provide a
detailed comparison of our data structure against a series of benchmark data
structures commonly used in IR systems. In our data structure, we maintain
all necessary information unlike LSI yet we can also utilise the word hierarchy

to introduce high-level categorisation (topic-based information) into MinerTaur.

In chapter 6, we describe our integrated, modular MinerTaur system. The
words extracted from the word hierarchy are amalgamated with the words re-
trieved from the spell checker to form the input to the word-document associ-
ation matrix. The outputs from the matrix are the best matching documents.
We evaluate the memory usage statistics and the retrieval time for a range of
queries applied to MinerTaur. We compare the training time of MinerTaur to
the SMART benchmark system. We then compare the recall and precision fig-
ures of various configurations of MinerTaur against various configurations of the
SMART benchmark system.

We begin our final chapter with the overall conclusions for our MinerTaur system
and its empirical and comparative evaluations. We analyse MinerTaur against
our criteria for an ideal system. Finally we posit recommendations for future

improvements and expansions for our MinerTaur system.

44

Chapter 2

TreeGCS

In this chapter, we propose a hierarchical, word clustering neural network algo-
rithm that we call TreeGCS. Our TreeGCS technique automatically generates
a hierarchical thesaurus (synonym abstraction) using purely stochastic infor-
mation derived from unstructured text corpora and requiring no prior classi-
fications. The synonym hierarchy forms one of the query processing modules
in our MinerTaur IR system (see figures 1.2 and 1.3). The synonym cluster
abstraction overcomes the Vocabulary Problem as the words contained in any
paraphrased documents fall into identical or similar synonym clusters where
similarity is measured by distance in the synonym hierarchy. The synonym
abstraction also overcomes Information Owverload by focusing the search dur-
ing query matching within cohesive clusters thus narrowing retrieval to very
similar words. We describe existing word categorisation methods, identifying
their respective strengths and weaknesses and evaluate our proposed hierarchi-
cal clustering approach against existing statistical and neural approaches using
a human generated thesaurus for comparison. We demonstrate the effectiveness

of our approach and its superiority to existing techniques.

2.1 Introduction

Word categorisation (encompassing both unsupervised clustering and super-
vised classification) enables the words to be associated or grouped according
to their meaning to produce a thesaurus. In this chapter we focus solely on
word clustering as this approach is unsupervised. Clustering does not require
pre-generated human classifications to train the algorithm and is therefore less
subjective and more automated as it learns from text corpus knowledge only.
Word clustering can also overcome the Vocabulary Problem cited by Chen et
al. [21]. They posit that through the diversity of expertise and background

of authors and the polysemy of language, there are many ways to describe the

45

same concept; there are many synonyms. In fact, Stetina et al. [104] postu-
late that polysemous words occur most frequently in text corpora even though
most words in a dictionary are monosemous. Humans are able to intuitively
cluster documents from imputed similarity and are thus able to accommodate
the differing vocabularies of authors and the inherent synonymy and polysemy
of text. A computerised IR system must be able to match this ability. For com-
puterised document similarity calculation, an underlying hierarchical synonym
clustering is required to enable differing vocabularies to be accommodated. The
distances in the hierarchy may be used for word similarity estimation and to
score document similarity, thus allowing paraphrased documents to be awarded
high similarity scores as their contained words fall into identical or neighbouring
synonym clusters. The hierarchy allows us to focus query matching by limiting
searching to cohesive clusters and therefore minimises the search space for each

query.

An automated thesaurus approach is desirable as human generated thesauri
are too general; they encompass all senses of words even though many are re-
dundant for a particular domain. Human generated thesauri are expensive with
respect to construction time particularly if a single human knowledge engineer
generates the hierarchy. If multiple experts are consulted then it is very diffi-
cult to obtain a single unified hierarchy. Human thesauri omit domain specific
terminology and also omit certain word senses while subdividing others where
there is little distinction; they are rather subjective. Automatic methods can be
trained generally or domain specifically as required. In this chapter we analyse
current word categorisation approaches and describe and evaluate our method

with respect to the current implementations.

Clustering may be defined as a process of partitioning a multi-dimensional in-
put data space into groups of similar objects. Grouping similar data objects
reduces the amount of data in the input space, it allows easier comprehension of
the underlying structure and identifies similarities. A cardinal similarity mea-
surement over the object attributes determines the similarity of the objects.
A frequently used similarity measure is Euclidean distance. Hierarchical clus-
tering builds a tree of nested clusters arranged according to the proximity of
the clusters where proximity is determined by the similarity metric. Hierar-
chical clustering progressively merges the closest pair of clusters or splits large
clusters into smaller sub-clusters to produce a tree structure. A hierarchical
clustering allows the data to be organised and presented at varying levels of
abstraction, identifying the underlying data structure at the requisite level of
abstraction, categorising higher-level concepts and simplifying the input space.

The structure may be traversed or queried at the desired level of data generality.

46

We use a self-organising hierarchical unsupervised neural network approach
that progressively models the context data topology. Self-organising is sys-
tematic and objective compared to statistical and conventional neural network
approaches. Traditional statistical clustering approaches require prior knowl-
edge of the data model that may not be available or determinable. Statistical
and neural approaches, for example k-means clustering [33] or multi-layer per-
ceptron neural networks [7] require the number of clusters (k) or the neural
network topology to be stipulated in advance. This would be impossible for an
unknown distribution such as word context data. Our approach systematically
evolves the cluster structure. Statistical and conventional neural approaches
often cannot handle outliers (isolated data points separated from the other data
points). Statistical and conventional neural approaches often do not scale well
as the training time is exponential with respect to the number of input vectors.
Some statistical approaches, for example ID3 [79] or C4.5 [80], are dependent on
both the number of attributes and the number of values for each attribute. The
self-organising neural network detailed here requires only minimal prior knowl-
edge of the data distribution and only a minimal set of parameter settings is
required for our approach. The results obtained from self-organising techniques

are

“on average as good as or better than results of other modelling
techniques. Sometimes self-organising modelling is the only way to

get results for a problem at all [66].”

Our approach is entirely automated and uses only unstructured text corpora
as data. The motivation for our approach derives from the patterns present in
text. These patterns produce statistical correlations in the context patterns of
individual words. We can thus infer the similarities of words from their contexts,
as similar words (synonyms) will have similar contexts due to their correlations.
Through unsupervised text processing we represent semantic relationships by
hierarchically categorising similar words according to their co-occurrence statis-
tics. We automatically infer a domain-specific or generalised hierarchical the-
saurus as required. We therefore surmount the Vocabulary Problem [21] by
permitting synonym retrieval to match paraphrased documents. We can use
the thesaurus in our IR system, MinerTaur, to award scores to synonyms using

the intra-cluster distances and the inter-cluster distances in the hierarchy.

2.1.1 Current Methods

Current approaches for textual analysis are multifarious and diverse. The mo-
tivations encompass word sense disambiguation, synonym inferencing and both
classification and clustering. They include (the following list is not exhaustive
but is intended to be broad): contextual methods, WordNet hierarchy methods,
clustering methods and SOM methods.

47

Contextual Methods

These approaches utilise the local neighbourhood of words in a document (the
context) to establish lexical similarity and impute synonym groups or disam-

biguate polysemic words.

Yarowsky [118] employs two phases: an iterative bootstrapping procedure and
an unsupervised categorisation phase. All instances of a polysemous word are
identified in the text corpus. A number of representative samples are selected
from each sense set and used to train a supervised classification algorithm. The
remainder of the sense sets are trained into the supervised classifier. The clas-
sifier may additionally be augmented with one sense per discourse information,
i.e., document topic. The classifier can then be used in an unsupervised mode
to categorise new exemplars. Stetina et al [104] postulate that one sense per
discourse holds for nouns but evidence is much weaker for verbs. The approach
therefore is only suitable for nouns and requires an appraisal of the text corpus
before processing commences to identify the nouns. The method is only par-
tially unsupervised requiring a supervised initial training method; i.e. human
intervention which can be time consuming. We use a totally unsupervised ap-

proach.

The motivation for Schiitze & Pederson [96] is a lexical hierarchy exploiting
contextual statistics and requiring no prior data knowledge. The algorithm
collects a symmetric, term-by-term matrix recording the number of times that
words ¢ and j co-occur in a symmetric window centred about word 7 in the text
corpus, where ¢ and j are any random word indices from the list of all corpus
words. Singular-valued decomposition (SVD) is used to reduce the dimension-
ality of the matrix to produce a dense vector for each item that characterises its
co-occurrence neighbourhood. The dense co-occurrence vectors are clustered us-
ing an agglomerative clustering algorithm to generate a lexical hierarchy. The
method groups words according to their similarity unsupervised rather than
some pre-computed thesaurus categories. However, vector dimensionality re-
duction introduces computational complexity and may cause information loss
as the vectors induced represent the meta-concepts and not individual words.
Shannon’s Theory states that the more infrequent a word the more information
it conveys. These may well be discarded by SVD whereas out method produces
average context vectors for all words or a subset of the words as required. SVD
does not account for the proximity of the word co-occurrences (co-occurrence
is considered from a purely binary perspective). There is no weighting of the

co-occurrence according to the two terms’ proximity in the context window.

48

WordNet Hierarchy

These methods utilise the human-generated hierarchical categorisation of syn-
onyms, hyponyms (IS-A) and metonyms (PART-OF) of WordNet to estimate
word similarity and the most appropriate word sense (WordNet lists all senses

of words with the most frequently occurring listed first).

Li, Szapakowicz & Matwin’s [67] method utilises the WordNet synonym, hy-
ponym and metonym hierarchy to assign word similarity according to the dis-
tance in the hierarchy. Similarity is inversely proportional to distance. However,
the distance of taxonomic links is variable, due to certain sub-taxonomies being
much denser than others. Again the technique relies on an underlying prede-
termined word hierarchy and can only process words present in the hierarchy;
it could not extrapolate similarities to new words. Human generated thesauri
are subjective and rely on sense categorisation decisions made by the human

constructor.

Clustering

An unsupervised clustering algorithm derives the word clusters and models of
association directly from distributional data rather than pre-determined classes

as in Yarowsky.

Pereira, Tishby & Lee [78] employ a divisive clustering algorithm for proba-
bility distributions to group words according to their participation in particular
grammatical relations with other words. In the paper, nouns are classified ac-
cording to their distribution as direct objects of verbs with cluster membership
defined by p(c|w) (the probability a word belongs to a cluster) for each word
rather than hard Boolean classification. Deterministic annealing finds the sets
of clusters by starting with a single holistic cluster and increasing the annealing
parameter (see paper [78]). As the annealing parameter increases, the clusters
split producing a hierarchical data clustering. The approach is limited to specific
grammatical relations, requiring a pre-processor to parse the corpus and tag the
part-of-speech. We desire an approach able to induce the hierarchy from un-
structured text where no complicated syntactic pre-processing is necessary. At

the time of writing, the authors felt their technique required further evaluation.

Self-Organising Map (SOM) Methods

Word vectors or document vectors form the input vector space of the SOM [58]
to permit topological mapping, to infer similarity and categorise words and doc-

uments.

The aim of Lowe [68] is a topological mapping of contextual similarity exploiting

49

contextual information to derive semantic relationships. Each word in a 29-word
vocabulary is associated with a 58-element co-occurrence vector. The value of
the nth attribute in the co-occurrence vector reflects the number of times the
nth word of the vocabulary has preceded and the (n+29)th attribute represents
the number of times the nth word has succeeded the keyword where 1 < n < 29.
The 58 element vectors form the input vectors for a SOM network. The SOM is
labelled by determining the best matching unit for each input vector. The word
contexts (labels) are arranged topologically according to lexical and semantic
similarity by the SOM. However, the method is inherently susceptible to the
scalability problem; vector length grows linearly in relation to lexical size and

thus the method is not feasible for a large vocabulary.

Ritter & Kohonen’s [84] approach provides the motivation for our system.
A topological map of semantic relationship among words is developed on a
self-organising feature map. In the initial implementation, each word has a
unique, seven-dimensional, unit length, real-valued vector assigned, for example
“size” — z1 “three”— 22 “window”— z3. The input vector space is formed
from the average context in which each word occurs in the text corpus. Se-
mantic similarity is induced from context statistics, i.e., word neighbourhoods
using a window of size three, one word either side of the target word, (only
nouns verbs and adverbs are used in the method). For the three word win-
dow “size three window”, each word has its 7-D vector attached “size— z1
three— 22 window— z3”. The vectors are concatenated to form a 21-D con-
text vector for the central word “three”— z12223. All context vectors gener-
ated from the text corpus for “three” are summed and the summed vector is
divided by the frequency of occurrence of “three” producing an average con-
text vector for “three”. If “three” occurred three times in the corpus then
A;)gt,me = ﬁ;h%‘*””ds”;hl”%‘;”é. The method has been extended to WEB-

SOM [49], [48], [59] that categorises over one million documents using a window

size of three and 90-dimensional, unit length, real-valued word vectors. The
approach is entirely unsupervised requiring no human intervention and paral-
lelisable enabling computational speedup. However, SOMs cannot form discrete
(disconnected) clusters thus inhibiting the data representation. Our TreeGCS
approach forms separate clusters. The clusters have to be determined after the
algorithm terminates by hand and this introduces the innate subjectivity of
human judgements. Also, the word topography in WEBSOM is single-layered

compared to our hierarchical clustering.

Therefore, SOMs have been extended to Hierarchical SOMs (HSOMs) [72], [71]
which are multi-layered SOMs and thus allow a cluster hierarchy to be formed.
Each neuron in the lattice on a meta-layer points to an entire SOM on the layer

below. The sub-layer is a finer grained representation of the knowledge in the

50

higher layer. However, HSOMSs generally require prior knowledge of the input
distribution to predict a suitable topology. For example, in [73] the author de-
scribes the DISCERN system and states that one of the main liabilities of the
DISCERN system is that “much of the internal knowledge structures are fixed
and specified in advance”. Therefore, Song & Lee [101] have produced the struc-
turally adaptive intelligent neural tree (SAINT) system see figure 2.1 that auto-
matically determines a cluster hierarchy composed of SOM networks removing

the need to pre-specify the structure. Where the mapping error from the input

Figure 2.1: Figure showing SAINT’s hierarchical architecture.

vector to the best matching node is high, new nodes are added. Any superfluous
nodes are deleted and nodes that are very similar are merged. This dynami-
cally creates a tree-structured SOM. The approach is similar to our TreeGCS
method for generating cluster hierarchies. However, the lattice topology within
the SOM sub-networks fixes the number of neighbours attached to each node
and loses flexibility. Our TreeGCS method is more flexible as the number of
neighbours attached to each node can vary between 2 (the minimum) and the
maximum number of connections specified by the user and so is less limited by

pre-specified topological constraints than a SOM lattice.

2.1.2 Summary of Current Methods

1 and stop-word elimination to

Many of the methods exposited use Zipf’s Law
reduce the vocabulary of the text corpus to be processed, some even implement
word stemming. We feel that this may discard essential information. Although
we do not generate context averages for frequent words, e.g., {the, and, but,
etc.}, we include these words in the context averaging of the keywords. For

this reason we use a context size of seven (three words either side of the target

1Zipf’s Law [120] implies that a significant portion of the words in a corpus constitute the
words that appear most infrequently whereas frequently occurring words comprise a relatively
small portion of the corpus. Many approaches eliminate the most infrequent words to minimise
vector dimensionality and computational requirements. The designers of these approaches

deem that such words provide little discriminatory power for document similarity assessment.

51

word). We demonstrate in sections 2.3 and 2.4 the qualitative improvement of
word clustering against a human-generated thesaurus and Euclidean distance-
based vector approach of a size seven window compared to size three. Ritter &
Kohonen [84] and their extrapolations [49], [48], [59], fix the context window at
three and thus have to discard frequent terms, infrequent terms and punctuation
etc. We feel these provide much information and are certainly employed by
a human reader when parsing text. Dagan, Lee & Pereira [27] empirically
demonstrated that singleton words (words occurring once) were important for
parsing concurred by Shannon’s theory. An infrequent word occurring only once
in two documents may be the key to identifying those documents and should not
be discarded from the indexing. The larger window allows us to maximise the

lexical information used and minimise the amount of pre-processing required.

2.2 Owur MinerTaur Method

We cluster words into a synonym hierarchy using the TreeGCS hierarchical
clustering that we have developed and detail later. TreeGCS is an unsupervised
growing, self-organising hierarchy of nodes able to form discrete clusters. Similar
high-dimensional inputs are mapped onto a two-dimensional hierarchy reflecting
the topological ordering of the input vector space. See figure 2.2 for an overview
of our method. We assume a latent similarity in word co-occurrences and use
the TreeGCS hierarchical neural clustering technique to estimate word similar-
ity from contextual statistics without resorting to a human-generated thesaurus
or WordNet. We categorise all keywords as discussed previously and perform
no dimensionality reduction thus minimising information loss. The process is
fully automated, requires no human intervention or data processing as the con-
text vectors are generated automatically from unstructured text data and the
clustering requires minimal a priori knowledge of the data distribution due to
the self-organising, hierarchical neural network. Each node in the hierarchy rep-
resents a small group of synonyms at the lowest level and progressively larger
groups of related words up through the tree. The distance between the nodes in

the tree is directly proportional to the similarity of the word sets they represent.

2.2.1 Pre-processing

All upper-case letters are converted to lower-case to ensure matching. A list
of all words and punctuation marks in the text corpus is generated and ran-
dom, real-valued, unit-length m-dimensional vectors assigned to each word as
in equation 2.1.

Word — & € R™ (2.1)

Stop-words are removed to create a second list of keywords. A moving window of
size n is passed across the text corpus, one word at a time (see figure 2.3). Ritter

& Kohonen use a context window of size three, we use size seven and illustrate

52

Text Corpus !

.

p—

Generate average

context vectors

* Synonym

TreeGCS Hierarchy
Module

Figure 2.2: Figure illustrating the average context vector and synonym hierar-
chy production process in our hierarchy generation module. The dashed boxes

indicate artefacts and the solid boxes illustrate modules and processes.

the qualitative improvement this generates in sections 2.3 and 2.4. If the word in
the window centre is a keyword (#™#44¢ € {keyword})then the unique, random,
real-valued, unit length m-dimensional vectors representing each word in the
window of size n ({7, 72, ...,#"}) are concatenated ({#'#2..."}) and added to
the m * n dimensional context vector for the keyword (#*¢¥*°r4) see equation
2.2).

grevword ¢ gumen _ gheyword | z1z2 zm where FMiddle ¢ [keyword) (2.2)

When the entire corpus has been processed, all context vectors generated for
each keyword are averaged (total for each dimension / frequency of keyword),

see equation 2.3.

. —keyword
Av =Vit—— 2.3
gkeyword frequency ()
A?}gkeywwd = symFact * gj’feyword for keyword attributes (2.4)

The keyword attributes in the average vector are finally multiplied by the sym-
bol factor (symFact in equation 2.4). The keyword is multiplied by a symbol
factor of value 0.2 in Ritter & Kohonen’s method for average context vector gen-

eration and also in the WEBSOM average context vector generation technique.

53

x1 x2 x3 x1 x4 x5 x6

\ |/

He ordered that he should not be|considered

Figure 2.3: Figure illustrating the moving word window. The initial capital
letter will be converted to lower case to ensure the ‘he’s match. Both instances
of ‘he’ are represented by the same vector. The vectors associated with each

word are concatenated to form the context vector for the target word ‘he’.

The symbol factor diminishes the relative influence of the keyword (the central
word in the context window) in relation to the surrounding words in the con-
text window for the average context vectors. This prevents the actual keyword
over-influencing the topological mapping formation and places the emphasis for
topology and semantic similarity inferral on the context vector attributes, the
surrounding words. We empirically determined the optimum factor value for our
approach with a context window size of seven and found for seven-dimensional
vectors that a symbol factor of 0.4 produced the optimal cluster quality (as
judged by the authors). For 90-dimensional vectors the symbol factor has far
less influence over the Euclidean distances between the context averages and
thus the clusters generated, so we elected to use a symbol factor of 0.4, as this
was more effective for the seven-dimensional vectors. This prevents the keyword
over-influencing the context average but still provides sufficient influence for a

context window of size seven.

The average context vectors form the input space of the GCS that underpins
the hierarchy in our word categorisation technique. Due to the randomness and
orthogonality of the word vectors, the averaged context vectors reflect purely
symbolic associations and statistical relations and the individual word vectors
are independent of any word ordering. We treat the text corpus as an ordered
set of words and generate the synonym hierarchy from the intrinsic word statis-
tics. We do not need to generate any linguistic structures, which are complex

to produce and tend to be susceptible to linguistic ambiguities.

It is imperative that the vectors ascribed to the individual words in the text cor-
pus imply no ordering of the words. Text processing is thus based purely on the
processing of sequences of words. During trials with seven dimensional vectors,
we observed that the vectors ascribed to the words do affect the clustering - the
Euclidean distances are altered between the context averages. This is particu-
larly germane for low frequency words where the context average is biased by

the vectors assigned. Even for words occurring greater than 10 times, the vector

54

assignment influences the similarities. Kaski [54] showed that there is a direct
correlation between vector dimensionality and orthogonality - the higher the
dimensionality the greater the orthogonality. We empirically evaluated various
dimensionalities for consistency with respect to cluster content when different
vectors are ascribed to the words in the corpus. We used a centroid cluster-
ing dendrogram (see section 2.3) that clusters according to Euclidean distance
to provide the most similar 25 words when the vectors were assigned to the
words in two different orders. We found that the cluster sets were identical
for 90-dimensional vectors over a set of experiments but varied for all dimen-
sionalities tested below 90. The order of the cluster set varied slightly even for

90-dimensional but we concluded that this was sufficiently consistent and stable.

As with Deerwester [30], we handle synonymy but only partially accommodate
polysemy. Polysemic words are again represented by a weighted average of their
contexts but we only generate one context for polysemic words (the context is
the mean context of all word senses biased by the frequency of occurrence of
each sense). For example, plant may be a living organism or heavy machinery.

Only one context average would be produced for plant.

2.2.2 GCS Algorithm

Our TreeGCS method is based on the Growing Cell Structure (GCS) method
that is described next and is adapted from [35]. GCS networks form discrete
clusters unlike SOMs where the SOM cells remain connected in a lattice struc-
ture. The dimensions of the SOM lattice have to be pre-specified (such as the
9x9 grid used in our evaluation later in this chapter). Contrastingly only the
maximum number of cells needs to be pre-specified in GCS and the network
grows dynamically by adding new cells and deleting superfluous cells until the
maximum number of cells is reached. The number of neighbouring cells con-
nected to a particular cell is not fixed in GCS unlike SOMs.

The initial topology of GCS is a 2-dimensional structure (triangle) of cells (neu-
rons) linked by vertices. Each cell has a neighbourhood defined as those cells
directly linked by a vertex to the cell. The input vector distribution is mapped
onto the cell structure by mapping each input vector to the best matching cell.
Each cell has a contextWindow x wordV ector Dimensionality-dimensional vec-
tor attached denoting the cell’s position in the input vector space; topologically
close cells have similar attached vectors. On each iteration, the attached vectors
are adapted towards the input vector. The adaptation strength is constant over
time and only the best matching unit (bmu) and its direct topological neigh-
bours are adapted unlike SOMs where the adaptation occurs in a progressively
reducing radius of neurons around the bmu. Cells are inserted where the cell

structure under-represents the input vector distribution and superfluous cells

95

nser

Figure 2.4: Figure illustrating cell insertion. A new cell and associated connec-

tions are inserted at each step.

that are furthest from their neighbours are deleted. Each cell has a ‘winner
counter’ variable denoting the number of times that cell has been the bmu. The
winner counter of each cell is reduced by a predetermined factor on every iter-
ation. The aim of the GCS method is to evenly distribute the winner counter
values so that the probability of any cell being a bmu for a random input is

equal, i.e., the cells accurately represent the input space.

The GCS learning algorithm is described below, the network is initialised in
point 1 and points 2 to 7 represent one iteration. An epoch constitutes one iter-
ation (points 2 to 7) for each input vector in the dataset, i.e. one pass through

the entire dataset.

1. A random triangular structure of connected cells with attached vectors
(we; € R") and E representing winner counter (the number of times the

cell has been the winner) is initiated.

2. The next random input vector £ is selected from the input vector density
distribution. The input vector space is represented as real-valued vectors

of identical length.

3. The best matching unit (bmu) is determined for £ and the bmu’s winning
counter is incremented.
bmu = |[§ — We|lmineeneiwors Where || || = Euclidean distance
AEpp, =1

4. The best matching unit and its neighbours are adapted towards £ by adap-
tation increments set by the user.

Awpmy = 6bmu(€ - wbmu)
Awy, = €;(§ —wy) (Vn € neighbourhood)

5. If the number of input signals exceeds a threshold set by the user a new
cell (wneqw) is inserted between the cell with the highest winning counter
(wWemw) and its farthest neighbour (wy) - see figure 2.4,

The weight of the new unit is set according to:
Wnew = (Whmu + wy)/2.
Connections are inserted to maintain the triangular network configuration.

The winner counter of all neighbours of wyeq, is redistributed to donate

56

Figure 2.5: Figure illustrating cell deletion. Cell A is deleted. Cells B and C
are within the neighbourhood of A and would be left dangling by the removal

of the five connections surrounding A so B and C are also deleted.

fractions of the neighbouring cells’ winning counters to the new cell and
spread the winning counter more evenly,

AE, = _IIT\E” (Vn € neighbourhood of Wpey)-

The winner counter for the new cell is set to the total decremented from
the winning counters of the neighbouring cells.

Epew = E(‘lmEn (VYn € neighbourhood of wneqy)-

6. After a user-specified number of iterations, the cell with the greatest
mean Euclidean distance between itself and its neighbours is deleted and
any cells within the neighbourhood that would be left ‘dangling’ are also
deleted (see figure 2.5). Any trailing edges are deleted to maintain the

triangular configuration.

2| |we—wal|
card(n)

Del = mazcecnetwork Vn € neighbourhood)

7. The winning counter variable of all cells is decreased by a user-specified
factor to implement temporal decay.
AE. = —BE,. Vc € network

The user-specified parameters are: the dimensionality of GCS which is fixed at
2 here, the maximum number of neighbour connections per cell, the maximum
cells in the structure, €p,,, the adaptation step for the winning cell, €; the adap-
tation step of the neighbourhood, 8 the temporal decay factor, the number of

iterations for insertion and the number of iterations for deletion.

The algorithm iterates until a specified performance criterion is met, such as
the network size. If the maximum number of epochs and the maximum num-
ber of cells are specified as the termination criteria then new cells are inserted
until the maximum number of cells is reached. Once the maximum has been
reached, adaptation continues each iteration and cells may be deleted. The cell
deletion reduces the number of cells to below the maximum allowing one or
more new cells to be inserted until the maximum number of cells is reached
again. Deletion removes superfluous cells while creating space for new additions
in under-represented regions of the cell structure so the input distribution map-

ping is improved while the maximum number of cells is maintained.

57

Fritzke has demonstrated superior performance for the GCS over SOMs [37].

Superiority with respect to:

e topology preservation, similar input vectors are mapped onto identical
or closely neighbouring neurons ensuring robustness against distortions;
this ensures that semantically similar words (words represented by similar
average context vectors) will be mapped to identical or closely neighbour-
ing GCS cells and thus identical or closely neighbouring synonym clusters

when we superimpose our cluster hierarchy on top of the GCS network.

e neighbouring cells have similar attached vectors, ensuring robustness. If
the dimensionality of the input vectors is greater than the network dimen-
sionality then the mapping usually preserves the local similarities among
the input vectors better in GCS compared to SOMs. This is particularly
germane for the high-dimensional vectors produced by our average con-
text vector generation technique which form the input vector space for the
GCS clustering algorithm, if the corpus vocabulary is limited there may

be more dimensions than vectors as with the evaluation in this chapter;

2.2.3 TreeGCS Algorithm

The TreeGCS is superimposed onto the standard GCS algorithm exposited
above. A tree root node points to the initial cell structure and incorporates
a list of all cells from the GCS. As the GCS splits or clusters are deleted, the
tree divides and removes leaf nodes to parsimoniously summarise the disjoint
network beneath and the GCS cell lists are updated with each leaf node holding
a list of all GCS cells in its associated cluster. Only leaf nodes maintain a cluster
list. A parent’s cluster list is implicitly a union of the children’s cluster lists
and is not stored for efficiency - minimising memory usage. No constraints are
imposed on the tree hence it is dynamic and requires no prior data knowledge
- the tree progressively adapts to the underlying cell structure. The hierarchy
generation is run once after each GCS epoch. The running time per hierarchy
generation iteration is O(cells) as we essentially breadth-first search through

the entire cell structure.

A conceptual hierarchy of word synonym clusters is generated. The distance
in the hierarchy between two concepts is inversely proportional to the similar-
ity. Concepts are progressively more general and the cluster sets become larger

towards the root of the hierarchy.

The underlying GCS’s algorithm is susceptible to the ordering of the input
vector space, if we alter the order of the input vectors in the dataset, a differ-
ent cluster topology is generated for each unique input vector order. Thus, in

TreeGCS we only commence cell deletion once 90 % of the total cells required

58

in the cell structure have been added. This delayed deletion prevents prema-
ture cluster committal and ensures the GCS network has evolved sufficiently
before cluster splitting commences. In addition, we also iterate between differ-
ent orders of the input vector space to ameliorate the order susceptibility (the x
dimensional vectors that represent the context averages are rearranged to gen-
erate different data orders). Iterating between different orders cancels out the
variance in the hierarchical structures generated by the different orders, vastly
improving the algorithm’s qualitative performance. The algorithm for the tree

superimposition is detailed below in pseudocode.
For each epoch,
Execute the GCS epoch, forming an unconnected graph representing

the disjoint clusters.

Breadth first search from the final winning cell for the epoch to

determine which cells are present in the cluster.
‘While some cells remain unprocessed,

Breadth first search from the next unprocessed cell to deter-

mine which cells are present in the cluster.

If the number of clusters has increased from the previous epoch, then
any tree nodes that point to multiple clusters are identified and child
nodes are added for each new cluster formed (see figure 2.6). The
cluster list of the parent is deleted and cluster lists are updated for

the child nodes. If a cluster is formed from new cells (cells inserted

Q Q Q Q Q
| i _’QQ_’Q ‘Q—*Q‘Q

Figure 2.6: Figure illustrating cluster subdivision. One cluster splits to form two

clusters and the hierarchy is adjusted. The leftmost cluster then splits again.

during the current epoch) then a new tree node is added as a child

of the root and the new cluster cells added to the new node’s list.

Elsif the number of clusters has decreased, a cluster has been deleted
and the associated tree node is deleted. The tree is tidied to remove

any redundancy (see figure 2.7).

For each unprocessed cluster, the tree node that points to that cluster

is determined, the cluster list emptied and the new cells are added.

59

&@.@. f%& &@ s,

Figure 2.7: Figure illustrating cluster deletion. The rightmost cell cluster is
deleted during an epoch (step 2) - this leaves a dangling pointer. The node with
the dangling pointer is removed (step 3), leaving redundancy in the hierarchy.

The redundancy is removed in the final step.

gdp

econom market
N Y 4
/?é X
business trade

Figure 2.8: The cells in the GCS layer are labelled with the words they represent.

The GCS cells are labelled, see figure 2.8. Each input vector is input to the
GCS and the cell identifier of the bmu is returned. The cell can then be la-
belled with the appropriate word. Words that occur in similar contexts map to
topologically similar GCS cells thus reflecting syntactic and semantic similarity
through purely stochastic background knowledge. This enables the induction
of higher order relations: bus is similar to car; train is similar to bus allowing
us to infer that train is similar to car. Tree nodes are merely pointers to GCS
cells. All nodes except leaf nodes have only an identifier and pointers to their
children. The leaf nodes have an identifier but also point to the GCS cell clus-
ters and implicitly the GCS cell labels (they maintain a list of the identifiers of
the GCS cells in their respective clusters). When the GCS bmu is identified,
the associated tree node can also be identified and the tree can be traversed to
find all word distances from the distances between the clusters (leaf nodes) in
the tree.

The superimposed tree will be symmetrically equivalent; it is right/left indepen-

dent. Trees that appear superficially dissimilar can in fact represent identical

cluster topologies.

60

2.3 Evaluation

In section 2.3.1, we demonstrate the qualitative effectiveness of our average vec-
tor generation method against the two approaches described in sections 2.3.5
and 2.3.6. We demonstrate the qualitative effectiveness of our TreeGCS clus-

tering algorithm against a SOM clustering in section 2.3.2.

Human clustering is innately subjective. In an experiment by Macskassy et
al. [69], no two human subjects produced ‘similar’ clusters when clustering the
information contained in a set of Web pages. This creates difficulties for cluster
set evaluation and determining whether computerised methods are qualitatively
effective. We clusters sets of average context vectors using TreeGCS and a SOM
and compare the TreeGCS and SOM clusters against a human-generated the-
saurus and a dendrogram clustering to ensure human clustering is being em-
ulated while preserving the mathematical clustering of the dendrogram. Both
TreeGCS and the SOM map inputs to nodes to approximate the input data
whereas the dendrogram uses all input data points with no mapping. We can
verify that the TreeGCS and SOM approximations are optimally preserving the
Euclidean distances illustrated in the dendrogram and not distorting the input
data space. Fritzke has previously demonstrated GCS’s superior performance
with respect to correctly classified test patterns over 6 common neural network
approaches and the nearest neighbour statistical classifier for mapping the vowel

recognition dataset [35].

In this chapter, we use a small dataset comprising 51 words to enable visuali-
sation of the cluster structures and cluster contents and to permit a qualitative
comparison of the cluster structures and cluster contents. A larger dataset would
preclude visualisation of the cluster structures as they would be too complex
to draw and a qualitative comparison of the cluster structures generated would
thus be extremely difficult for a larger dataset. In chapter 6, we cluster 2,192
words using our context vector generation method coupled with our TreeGCS
clustering technique. We list three clusters generated and also demonstrate an
improvement in the query-to-document recall accuracy of our MinerTaur IR
system when the cluster hierarchy generated from the 2,192 words using our
word categorisation approach is included compared to the recall figure when

the synonym module is not included.

2.3.1 Three Methods for Context Vector Generation

We use the Ritter & Kohonen method (see sections 2.1.1 and 2.3.5), WEBSOM
method (see sections 2.1.1 and 2.3.6) and our MinerTaur method for average
context vector generation (see sections 2.2 and 2.3.7) to produce three sets of

context average vectors. We train each of the three average context vector

61

sets in turn into a standardised benchmark Euclidean distance-based cluster-
ing algorithm, the dendrogram, to derive three dendrogram clusterings, one for
each context vector generation method. We can then compare each dendrogram
cluster topology with a human generated word hierarchy (MS Bookshelf?). We
identify the context vector generation method that generates a dendrogram with
the most similar cluster topology and cluster contents to the human-generated
Bookshelf clusters. The evaluation is thus based purely on the Euclidean dis-

tances of the average context vectors produce by each method.

2.3.2 TreeGCS versus SOM Clustering Comparison

We then train the three sets of average context vectors generated by the three
methods into a SOM and TreeGCS for comparison of the accuracy of the two
clustering algorithms. The clusters generated by the TreeGCS and SOM al-
gorithms are compared with the synonym sets derived from Bookshelf. This
provides a human-oriented comparison for TreeGCS versus SOM. We also com-
pare TreeGCS versus SOM purely on vector distances, using the dendrogram
cluster sets as benchmarks, to ensure that the mapping of input vectors to cells
for both TreeGCS and SOMs are preserving the vector distances. We also note
that this second comparison allows us to verify further the accuracy of our con-
text vector generation method versus the other two approaches. We validate
that the TreeGCS clusters more accurately emulate both the Bookshelf and

dendrogram cluster sets when trained using the vectors from our method.

2.3.3 Text Corpus, Dendrogram and Thesaurus

The text corpus for the evaluation was taken from the economic data in the
World Factbook [113] for each of the countries in Europe. This corpus is writ-
ten in correct English, the vocabulary is reasonably small allowing a compact
thesaurus to be generated with many words that have similar meanings allow-
ing the cluster quality to be readily evaluated. For R & K and WEBSOM,
we removed punctuation, numbers and common-words from the text corpus as
described in [84]. The context vectors for all words were then generated as per
equations 2.2, 2.3 and 2.4. For our method, only numbers were removed from
the corpus. Context averages were calculated for keywords only (words not in
the common word list) as per equations 2.2, 2.3 and 2.4. We cluster the context
averages of the words that occur ten times or more in the text corpus for all
approaches. This emulates R & K and WEBSOM that remove infrequent terms
and maintains a consistency of words to be clustered for our approach to ensure

a correlation and permit comparison.

2We were unable to use the WORDNET hierarchy as it does not contain all of the words
from the text corpus. This precludes the use of synSet distances from the WORDNET hierar-
chy [67] (described previously) as an evaluation tool. Bookshelf allows us to generate clusters

distances but no word similarity distances.

62

The dendrogram hierarchically illustrates similarities and is ideal for structure
comparison. The dendrogram uses the centroid-clustering algorithm where the
algorithm iteratively merges clusters. Initially there is one data point per clus-
ter. Each cluster is represented by the average of all its data points, the mean
vector; the inter-cluster distance is defined as the distance between pairs of mean
vectors. The algorithm iteratively determines the smallest distance between
any two clusters, (using the Euclidean distance metric) and the two clusters are
merged producing a branch in the cluster tree. The merging is repeated until
only one cluster is left. However, dendrograms have problems with identical
similarities as only two clusters may be merged at each iteration, so if there
are two pairs of clusters with equal distances, one pair has to be merged on
one iteration and the other pair on the next iteration, the order being arbi-
trary. Dendrograms are not incremental, the structure has to be rebuilt if new
data is assimilated and visualisation is difficult for a large dataset - there is one
leaf node for each data point so it is very difficult to view for e.g., more than
500 data points. Therefore we feel a dendrogram would be unsuitable as the
underlying mechanism for a lexical clustering method but is relevant for struc-
ture and cluster comparisons. Both TreeGCS and SOMs use Euclidean distance
when mapping the inputs on to the output topology so we feel the dendrogram
is consistent with these approaches. We take the 25 most similar words from the
dendrogram and compare where these are mapped by the SOM and TreeGCS
approaches (shown in bold in the evaluations). We highlight the most similar 25
of the 51 words to allow visualisation of whether the Euclidean distance-based
similarity identified by the dendrogram is indeed being emulated by the SOM
and TreeGCS mappings. We can also visualise where the remaining 26 words

are mapped.

Also, we produced synonym sets from the MS Bookshelf thesaurus and com-
pared the TreeGCS and SOM for the three methods of vector generation (see
sections 2.3.5, 2.3.6 and 2.2) to these. We consulted Bookshelf for each of the
terms that occur 10 times or more in the corpus. Where the definition of the
term included one of the other terms we grouped these terms in to a synonym
set. The synonym sets are arranged in similarity order, the closer together the
more similar and the greater the distance the more dissimilar the words. The

synonym sets from MS Bookshelf are:

1. {economy, system, market, budget, policies, program, government, ac-

count}
2. {investment, resources, welfare, privatization, reform}
3. {output, energy, exports, gdp, trade}

4. {industry, agriculture}

63

5. {growth, progress, inflation}
6. {debt, deficit},
7. {economic, financial, industrial, monetary}
8. {agricultural}
9. {currency}
10. {capita, percent, sector}
11. {substantial, large, highly}
12. {small}
13. {foreign, private, public}
14. {countries, republic, state}
15. {european, eu, europe, union, western}
16. {unemployment }

17. {years}

2.3.4 Settings

All settings are summarised in tables 2.1, 2.2 and 2.3. Table 2.1 compares the
settings for the generation of the averaged context vectors from the word con-

texts in the text corpus for each of the three methods evaluated.

Method Vector Dimensionality | Context Window | Symbol Factor

R+K 7 3 0.2
WEBSOM 90 3 0.2
MinerTaur 90 7 04

Table 2.1: Table comparing the settings for the context vector generation in

each of the three methods evaluated.

Table 2.2 compares the settings for the SOM for each method of word con-
text vector generation. We use the SOM-PAK [60] SOM implementation (as
used in WEBSOM [48]). We use the parameter settings that produced the
minimal quantisation error for a 9x9 map of rectangular topology, using the
neighbourhood kernel ‘bubble’; (where the neighbourhood function refers to the
set of array points around the node). The context vectors generated according
to the WEBSOM method necessitated a different setting for a (the cell vec-
tor adaptation parameter) compared to the vectors generated by the other two

methods to minimise the quantisation error of the topological mapping from the

64

Method a Radius a for Radius for
for z epochs | for x epochs | next y epochs | next y epochs
R+K 0.9 for 3000 | 10 for 3000 | 0.5 for 27000 | 3 for 27000
WEBSOM | 0.75 for 3000 | 10 for 3000 | 0.5 for 27000 | 3 for 27000
MinerTaur | 0.9 for 3000 | 10 for 3000 | 0.5 for 27000 | 3 for 27000

Table 2.2: Table comparing the parameter settings for the SOM algorithm to
generate the map for each of the three context vector generation methods evalu-
ated. « is the initial learning rate parameter which reduces to 0 during training
and the radius is the neighbourhood of cells that are adapted in the SOM adap-

tation phase. The radius iteratively reduces to 0 during training.

input space to the 9x9 map.

Table 2.3 compares the settings for the TreeGCS for each method of word con-

text vector generation. We set the parameters to produce the ‘best’ quality

Method €bmu €; B | Cells Max | Insertion | Deletion | Epochs
Conns

R+K 0.1 | 0.01 | 0.001 81 25 10 810 | 30000

WEBSOM | 0.02 | 0.002 | 0.0002 81 25 10 810 | 30000

MinerTaur | 0.02 | 0.002 | 0.0002 81 25 10 810 | 30000

Table 2.3: Table comparing the parameter settings for the TreeGCS algorithm
to generate the cluster hierarchy for each of the three context vector generation

methods evaluated. N.B. Conns is an abbreviation for connections.

clusters as judged by the authors. The seven-dimensional vector evaluation re-

quired different parameters from the 90-dimensional trial.

We describe the three methods of average context vector generation and de-
tail the results of the comparison between TreeGCS, SOM and dendrogram for
each. Comparing all results to the MS Bookshelf clusters.

2.3.5 Ritter & Kohonen Method

We emulate the Ritter & Kohonen method as faithfully as possible. We remove
common words, punctuation and numbers from the text corpus. We select the
vectors from a distribution of random numbered, seven dimensional vectors.
We use a context window of size three. We multiply the keyword vector by
a symbol factor of 0.2. The following cluster topologies were generated from
the text corpus using words that occurred ten times or more. We chose to
only cluster word frequency 10 words to ensure the context vectors were truly
averaged and not biased by limited exposure and also to eliminate infrequent
terms as R & K.

65

e From the dendrogram clustering using the R & K average context vectors,
the 25 most similar words are:
{system union output industry substantial policies exports european pri-
vatization countries sector inflation percent economic foreign financial re-

sources government growth large economy unemployment gdp years eu}

e For the TreeGCS hierarchy generated using the R & K average context

vectors see figure 2.9. The words in bold are the 25 most similar words

— Level O
— Levell
— Level 2
agricultural
energy
monetary
policies - levd3
state
agriculture account capita Westem european reform
currency economic deficit privatization
europe eu economy progress
foreign gdp e;ponﬂs — levd4
sector government financial
budget countries Industry industrial
debt inflation 'arge output
growth market percent
highly public substantial
investment resources system
private small
program unemployment
republic union
trade years
welfare

Figure 2.9: Figure depicting the TreeGCS cluster topology produced using the
Ritter & Kohonen method of average context vector generation. The words in

bold indicate the top 25 words selected by the dendrogram.

identified by the dendrogram generated using the R & K average context

vectors.

e For the SOM cluster topology (see figure 2.10), again the 25 most similar
words from the dendrogram are highlighted in bold.

2.3.6 WEBSOM

WEBSOM, the new development of the R & K approach, uses 90-dimensional
real-valued random vectors for the words. Kaski [54] showed that the orthog-
onality is proportional to vector dimensionality and we have found that for
seven-dimensional vectors, the actual vector assigned to each word in the cor-
pus affects the context averages and thus the similarity and clustering produced.
The seven-dimensional approach is also more susceptible to the symbol factor as

the multiplier has more effect on the Euclidean distance than for 90-dimensional

66

monetary program inflation republic
output trade
reform economy percent budget
growth
system substantial welfare
deficit highly agriculture
currency
sector market
industrial eu europe
member investment
european financial account debt
privatization
progress
economic government exports
industry
public union
large gdp agricultural private
resources years policies
foreign low state
small unemployment
capita countries western
energy

Figure 2.10: Figure depicting the SOM mapping produced from the Ritter &
Kohonen method for average context vector generation. The words in bold

indicate the top 25 words selected by the dendrogram

where the effect is less. WEBSOM extends R & K and uses 90-dimensional word

vectors, context window of size three and symbol factor 0.2

e From the dendrogram generated using the WEBSOM average context vec-
tors, the 25 most similar words are:
{countries european budget exports industry sector agricultural industrial
large system trade output gdp financial eu economic economy government

growth inflation percent privatization unemployment years foreign }

e For TreeGCS see figure 2.11 for the hierarchy generated using the WEB-
SOM average context vectors. The words in bold are the 25 most similar
words identified by the dendrogram generated using the WEBSOM aver-

age context vectors.

e For the SOM, the topology is illustrated in (see figure 2.12), again the 25

most similar words from the dendrogram are highlighted in bold.

67

— LevdO

— Level

agricultural
public

— Level 2

account

agri.culture Level 3
capita
economic
economy
eu
european
financial — Level4
gdp
growth government
monetery industrial
out.p.u! inflation
po!lcle_s . large ——— Level 5
privatization market
republic budget exports percent
unemployment countries reform private
union debt sector progress
welfare deficit small
western energy years
europe
foreign
highly
industry
investment
program
resources
state
substantial
system

trade

Figure 2.11: Figure showing the TreeGCS cluster generated from the WEBSOM
method for average context vector generation. The words in bold are the top

25 words selected by the dendrogram.

2.3.7 Our MinerTaur method

Our method (see section 2.2) varies slightly from the previous two. We only re-
move numbers from the corpus, the previous two methods also remove common
words and punctuation. We do not generate context averages for common words
and punctuation but use them in the context window of other words, hence we
have a larger context window of size seven. Our method uses 90-dimensional
vectors and symbol factor 0.4. Again only words occurring ten or more times
are shown in the clusters to ensure the contexts were averaged and not biased
by infrequency due to the small size of our test corpus. Although normally
we would include these words, we wanted a valid comparison to the previous

methods.

e For the dendrogram generated using average context vectors produced by
our MinerTaur method, the cluster of the 25 most similar terms is:
{ small reform percent exports gdp output market system agricultural
budget industrial financial foreign large industry privatization inflation

growth economic eu economy government trade unemployment energy }

o For TreeGCS see figure 2.13 for the hierarchy generated from average

68

capita deficit progress agriculture
market
welfare
eu industrial
currency exports european growth agricultural
debt republic percent
investment sector large privatization public
trade
economy economic government financial
foreign gdp energy program
output
resources unemploymen industry
budget inflation
account countries highly private years
small
union europe system substantial
state
policies western low monetary
reform

Figure 2.12: Figure showing the SOM mapping for the average context vectors
generated using the WEBSOM method. The words in bold indicate the top 25

words selected by the dendrogram

context vectors produced by our method. The words in bold are the

25 most similar words identified by the dendrogram generated from the

average context vectors produced by our method and listed above.

e For the SOM the cluster topology is shown in figure 2.14. The 25 most sim-
ilar words from the dendrogram are shown in bold. We have also included
the Sammon mapping (see [60]) for the SOM (See figure 2.15). The Sam-

mon mapping maps the n-dimensional input vectors onto 2-dimensional

points on a plane.

2.4 Analysis

2.4.1 Three Methods for Context Vector Generation

Figure 2.16 compares the cluster numbers for each of the top 25 words identified
by the dendrogram generated from the average context vectors for each method.

The graph shows the number of words in each of the 17 Bookshelf clusters for the

69

— Level 0

— Level

— Level 2

investment

agriculture
unemployment

currency

industry Level 3

private

public Level 4

exports — Levds5
output

percent

policies
account agricultural
budget @ countries privatization Level 6
capita deficit program
debt economic progress
economy eu reform
financial europe resources
government european sector
highly foreign small
industrial gdp state
large growth substantial
republic inflation system
trade market welfare
union monetary western

Figure 2.13: Figure illustrating the TreeGCS cluster generated from the average
context vectors produced using our method. The words in bold are the top 25

words selected by the dendrogram.

top 25 words from each dendrogram. For our context vector method, 19 of the
top 25 words are grouped in clusters 1 to 7 whereas the words are spread across
the 17 clusters for the other two methods. Thus we feel that our vector gen-
eration method is producing vectors which cluster closer to a human generated
clustering compared to the other methods which use a smaller context window.
The clustering is obviously dependent on the corpus and the word co-occurrence
statistics as these may distort word usage, for example, none of the methods has
any words from cluster 6 {debt, deficit} in their respective top 25 dendrogram
words. However, we feel a context window of size 7 with 90-dimensional word

vectors achieves the closest arrangement to a human generated clustering.

With respect to the input data space, the 90-dimensional vectors are far less sus-
ceptible to parameter settings and vector assignments than the seven-dimensional
vectors. The higher dimensionality vectors also increase word vector orthogo-
nality; a prerequisite for the ‘bag of words’ average context vector generation
approach. The word similarity is measured purely by semantic similarity of the
word contexts and is not influenced by the vectors ascribed to represent the in-

dividual words. We feel similar methods, using self-organising maps or growing

70

debt public large eu european
deficit
republic substantial
sector
currency government
percent countries resources market budget
years europe small economy
growth energy industrial
policies privatization exports gdp agricultural
progress reform output financial
inflation trade state
industry system agriculture economic foreign
program lunemployment private low
highly welfare
monetary investment account capita western
union

Figure 2.14: Figure illustrating the SOM mapping of the average context vectors
generated with our method. The words in bold indicate the top 25 words selected

by the dendrogram.

cell structures, should use vectors of this dimensionality or greater to ensure
orthogonality and maintain consistency and stability of the lexical clusters re-

gardless of initial word-vector assignments.

2.4.2 TreeGCS versus SOM Clustering Comparison

For all three evaluations in sections 2.3.5, 2.3.6 and 2.3.7, the top 25 words from
the dendrogram are spread across the SOM (as can be seen from the spread
of bold text) but tend to be in closely related clusters in the TreeGCS hierar-
chy with just the odd exception (the bold text occurs in clusters that are near
neighbours in the hierarchy). For example, for our method (see sections 2.2
and 2.3.7), the dendrogram words, shown in bold text, are predominantly in
clusters M, N and O. If we examine the TreeGCS hierarchy (see figure 2.13),
these clusters are very closely related. Only ‘industry’ and ‘unemployment’ are
clustered elsewhere. With respect to Euclidean distance, the TreeGCS emulates
the nearest neighbour approach of the dendrogram far better than the SOM.

The Sammon mapping produced from the SOM using our method to derive the

71

Figure 2.15: Figure illustrating the Sammon map generated for 90-dimensional

vectors with context window = 7.

context vectors is extremely distorted (see figure 2.15). SOMs are criticised in
the literature [9] for distorting high dimensional inputs when they map onto the

2-dimensional representation.

If we consider the TreeGCS and SOM generated from our context vector method
(see sections 2.2 and 2.3.7), for TreeGCS, Bookshelf sets 1 to 7 are in M, N, O
where N and O (see figure 2.13) are siblings and M is a sibling of their union.
The remaining Bookshelf synonym sets are grouped very similarly to Bookshelf
although they are within other sets, i.e., the groupings are consistent with Book-
shelf but are subsets of larger sets. So we feel that the groupings are emulated.
For the SOM (see figure 2.14), the words from the Bookshelf synonym sets are
spread across the SOM. Therefore, we feel that our TreeGCS emulates the hu-
man generated clustering accurately and more faithfully than the SOM when

both algorithms are trained with an identical input data space.

We noted that this second evaluation also allowed a further comparison of the
vector generation methods as we can compare the quality of the TreeGCS clus-
ters produced from each of the three input vector sets. With respect to the
size of the context window, we feel that our size seven-context window produces

superior quality TreeGCS clusters to WEBSOM'’s context window of size three.

72

Graph of Bookshelf Cluster Distributions
E -
o
N N
N N
® 4 4
= \ v N mE LK
i N N N
R | \ \ BWEBSOM
B N N N .
& N N N B MinerTaur
= 2 1IN N N
N N N N
N N N N
T R
N N ~ N N N
N N N N N N
N o ». N N N
D = ! 5 T T T T T \r ~1
1 2 3 4 § 67T 0803 1WMM 213234 15I16W
Bookshelf Cluster Index

Figure 2.16: Graph of the distribution of words through the Bookshelf sets
using the top 25 words identified by the dendrogram for each of the three average
vector generation methods. For example, 5 of the top 25 words from our context
vector dendrogram are found in Bookshelf cluster 1. The numbers on the x-axis

are the cluster numbers from section 2.3.3.

The TreeGCS clusters produced from the average context vectors produced by
our method emulate both the nearest neighbour (dendrogram) and human gen-
erated thesaurus more accurately than the TreeGCS cluster produced from the
WEBSOM average context vectors. The vast majority of terms from the den-
drogram and MS Bookshelf are in the three clusters (M, N and O) (see figure
2.13) for our vector generation method but are spread across four clusters with
many of the other words also within these clusters for the WEBSOM method of
vector generation (see figure 2.11). For the TreeGCS clusters, the input vector
set produced from our method most accurately emulates both the dendrogram
and MS Bookshelf cluster sets compared with the vector set generated from the
WEBSOM method.

2.5 Conclusion and Future Work

We feel that our method, 90-dimensional vectors, symbol factor of 0.4, context
window of seven is superior to the R & K and WEBSOM methods. Our method
for context vector generation enables the dendrogram (Euclidean distance) to
be more similar to the human generated thesaurus of Bookshelf than either the
R & K or WEBSOM approaches. We also demonstrated that the TreeGCS
algorithm emulates both Euclidean vector-distance based and human generated

cluster sets more faithfully than the SOM algorithm. Therefore, we feel the

73

optimum approach for synonym clustering of the methods evaluated is to gen-
erate the average context vectors using our method and train these in to the
TreeGCS cluster algorithm. TreeGCS not only emulates the nearest neighbour
and human generated clusters more faithfully, it forms discrete clusters and dy-

namically forms a lexical hierarchy.

There are two main drawbacks to our current method. The first is the in-
ability to disambiguate words. All senses of a polysemic word are averaged
together during the context average formation, distorting the averaged context
vectors produced. We intend to improve this by including part-of-speech tag-
ging to differentiate identical words which represent different parts-of-speech,
for example spring: noun, a water source and spring: verb, to jump. However,
autonomously differentiating word senses is currently intractable and relies on
a knowledge engineer to tag the senses. This is infeasible for a large IR corpus.

We discuss possible extensions and improvements in chapter 7

The second main drawback lies in the underlying GCS algorithm and is a speed
problem. The algorithm is dependent on the winner search - finding the best
matching unit. This involves comparing the input vector to the vector attached
to each cell, calculating the difference for each vector dimension. This must be
repeated for each vector in the input vector space to complete each epoch. This
search is therefore, (number of input vectors * vector dimensionality * number
of cells) ~ O(n®) for each GCS epoch. For the small vocabulary evaluated in
this chapter the speed problem was not apparent. However, for a large IR cor-
pus, with an intrinsically extensive vocabulary the speed is prohibitively slow
and the algorithm running time is infeasible. In chapter 7, we detail approaches
we have tested and other possible amendments and extensions to the underly-
ing GCS algorithm to speed the algorithm, reduce the running time and hence

remove the bottleneck.

74

Chapter 3

AURA

3.1 Introduction to the AURA Neural Network

Neural networks map inputs onto outputs (the best matching item(s)) rather
than performing a search of the entire input data space for the best match.
In this dissertation we utilise the AURA neural network system. AURA is a
collection of neural network-based components that may be implemented in a
modular fashion. The building blocks of the AURA system are Correlation Ma-
trix Memories (CMMs). CMMs are binary associative m*n memory structures.
The AURA CMMs use binary weights to produce an index data structure stor-
ing a linear mapping p between a binary input vector of length m and a binary

output vector of length n as in equation 3.1.
w:{0,1}"™" — {0,1}" (3.1)

AURA uses a supervised learning rule, similar to a hash function, to simply and
rapidly map inputs to outputs. In figure 3.1, the input vector ¢ addresses the
m rows of the CMM and the output vector o addresses the n columns of the
CMM. AURA implements Hebbian learning by reinforcing active connections

during network training.

Unfortunately in conventional neural networks and the Hopfield binary network
[7] training takes time. Conventional neural networks are also often unable to
deal with missing inputs during training and they cannot match noisy or partial
inputs during retrieval. Associative binary neural networks such as AURA do
not suffer from the lengthy training problem. In AURA, training is a single
epoch process with one training step for each input-output association trained
preserving AURA’s high speed. In contrast, our TreeGCS method detailed in
chapter 2 requires approximately 10,000 epochs with 2,192 iterations per epoch
to train 2,192 input vectors onto a network of 1,000 cells. Storage is efficient in
associative binary networks as the size of the matrix can be determined when

it is instantiated. Thus, new input patterns do not require additional memory

75

Q,....0

76 54 3 2 10

IO,III’Im

a b~ W N P O

Figure 3.1: The input vector ¢ addresses the rows of the CMM and the output

vector o addresses the columns.

allocation as they are overlaid with existing trained patterns, [105]. An index-
ing data structure, such as the spelling-word index or word-document index
described in this thesis, may be pre-structured for more rapid searching such
as tree-structured, but this process is memory and processor demanding and
time consuming. AURA exploits the simple linear mapping of binary vectors to

produce rapid training and retrieval.

The AURA architecture contrasts with the TreeGCS neural approach described
in chapter 2. AURA may be considered a long-term storage structure where
static associations are stored to be retrieved at any time in the future as re-
quired. TreeGCS is more comparable to a learning memory where knowledge
is gradually learned and a network structure grows and evolves to represent
the data to be stored. AURA is aimed at storage efficiency, rapid single-step
storage and rapid single-step retrieval but conversely, TreeGCS requires much
longer to train due to its evolutionary nature and must be given time to evolve
satisfactorily to represent the knowledge. TreeGCS stores and matches at a
symbolic level whereas AURA stores and matches at the individual binary-bit
level. TreeGCS maps inputs onto nodes so multiple inputs map to an individual
TreeGCS node but AURA uses rows and columns in a matrix structure where
each location in the matrix is indexed by one row and one column. TreeGCS
is suited to the word hierarchy evolution whereas AURA is appropriate for the

associative retrieval required by the spell checker and word-document index.

AURA extends previous work on binary associative matrices by Amari [2], Palm
[77] and Willshaw [112]. AURA has augmented these antecedent approaches by
adding a partial match capability where only a subset of the active inputs are
matched and can determine the best matching output for a partially matched
input. For example if three inputs are set then AURA can retrieve any output
that matches two or less inputs. This capability is described in more detail in
section 3.1.4. AURA has also added a multiple input and multiple output capa-

bility where more than one input vector can be gathered into a single cumulative

76

input vector and matched. Multiple output vectors may also be gathered into
a single, cumulative output vector and retrieved. This process is described in

section 3.1.4.

For our MinerTaur system, we develop CMM modules for a hybrid dual-CMM
spell checker detailed in chapter 4 and also to produce an indexing data struc-
ture to store word to document associations described in chapter 5. The partial
matching of multiple inputs where multiple best matching outputs are retrieved
forms the foundation for our spell checking modules and word-document index.
In chapter 5, we evaluate a CMM word-document indexing structure against a
standard inverted file index, a standard hashing algorithm and a compressed
hashing storage technique. We evaluate all four data structures storing 1.25
million identical word-document associations for training speed, memory usage,
serial recall speed and partial match recall speed. We note that the CMM has
vastly superior training speed and partial match recall speed. The CMM has a

comparative memory usage but is slightly slower for serial recall.

3.1.1 Input and Output Vectors

In the AURA modular neural network architecture the tokens (spellings, spelling
codes, word and documents) are initially translated to binary patterns as the
AURA modules require binary data inputs. The binary pattern for each token
has a preset constant number of bits set to 1 in a fixed-length binary array. The

binary vectors may have a single bit set (orthogonal) vectors or multiple bits set.

For the hybrid spell checker described in chapter 4, the input spellings are
character based and the binary vectors are divided into a series of concatenated
‘chunks’ with each chunk representing a character from the input word. The
output vectors represent the corresponding words and have only a single-bit set
to uniquely identify each word from the lexicon of all words. Each word vector
is an m-dimensional binary vector where m equals the number of words in the
list. Where the value of an attribute is not known the binary pattern is set to
all 1’s indicating that all attributes are a valid match as in the UNIX ‘7’ any

single character matching facility.

For the word-document association matrix in chapter 5, the words form the
inputs and the documents the outputs of the neural network. The words are
represented by the identical vector that represented them in the spell checker to
allow the vector to uniquely identify the word and so that the word vector out-
put of the spell checker may form the input of the word-to-document matrix.
The documents are represented by an orthogonal vector to uniquely identify

them with n-dimensions and n unique documents in the repository.

7

3.1.2 Vector Representations

There are three alternative strategies for representing binary vectors and CMMs
in AURA. The binary vectors may be stored as Binary Bit Vectors (BBVs) or
Compact Bit Vectors (CBVs) and CMMs as BBVs, CBVs or they may be rep-
resented as Efficient Bit Vectors (EBVs). BBVs store all p bits in the binary
vector, storing a 0 or 1 as appropriate for each position. CBVs store a list of
the locations of the set bits in the binary vector; this is ideal for sparse binary
vectors, as only a few positions need to be stored in the list. CMMs may be
stored as EBVs that enable a switch at a predefined weight (number of bits set)
for each CMM row. If the row vector has a lower or equal weight to the switch
value then the particular row is stored as a CBV but for higher weights the row
is stored as a BBV - this enables the most efficient storage implementation to
be used for each individual row vector. If a row is empty then for an efficient
CMM the storage overhead will simply be a NULL pointer, i.e., a pointer to an
empty list so again this minimises the storage requirements. In the spell checker
the rows represent the positions of letters in the words in the lexicon. Certain
letters may never occur in certain positions, for example there may be no words
with the second letter ‘z’ so this row would simply be stored as a NULL pointer.
In section 5.4.1, we compare the memory usage for binary, compact and efficient

CMMs storing 1.25 million input-output associations.

For the orthogonal word and document identification binary vectors we use
CBVs as only one bit position needs to be stored in the bit set list which is far
more memory efficient than BBVs, i.e., storing the entire bit list. The spelling
and code vectors are also sparse with one bit set per letter ‘chunk’ (see chapter
4) so again we use CBVs. The CMMs are set to Efficient for all modules so that
the switch value can be pre-set and the most efficient representation selected for
each row of the CMM.

3.1.3 Training the Network

AURA uses a supervised Hebbian learning rule during training. The binary
output vector associated with each binary input vector is known thus guiding
the learning process and producing supervised learning. Active connections are
reinforced during training emulating Hebbian Learning. The diagram (figure
3.2) shows the network after 1, 2 and 3 patterns have been trained. The input
vectors are 01000000, 00100000 and 00001000 and their respective output vec-
tors (denoted class pattern in figure 3.2) are 01000000, 00010000 and 00000100.
The output vectors are fixed-length and uniquely identify their associated in-
puts. The CMM is set to one where an input row and an output column are
both set (see figure 3.2). There is one association in the CMM per input-output

pair. After storing all input-output associations, the CMM weights wy; for row

78

Output vector Output vector Output vector

0 10000O0O0TO0 00010000 0 00O0O0OT1O0TO0

OOOHOOOO‘

'
\

"OOOOOOHO‘
,‘ooooo»—loo‘

Inputs to be trained into the network

Figure 3.2: Diagram showing three stages of network training

j column k where V and A are logic ‘or’ and ‘and’ respectively is given by:

all ¢

Whj = \/ input§- A outputt (3.2)

3.1.4 Recalling from the Network

This process is essentially similar to the training process except the binary
output vector is not applied to the CMM only the binary input vector. The
columns are summed as in equation 3.3

all 4

act; = Z input; A wj; (3.3)

and the output activation vector (denoted ‘act’ in equations 3.3, 3.4 and 3.5)
is thresholded to produce a thresholded, binary output vector. We use the
Willshaw threshold with a threshold value equivalent to the number of bits

set in the input vector to retrieve all matches (see figure 3.3). The Willshaw

Here the input spelling is shown with 4-bit
chunksfor simplicity. Thewordisa2 letter
word with 1 bit set in each chunk. To match
exactly, we set the Willshaw threshold to 2

| o1 | | @ | toidentify any lexicon words that match both
charactersin the relevant positions.

‘ooc»—\oo»—lo‘

02000100 \ Activation - 2 input bits set: threshold at 2

‘ 01000000 ‘ Output pattern after thresholding

Figure 3.3: Diagram showing system recall. The input pattern has 1 bit set so
the CMM is thresholded at 1.

threshold produces a binary bit vector (denoted ‘threshold’ in equations 3.4
and 3.5) with a bit set to 1 where the corresponding activation output vector

attribute is greater than or equal to the predefined Willshaw threshold value

79

(denoted ‘WT’ in equation 3.5) and sets the remaining bits to 0, see equation
3.5.
act € X" A thresholded € {0,1}" (3.4)

thresholded™ = Willshaw(act™) where
thresholded; = 1 iff act; > WT else thresholded; = 0 (3.5)

We wish to retrieve all outputs that match the input. If the input has one bit
set we retrieve all columns that sum to one. The thresholded output vector
represents the binary output vector trained into the network and associated
with the specific input vector. Even with an error in the input (see figure 3.4)

the correct output vector is generated. This illustrates the ability of AURA to

cocococoroo

Activation - 1 input bit set
Superimposed output pattern after thresholding

‘00010000‘ ‘00000100‘
Separated output vectors

Figure 3.4: Diagram showing system recall. The input pattern is corrupted and
should be 00101000. However, the output vector pattern generated by AURA

is still correct.

overcome imperfect input patterns. Again the columns are summed and the

activation thresholded to produce a thresholded output vector.

Multiple Inputs - Words

For the word-to-document matrix, we often need to match multiple words si-
multaneously. If we wish to retrieve multiple word matches, rather than serially
matching the binary vectors, AURA replicates parallel matching. The binary
vectors for the required words are superimposed, forming a single input vector
(see equation 3.6 and figure 3.5), which may then be presented to the CMM in
a single stage process.

all @

inputVector = \/ inputVector® (3.6)

The binary vectors representing the input words are logically ORed to permit
commutativity thus making the order of the input words irrelevant. The input
words are treated as a ‘bag of words’ allowing partial matching of the requisite
number of words. This is essential for our spell checker and word-document ma-

trix where we need to retrieve output vectors (words or documents respectively)

80

cooocoocoooocoroO
<
cooocoocoooroO
cooocoocoocoroooO
cooocoocoocooocoor
cooroooooooO
‘
CooOrOCOOCORRER

Figure 3.5: Diagram showing the superimposition of input vectors.

that match unordered subsets of the input vectors (partial spellings or subsets

of words respectively).

Partial Match

If only a partial match of the input is required then this combinatorial problem
is easily resolved due to the superimposition of the vectors in the input and
the overlaid storage representation in the CMM. We exploit this facility to
retrieve the best matching spelling from the lexicon in the hybrid spell checker
in chapter 4 and to recall the documents that match subsets of input words in the
word-to-document association matrix in chapter 5. For the word-to-document
association matrix we can use partial match to recall any documents that match
M of the N superimposed word vectors where (M < N), for example, ‘find
all documents matching at least two of a set of four words’. An orthogonal
vector represents each word. We superimpose the word vectors to form a single
input vector as in figure 3.5. The input vector is presented to the CMM and
the Willshaw threshold is set at M - B where B is the number of bits set in
each separate input vector, for orthogonal word vectors B is 1. To retrieve ‘all
documents matching at least two of a set of four words’, we set the threshold

at two, see figure 3.6. This generalised combinatorial partial match provides a

‘OHHDOHHD‘

‘ 03010200 ‘ 4 input bits set - partial match 2

‘ 01000100 ‘ Superimposed output pattern after threshoding

Figure 3.6: Figure showing a partial match retrieval. We want to find all outputs
matching at least two of the four superimposed inputs so we threshold the output

activation vector at 2.

very efficient mechanism for partial match and resembles parallel matching as

81

we are able to present the entire set of words to be matched in a single input

step and perform the partial match in a single threshold step.

Multiple Outputs - Words and Documents

The output from a match performed by the network (a partial match or multiple
input vector match) may be a single or multiple binding of individual orthogonal
output vectors that match, see figure 3.7. A bit will be set in the thresholded
output vector for each orthogonal output vector that matches at or above the

Willshaw threshold value when the output activation vector is thresholded.

cocococoroo

Activation - 1 input bit set

perimposed output pattern after thresholding

‘00010000‘ ‘00000100‘
Separated output vectors

Figure 3.7: Figure showing CMM recall where thresholded output vector is a
superimposition of multiple orthogonal output vectors. As the all output vectors
in the system described in this dissertation are orthogonal the individual output

vectors are easily identified from the superimposed output vector.

all ¢

outputVector = \/ matchingOutputVector (3.7

The superimposed outputs must be identified. All binary vectors used to rep-
resent individual output data items are orthogonal so we may simply obtain a
list of the bits set in the superimposed output vector. The number of bits set
corresponds to the number of matches i.e., each bit set represents a separate or-
thogonal output vector. The time for this retrieval of matching vectors process
is proportional to the number of bits set in the output vector O(bits set), there

is one matching output vector per bit set for orthogonal output vectors.

3.1.5 Orthogonal Codes

In the IR system described in this dissertation, all output vectors are orthogonal
to ensure that the each output can be uniquely identified and the system will
not return false positives. The advantage of using vectors with multiple bits
set is data compression, the length of the binary vector may be truncated and
the representation compressed so the storage overhead of the CMM is reduced.
However, if more than one bit is set in the output vectors then we can get bit

clashes and false positives will be returned from the retrieval (see also chapters

82

4, 5 and [57]) as ‘ghost’ matches are returned. For example if we have three
words A, B and C represented by 01001000, 01000001 and 00001001 and the
output should match A and C, then the superimposed output vector will be
01001001. However, B is a subset of the output vector so even though A and
C are the correct match, B is a false positive. The data we employ to evaluate
our IR system in this dissertation has low memory usage, a combined total of
approximately 23MB for the three CMMs, so there is no need to compress the

data representation.

If we increased the information stored dramatically then we may need to sub-
divide the data or to compress the stored representation. We provide some
analyses in chapter 4 for speed of retrieval and CMM memory usage when
the dataset is extremely large. We train up to 1.5 million words into a CMM
to form a dictionary. We evaluate the speed of retrieval for exact and best
match word spellings and the memory usage of the CMM. We note that such
a large dataset would require subdivision or compression, we outline three pos-
sible methodologies for generating the binary vectors. We conclude that the
optimal compression technique depends on the memory constraints of the sys-
tem so we pinpoint two possible techniques that a user may select according to

their memory requirements.

3.2 Conclusion

The AURA neural network architecture provides a simple, one-shot training pro-
cess, a fast and highly flexible match procedure that permits partial matching -
this is particularly applicable for spell checking and best matching document se-
lection. AURA can handle multiple data types; such as word spellings, phonetic
codes, word identifiers and document identifiers. AURA exhibits scalability, we
demonstrate AURA’s ability to handle approximately 1,250,000 word to docu-
ment associations in chapter 4. These are all key requirements for our proposed
IR system making AURA an ideal foundation for the modular IR system de-

tailed in the dissertation.

83

Chapter 4

AURA Hybrid Spell
Checker

In this chapter, we propose a simple, flexible and efficient hybrid spell checking
methodology incorporating phonetic matching, supervised learning and associa-
tive matching in the AURA neural system. In our spell checker, we integrate
two CMM modules: a Hamming Distance and n-gram algorithm CMM with
high recall for typing errors and a phonetic spell-checking CMM module with
high recall for phonetic spelling errors. Our phonetic spell checking module is a
novel integration of Soundex-type codes and transformation rules. We have de-
veloped a single synergistic spell checker, integrating the retrieved words from
the three spelling algorithms in the two separate CMM modules by using a
novel scoring scheme to calculate an overall score for each matched word for
each algorithm. From the overall scores we can rank the possible matches. In
this chapter, we provide memory usage and speed of retrieval statistics for our
hybrid spell checker and we evaluate our approach against several benchmark
spell-checking algorithms for recall accuracy. Our proposed hybrid methodology
has the joint highest recall rate of the techniques evaluated coupled with low

computational cost.

We also analyse the retrieval time and memory usage statistics for the spell
checker trained with various lexicon sizes. We pinpoint the lexicon size when
the retrieval time increases to above 2 seconds, which is the maximum retrieval
time we have deemed feasible for a spell checker [74]. The analysis also identifies
the memory usage for the lexicon at this point. From the retrieval time and
memory usage analyses, we make recommendations for accommodating larger
lexicon sizes in CMMs, we identify the problems larger lexicons will introduce
and posit recommendations for overcoming the problems identified. We have
identified three possible solutions : modularity, compression and binning. Mod-

ularity subdivides the dataset so only a subsection of the total data storage needs

84

to be memory resident at any one time. The other two suggestions compress

the representation and thus reduce memory usage.

4.1 Introduction

Errors, particularly spelling and typing errors are abundant in human generated
electronic text. For example, Internet search engines are criticised for their in-
ability to spell check the user’s query which would prevent many futile searches
where the user has incorrectly spelled one or more query terms. An approx-
imate word-matching algorithm is required to identify errors and using some
measure of similarity, recommend words that are most similar to each misspelt
word. This error checking would prevent wasted computational processing, pre-
vent wasted user time and make any system more robust as spelling and typing
errors can prevent the system identifying the required information. An ideal
spell checker could also suggest word stemming variants, if the user supplies a
word stem the spell checker can return the set of variants for the word stem,

expanding the query as desired and ensuring a more robust and thorough search.

We describe an interactive spell checker that performs a presence check on words,
identifies spelling errors, recommends alternative spellings and suggests stem-
ming sets from a word stem supplied by the user. The basis of the system is the
AURA modular neural network described in chapter 3. The spell checker uses a
hybrid approach to overcome phonetic spelling errors and the four main forms of
typing errors: insertion, deletion, substitution and transposition (double substi-
tution). We use a Soundex-type coding approach [63] coupled with transforma-
tion rules to overcome phonetic spelling errors. Phonetic spelling errors are the
most difficult to detect and correct as they distort the spelling more than other
error types such as typographical errors [63] so a phonetic component is essen-
tial. We use an n-gram approach [106] to overcome the first two forms of typing
error and integrate a Hamming Distance approach to overcome substitution and
transposition errors. N-gram approaches match small character subsets of the
query term. They incorporate statistical correlations between adjacent letters
and are able to accommodate letter omissions or insertions. Hamming Distance
matches words by left aligning them and matching letter for letter. Hamming
Distance does not work well for insertion and deletion where the error prevents
the letters aligning with the correct spelling but works well for transposition
and substitutions where most characters are still aligned. We have developed a
novel scoring system for our spell checker. We separate the Hamming Distance
and n-gram scores so the hybrid system can utilise the best match from either
and overcome all four typing-error types. We add the Soundex score to the
two separate scores to produce two word scores to introduce a phonetic compo-

nent to both scores. The overall word score is the maximum of these two values.

85

Our approximate matching approach is simple and flexible. We assume the
query words and lexicon words comprise sequences of characters from a finite
set of 30 characters (26 alphabetical and 4 punctuation characters). The ap-
proach maps characters onto binary vectors and two storage-efficient Correlation
Matrix Memories from AURA which represent the lexicon. The system is not
language-specific so may be used on other languages; the phonetic codes and
transformation rules would just need to be adapted to the new language. Our
spell checker aims to high recall! accuracy possibly at the expense of precision?.
However, the scoring allows us to rank the retrieved matches so we can limit
the number of possibilities suggested to the user to the top 10 matches, giving

both high recall and precision.

Some alternative spelling approaches include the Levenshtein Edit distance [63],
Agrep [115] [114], Aspell [4], n-gram matching (see section 4.5 and [18]) and the
two benchmark approaches MS Word 97 and MS Word 2000. We evaluate our
approach against the alternatives listed above. We compare our hybrid approach
against Edit Distance and n-gram for memory usage. We provide the training
time for our hybrid approach and calculate the characters per second process-
ing rate for training. We compare against n-gram, Agrep and Edit Distance for
retrieval times. The n-gram, Agrep and Edit Distance algorithms were the only
ones from the list above that ran on the same architecture as our system, the
other techniques ran on different architectures so we could not produce a valid
timing comparison for those approaches. We compare our hybrid system with
all of the afore-mentioned approaches for quality of retrieval - the percentage
of correct words retrieved from 600 misspelt words giving a figure for the recall

accuracy with noisy inputs (misspellings).

4.2 Levenshtein Edit Distance

Levenshtein edit distance produces a similarity score for the query term against
each lexicon word in turn. The score is the number of single character insertions,
deletions or substitutions required to alter the query term to produce the lexicon
word, for example to go from ‘him’ to ‘ham’ is 1 substitution or ‘ham to ‘harm

is 1 insertion. The word with the lowest score is deemed the best match.

f(0,0)=0 (4.1)

where d(g;,l;) =01if g; = 1; else d(g;,1;) =1 (4.2)

1The percentage of correct spellings retrieved.
2The percentage of words other than the correct spelling retrieved.

86

For all word comparisons a function f(0,0) is set to 0 as in equation 4.1 as
all letters in the words are indexed from 1...n. This forms the basis for the
recursion in equation 4.2. A function f(7,j) in equation 4.2 is calculated for all
1 query word characters and all j lexicon word characters, iteratively counting
the string difference between the query ¢ig»...q; and the lexicon word Iils...J;.
Each insertion, deletion or substitution is awarded a score of 1 (see equation 4.2).
Edit distance is O(mn) for retrieval as it performs a brute force comparison with
every character (all m characters) of every word (all n words) in the lexicon and

therefore can be slow for large dictionaries.

4.3 Agrep

Agrep [115] [114] is based upon Edit Distance and finds the best match; the
word with the minimum single character insertions, deletions and substitutions.
Agrep uses several different algorithms for optimal performance with different
search criteria. For simple patterns with errors, Agrep uses the Boyer-Moore
algorithm with a partition scheme (see [115] for details). Agrep essentially uses
arrays of binary vectors and pattern matching, comparing each character of the
query word in order, to determine the best matching lexicon word. The binary
vector acts as a mask so only characters where the mask bit is set are compared,
minimising the computation required. There is one array for each error number
for each word, so for k errors there are k + 1 arrays (R°...R*) for each word.
The following two equations describe the matching process for up to k errors
0 < d < k. R; denotes step j in the matching process of each word and R; 1 the
next step. RShift is a logical right shift and S, is a binary vector representing

the character being compared ¢. VA denote logical OR and AND respectively.

R¢ =11...100...000 with d bits set (4.3)
R{,, = Rshift[R{] A S v Rshift[R}~'] v Rshift[R}{] v RI™! (4.4)
(4.5)

For a search with up to k errors permitted there are k + 1 arrays as stated
previously. There are 2 shifts, 1 AND and 3 OR operations for each character
comparison (see [115]) so the running time quoted by Wu & Manber is O((k +

1)n) for an n word lexicon.

4.4 Phonetic Spell Checkers

Soundex and Phonix have been designed specifically for phonetic spell checking
and produce a four-character to code to represent each word. The words are

then matched by counting the number of corresponding code characters.

87

01230120022455012623010202
abcdefghijklmnopqrstuvwxyz

Figure 4.1: Figure listing the Soundex code mappings.

code[1] := word[1]; //where code and word are indexed from 1 to m
j =2
for n in 2 to lengthOf (word){
If Soundex(word[n]) == O then skip;
If Soundex(word[n]) == Soundex(word[n-1]) then skip;
code[j] := Soundex(word[n]);
ji=3+1
}
If code has less than 3 digits then pad with O0s.

Truncate code at 4 characters to leave letter|digit|digitl|digit.

Figure 4.2: Figure listing the Soundex algorithm in pseudocode. Skip jumps to
the next loop iteration. The function Soundex() returns the appropriate code

mapping for the letter.

4.4.1 Soundex

Soundex was developed early in the 20th century (see [63] for details) and maps
the letters of the alphabet on to a series of numeric codes with the exception of
the first letter of the word which is mapped to itself (see figure 4.1 for the codes
and figure 4.2 for the algorithm). Each word is encoded by concatenating the
codes of its constituent letters, ignoring 0’s and only indexing the first letter if
adjacent letters in the word map to identical letter code values. In Soundex the
word code is limited to 4 characters (first letter|0-6|0-6]0-6). If there are less
than 4 non-zero characters in the word code then the code is padded with 0’s.
Words can then be compared for phonetic similarity by counting the number
of corresponding code characters; the same code character AND the same code
position. However, Soundex retrieves many false positives during matching due
to a large set of letters mapping to each letter code and many of these false
positives do not sound-like the target word. Soundex also does not rank the
retrieved matches, words either match or they do not; the only score available

is a count of the number of matches in the word code (from 0 to 4).

4.4.2 Phonix

Phonix [39], [40] is an extension of Soundex, generating 4 character word codes
using the same basic algorithm as Soundex (listed in figure 4.2) but mapping
the letters to different letter codes compared to Soundex. The letter encod-

ings are listed in figure 4.3. The Phonix letter codes are numbered from 0-8

88

01230720022455012683070808
abcdefghijklmnopqrstuvwxyz

Figure 4.3: Figure listing the Phonix codes for each letter.

to allow more letters to be distinguished and to reduce the number of words
mapping to each 4-character word code. Prior to producing the word code, the
letters are processed using transformation rules, see [39] for the complete list
of transformation rules. There are approximately 90 rules, each with a given
priority and any that apply are implemented in priority order [39]. The rules
are designed to implement context where letter pronunciation differs according
to the surrounding letters. The increased number of letter codes and the use
of transformation rules improves the quality and uniqueness of the word codes
generated and thus produces less false positives during matching compared to
Soundex coding alone. However, [121] showed that Phonix was scarcely bet-
ter than Soundex for recall and precision accuracy. We note that Phonix was
designed for South African name matching and includes many rules which are
redundant for our English language spell checker, hence we do not include the
Phonix system in our later evaluation. We use a much smaller rule base for our
spell checker focussed solely on the etymology covered by the Concise English
Dictionary. Rogers and Willett [86] extended Phonix but their implementation
was designed for 17th century spellings which would not be applicable for our

modern IR system.

4.5 Binary N-Grams

An n-gram is an ordered subset of the letters of a word with cardinality n. For
example, ‘the’; ‘her’, ‘ere’ are the 3-grams of ‘there’. A binary n-gram maps each
individual n-gram onto one attribute of a binary vector as in equation 4.7. A
binary vector representing a word is thus a logical OR of the binary vectors for
all n-grams in the word. For each lexicon word, all n-grams are determined, the
respective bits set in a binary vector and stored in a dictionary D in equation

4.6 where the set of n-grams present in the word is associated with the word.
D =Vword; — {nGram; ,nGrams, ...,nGram;, } (4.6)

Misspelt words can then be converted to their constituent n-grams and compared
with the dictionary. The dictionary word with the highest number of common n-
grams to the misspelt word is retrieved as the best matching spelling. N-gram
spell checking offers reasonable recall performance, but pays a large storage
penalty. There are two variants for binary n-gram matching where each word is
represented by an equal length binary vector and the n-grams present in a word

are denoted by setting the appropriate bit in the binary vector [106], [83]:

89

Positional. Each n-gram in the word is mapped onto a binary vector that
represents both the n-gram and its position in the word. The bit to set is
determined by equation® 4.7 which calculates the bit to set from both the

letters of the n-gram and the n-gram’s position in the word [106].
bitset = 26™p + 26" 'y + 26" %2y + ... + 3y (4.7)

Z1, %2, ..., T are integers representing the n characters of the n-gram (usu-
ally their position in the alphabet) and p = 0 for the first n-gram in the
word, p = 1 for the second and so on. Hence each n-gram in the word
is associated with a separate array of 26™ bits in the binary vector. The
positional n-gram has superior detection and correction of spelling errors
due to the positional storage [51]. However, storing the position creates a
huge storage overhead, positional n-grams require 64 times the storage of
non-positional n-grams for an equivalent word [51]. More systems use the
non-positional approach due to this large storage overhead, mitigating the

slightly lower recall by the huge storage reduction.

Non-positional. The non-positional variant does not store the position of the
n-gram only setting a bit in the binary vector if the corresponding n-
gram is present. The bit to set is determined by equation 4.7 with y =
0 for all n-grams. By not storing the positional information, the non-
positional approach vastly reduces the storage overhead but will inevitably
retrieve false positives. For example, for the non-positional approach both
‘other’ and ‘there’ have two 3-grams in common with ‘ther’. However, for
the positional approach only ‘there’ has two common 3-grams due to the

additional positional information

Our n-gram technique described later is a hybrid of the positional and non-
positional approaches, we do not note the position of the n-gram within a word
but we limit matching to the length of the spelling plus 2 characters. The n-
gram is shifted along in a moving window from the beginning to the end of the
word and we detect any n-gram matches during shifting. This allows us to use
the same binary vectors to represent the spellings and their associated words
for the n-gram as the Hamming Distance approach. This synergy minimises
the storage overhead of the spell checker. The CMM storing vectors for both
our shifting n-gram and Hamming Distance uses one third of the storage of the
standard non-positional technique, see section 4.7.1. The non-positional n-gram
approach in turn has a much lower storage requirement than the positional tech-
nique as described above. However, the shifting n-gram is slower to match than
the non-positional approach due to the overhead of shifting each n-gram along

the length of the input spelling, see section 4.7.3 and table 4.4.

3The equation applies to the 26 alphabetic characters only. If the space character is
included then 27 must be substituted for 26.

90

Cavnar [18] uses a non-positional superimposed binary n-gram encoding scheme
mapping the n-dimensional n-grams onto a single dimension binary vector but
with each bit representing multiple n-grams rather than just one n-gram as de-
scribed above. The system arranges the n-grams into sets (‘bins’) with an equal
n-gram frequency distribution between the sets. Each set can then be mapped
onto a single bit in the binary vector. This reduces the storage required for a
dictionary of word — n-gram associations but pays the penalty of introducing
more false positive retrievals than the standard non-positional approach. Con-
sequently, many words will be represented by identical binary vectors as they
contain n-grams that map to the same bins. The approach does not store any
frequency or positional information which would both help reduce the false pos-
itives. The technique may be further extended to encode every n-gram with ‘an
ensemble of binary vectors and yield even greater space savings’. Our shifting
n-gram technique uses 1-grams, 2-grams and 3-grams depending on the length
of the spelling to improve matching. Cavnar [18] similarly uses both 2-grams

and 3-grams.

An alternative n-gram approach using only 3-grams and implemented in AURA
builds upon Cherkassky [23]. For the analysis here we use the AURA 3-gram
methodology as it is essentially similar to both Cherkassky [23] and Cavnar’s
[18] methodologies - it does not implement the binning step of Cavnar but rather
maintains separate bits for each distinct 3-gram so retrieves less false positive

matches than Cavnar’s binning approach.

In our AURA 3-gram technique evaluated in this chapter, a 3-dimensional rep-
resentation of all of the possible 3-grams is produced with the x-dimension
representing the first letter of the 3-gram, the y-dimension the second letter

and the z-dimension the third. The characters are represented by 30-bit chunks

y

30 CMM of triples
Eachword is
30 ~¥» | —» | representedbyits
x constituent triples.
30
z
Length=x*y*z | | Output

\ | Thresholded output

Figure 4.4: Diagram showing the triple mapping process

to allow the 26 alphabetic characters, space, and three punctuation characters
to be represented, see figure 4.5. The three-dimensional representation is then

mapped onto a single-dimension vector of length 30x30x30 with one bit position

91

012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

abcdefghij k I mnopqqgr st uvwxy z - " &/

Figure 4.5: Table indicating which bit is set in the 30-bit chunk representing

each character.

for each possible triple (see figure 4.4 and equation 4.8).
bitset = 30" + 30" 'zy + 30" %z + ... + (4.8)

Each word to be trained is subdivided into its constituent 3-grams and the
appropriate bits are set in the 1-D vector. The output vector to be trained into
the AURA 3-gram CMM is again a single-bit set (orthogonal) binary vector.
There is no length limit imposed while matching the non-positional n-gram.
Thus, an n-gram from the first three letters of the mis-spelling would match
characters 48, 49, and 50 of a word in the lexicon if the respective n-grams
were identical. Our shifting n-gram approach is a hybrid of the positional and
non-positional techniques and limits matching to the length of the input plus
two characters. The positional n-gram approach aligns the n-grams exactly by
position and is thus too exact and susceptible to insertion or deletion spelling
errors as the n-grams will no longer align by position in the mis-spelling and
correct lexicon word. Also, the strict 3-gram approach does not work well for
less than 5 character words as there may be no common triples between the
query and the correct spelling. Therefore, for our shifting n-gram we use 1-
grams for up to 4 letters and 2-grams for 4 to 6 letter words and 3-grams only
for words longer than 6 letters and Cavnar combines 2-grams and 3-grams in

his approach.

4.6 AURA

AURA, described in chapter 3 and evaluated in chapters 4 and 5, is ideal for
spell checking compared to other neural networks as AURA does not suffer from
the lengthy training problem of other neural networks. Storage is efficient in
the CMMs as new inputs are incorporated into the matrix and do not require
additional memory allocation. AURA is also able to partially match inputs,
which is a prerequisite for any spell checker to permit the retrieval of the best

matching word.

4.6.1 Our Methodology

In our spelling system, we use two CMMs: one CMM stores the words for n-

gram* and Hamming Distance matching and the second CMM stores phonetic

4N.B. Hamming Distance and n-gram cannot be used simultaneously we have to perform

Hamming Distance match, retrieve the candidate matches then perform n-gram match and

92

Training Training
Word Word
Superimposition of Superimposition of
Vectors Vectors
Recall Recall
k] @ S
= o =
o S - - S S - !
£ 3 Correlation Matrix (;,) 'z Correlation Matrix
= 1<% 2 2
<3 E Memory @ £ Memory
n) S o}
S = s
n o n
Superimposition of Superimposition of
Outputs Outputs
Avrray of words Array of words
List of List of
Matched Matched
Words Words

~~~ ——‘
~ -

Hamming Distance ~ = serT =~ Phonetic Codes
ISto
or N—gram Matched

Words

Figure 4.6: Diagram of the hybrid spell checker as implemented in the AURA

modular system.

word codes for homophone matching. The CMMs are used independently but
the results are combined during the scoring phase of the spell checker to produce

an overall score for each word.

4.6.2 Hamming Distance and N-Gram

For Hamming Distance and n-gram, the word spellings form the inputs and the
matching words from the lexicon form the outputs of the CMM. As stated pre-
viously in section 4.5, we use an identical representation for the spellings and
associated matching words for both Hamming Distance and n-gram. For the
inputs, we divide a binary vector of length 960 into a series of 30-bit chunks.
This allows us to store up to 30 characters for each letter (a-z and 4 punctu-
ation characters). Words of up to 30 characters may be represented and the
longest word in the lexicon for our evaluation in this thesis is 29 characters. For
the shifting n-gram described later, we need two additional character chunks to
allow shifting so we need a vector of length 30 x (30+2) giving 960 bits. Each
word is divided into its constituent characters. The appropriate bit is set in

the chunk to represent each character in order of occurrence (we use the same

retrieve the candidate matches before combining all candidate matches using our scoring

scheme

93



mappings as for the n-gram bit setting, see figure 4.5). The chunks are con-
catenated to produce a binary vector to represent the spelling of the word and
form the input to the CMM. Any unused chunks are set to all zero bits. We
use Compact Bit Vectors for the word spelling vectors as there is only a single
bit set in the vector for each character in the word so the vector is sparse and

CBYVs will provide the most efficient storage.

Each word in the alphabetical list of all words in the text corpus has a unique
orthogonal binary vector to represent it, which forms the output from the CMM
(see equation 4.9). Essentially, we associate the spelling of the word to an or-

thogonal output vector to uniquely identify it.
bitVector? = p'"bit set Vp for p = position{words} (4.9)

We use Compact Bit Vectors for the word output vectors as there is only a
single bit set in the vector so CBVs will provide the most efficient storage
representation. The CMM represents the lexicon of all words in the corpus;
the inputs are the spellings and the outputs the matching words. We use an
efficient CMM for the lexicon. The spelling-word matrix is reasonably sparse so
we can exploit the most memory efficient representation for each row, storing
sparse rows as Compact Bit Vectors and dense rows as Binary Bit Vectors. We
empirically evaluated the switch value (the number of bits set when the row
is converted to a binary representation from a compact representation) for the

CMM to minimise memory usage.

4.6.3 Phonetic Spell Checking

Our methodology combines Soundex-type word codes with phonetic transfor-
mation rules as with Phonix [40] to produce a four-character code for each word.
In their paper [86], Rogers & Willett evaluated the recall and precision perfor-
mance for their phonetic approach with varying length phonetic codes. They
noted that four-character codes had higher recall with longer codes having higher
precision. We combine the scores for the best matching words with the scores
from the Hamming Distance and n-gram best matches so we feel higher recall
is more important than higher precision. The integrated scoring mechanism
will relegate many false positives from the phonetic matching to the foot of the
ranking list. We studied the etymology of the English Language given in the
preface to the Concise Oxford Dictionary to generate our phonetic rule base and
integrated a few rules from Phonix and Aspell that we deemed the most impor-
tant. However, we minimise our rule base as checking each constituent letter
of the word against the rule base is computationally time consuming. We also
use a larger number of letter codes than Soundex and Phonix. We use fourteen
codes compared to seven for Soundex and nine for Phonix to preserve the letter

similarities yet prevent dissimilar letters mapping to the same code character,

94



“hough — hd “rough — r8
“cough — k3 “tough — t3
“chough — s3 “enough — 83
“laugh — 13 “trough — tA38
“ps —'s “wWr = r

‘pt =t "kn = n

“pn = n "gn - n

"mn — n x>z

sc(elily) — s 1. (iju)gh(-a) —» - 2. gh —» g
+ti(alo) — s gn$ — n

ph = f gns$ — ns

1. c(efilyh) +s2.c =2k | g—k

mb$ —» m +x — ks

Table 4.1: Table of the phonetic transformation rules in our system. We ob-
tained a few rules from Aspell [4] and Phonix [40], for the remaining rules we
studied the lexicon and English grammar. Italicised letters are phonetic codes
- all other letters are standard alphabetical letters. " indicates ‘the beginning
of a word’, § indicates ‘the end of the word’ and + indicates ‘1 or more letters’.

Rule 1 is applied before rule 2.

which is a problem for both Soundex and Phonix. The letters are translated to
code characters indexed from 0-D in hexadecimal as we need single character
representations for each word code character to guarantee that all word codes
are four characters. We can minimise false positives as only very similar words
map to the same word code. Both Soundex and Phonix have low recall precision
as they generate many false positive matches [121] due to the limited number

of possible word code permutations.

For our method, any applicable transformation rules are applied to the word.
The phonetic transformation rules are given in table 4.1. The code for the word
is generated according to the algorithm in figure 4.7 using the letter mappings
listed in figure 4.8. If the phonetic code produced by the algorithm has less
than 4 characters then the word code is padded with 0’s to ensure all word
codes are exactly four characters. The prefixes {hough, cough, chough, laugh,
rough, tough, enough, trough } are converted to their respective phonetic codes
given in table 4.1 and our phonetic algorithm then converts any remaining let-
ters in the word to their phonetic mapping. For example, laughs, the prefix
‘laugh’ is converted to ‘13’ and the remaining letter ‘s’ is converted to ‘B’ using
the algorithm in figure 4.7 producing a phonetic code ‘I13b0’ for ‘laughs’ after
the spare code character has been padded with a 0.

For phonetic spelling, the phonetic word codes form the inputs and the matching

95



Apply all applicable phonetic transformation rules;
code[1] := word[1]; // where code and word are indexed from 1 to m
j =25
for n in 2 to lengthOf (word){
If Soundex(word[n]) == O then skip;
If Soundex(word[n]) == Soundex(word[n-1]) then skip;
code[j] := Soundex(word[n]);
ji=gi+
}
If code has less than 3 digits then pad with 0’s.

Truncate code at 4 characters to leave letter|digit|digit|digit.

Figure 4.7: Figure giving our algorithm in pseudocode. The function Soundex()
returns the code value for the letter as detailed in figure 4.8. Skip jumps to the

next loop iteration.

01-2034004567809-ABCOD0-0B0000
abcdefghijklmnopqrstuvwxyz-’&/

Figure 4.8: Figure giving our codes for each letter: (c, q and x do not have a
code as they are always mapped to other letters by the transformation rules:

c—s or c—k, g—k and x—z or x—ks).

words from the lexicon form the outputs of the CMM. Each word is converted
to its 4 character phonetic code. For the input (phonetic) vectors, we divide a
binary vector of length 62 into an initial alphabetical character representation
(23 characters as ¢, q and x are not used) and three 13-bit chunks. Each of
the three 13-bit chunks represents a phonetic code from figure 4.8 where the
position of the bit set is the hexadecimal value of the letter code. The chunks
are concatenated to produce a binary vector to represent the phonetic code of
the word and form the input to the CMM. We use CBVs for the phonetic word
code binary vectors as they are sparse with only four bits set in a vector of
length sixty-two. CBVs are the most efficient representation for sparse vectors
as there are only four positions stored in the list of bits set. A BBV would
necessitate storing a binary value for all sixty-two bits which would increase the

storage overhead considerably.

As with the Hamming Distance and n-gram module, each word in the alpha-
betical list of all words in the text corpus has a unique orthogonal binary vector
to represent it and form the output from the phonetic CMM. A single bit is set
corresponding to the position of the word in the alphabetical list of all words
(see equation 4.10). We use the same representation for the word vector as used

by the Hamming Distance and n-gram CMM module detailed in this chapter

96



and also the word-to-document association CMM detailed in chapter 5. This
maintains uniformity and allows simple processing; we can combine binary vec-
tor outputs from the two spelling CMMs and use the superimposed outputs as

inputs to the word-to-document association CMM.
bitVector? = pt*bit set Vp for p = position{words} (4.10)

The phonetic CMM represents the lexicon as 4-character phonetic codes. Again
we employ an efficient CMM with an empirically evaluated switch value to
minimise memory usage for the phonetic lexicon. The CMM switches between

the most efficient representations for each row.

4.6.4 Training the Network

The binary patterns representing the word spellings or phonetic codes are in-
put to the appropriate CMM and the binary patterns for the matching words
form the outputs from the respective CMM. The two spell checker CMMs are
trained as described in section 3.1.3. After training, there is one association in
the n-gram & Hamming Distance CMM per spelling-word pair. There is one

association in the phonetic CMM per phonetic code-word pair.

4.6.5 Recalling from the Network - Hamming Distance

For recall only the spelling pattern is applied to the network. The columns are

summed to produce an output activation vector.

all ¢

output; = Z input; A wyj; (4.11)

The output activation vector is thresholded to produce a binary output vector

(see figure 4.9). The binary output vector represents the word originally trained

Here the input spelling is shown with 4-bit
chunks for simplicity. Thewordisa2 letter
word with 1 bit set in each chunk. To match
exactly, we set the Willshaw threshold to 2
to identify any lexicon words that match both
charactersin the relevant positions.

EETErrEy
°
T
|
I
f
\

‘ 02000100 ‘ Activation - 2 input bits set: threshold at 2

‘ 01000000 ‘ Output pattern after thresholding

Figure 4.9: Diagram showing system recall. The input pattern has 1 bit set so
the CMM is thresholded at 1.

into the network matching the input spelling just presented to the network. We
use the Willshaw threshold (see chapter 3) set to the highest activation value to

retrieve the best matches(see figure 4.9). We wish to retrieve all outputs that

97



Theinput word ‘the’ is compared to

7 lexicon words trained in to the CMM.
Any word matching the three lettersin
the first three letters of the word will be
retrieved.

Both ‘the’ and ‘therefore’ match the
first 3 letters correctly.

a3yl
3yl
ale
ays
991y1
| |12ds
auou

910 313y1

| 331 2 2 1 0] 3chaactersinputsothreshold at 3.

| 1100 00 0] Superimposedoutput vector

Figure 4.10: Diagram showing Hamming Distance matching

match as many characters in the input as possible (see figure 4.10). The output
vector is a superimposition of the orthogonal vectors representing the words
that match the maximum number of the input word’s characters. This partial
match provides a very efficient, single-step mechanism for selecting those words
that best match.

We are able to use the ‘?” convention from UNIX for unknown characters in
our Hamming Distance matching by setting all bits in the chunk (representing
a universal OR), i.e., the chunk represents a ‘don’t care’ during matching and
will match any letter or punctuation character for the particular letter slot.
For example, if the user is unsure whether the correct spelling is ‘separate’ or
‘seperate’ they may input ‘sep?rate’ to the system and the correct match will
be retrieved as the chunk with all bits set will match ‘a’ in the lexicon entry

‘separate’.

4.6.6 Word Stems

For word stem matching, we implement a similar process to the Hamming Dis-
tance match but we set the Willshaw threshold value to the number of bits in

the input vector, i.e., the number of characters in the input word. Thus the

® | QT TODVDD The input word-stem ‘engine’ is compared to
el o=-aa 3233 | sevenlexiconwordstrained intothe CMM.
;' L ® ;;«3;; Any lexicon word matching all six of the lettersin
o 3 DPDODD®S DD itsfirst six letters will be retrieved as amatch.
DSV DDD
>SQ "o~
Q= on-=
=5 .
> o =
0] Q

| 0066 6 6 6| 6charactersinputsothresholdat6

[ 00111 1 1] Superimposedoutputvector

Figure 4.11: Diagram showing word stem matching

input word forms a stem and all word stemming variants for which the input

word is a stem are retrieved. Figure 4.11 shows a stemming recall. The input

98



word stem ‘engine’ is converted to a binary vector using the same technique
as the Hamming Distance conversion, converting each letter to a binary chunk
using the position of the word in the alphabet as an index to set the bit and
concatenating all chunks in the order of the constituent letters to generate a
vector for the word. The binary word vector is input to the standard Hamming
Distance & n-gram CMM. The threshold is set to the number of letters in the
word stem (6 for ‘engine’) and any word matching all 6 input letters in its first

6 letters is retrieved as a matching stemming variant.

4.6.7 Recalling from the Network - Shifting N-Grams

We utilise the same CMM for n-gram matching that we use for Hamming Dis-
tance matching. We use three n-gram approaches switching between the three
approaches as appropriate. We use l-grams for spellings with less than four
characters, 2-grams for 4 to 6 characters and 3-grams for spellings with more
than 6 characters. Misspelt words with less than four characters are unlikely
to have any 2-grams or 3-grams found in the correct spelling, for example ‘teh’
for ‘the’ have neither common. Spellings with four to six characters may have
no common 3-grams but should have common 2-grams and words with more
than 6 characters should match 3-grams. We experimented with just using 1-
grams and 2-grams but we found that 1-grams and 2-grams produced too many
false positive matches during our empirical evaluation so we opted to employ
3-grams particularly as the module is incorporated with other matches in our
hybrid system so we did not want too many low scoring matches to process and

slow retrieval.

Again we can employ the ‘?” convention from UNIX by setting all bits in the
appropriate input chunk. We describe a recall for a 7-letter word (‘theatre’)
using 3-grams below and in figure 4.12. All our n-gram techniques (1-gram,
2-gram and 3-gram) operate on the same tenet, we just vary the size of the

comparison window.

We take the first three characters of the spelling ‘the’ and input these left
aligned to the spelling CMM as in the left-hand CMM of figure 4.12. We wish
to find lexicon words matching all three letters of the 3-gram, i.e., all words
with an output activation of three for their first three letters. In the left-hand
CMM of figure 4.12, ‘theatre’ and ‘the’ match the first three letters so their
corresponding output activations are three. When we threshold the output ac-
tivation vector at the value three, the bits set in the thresholded output vector
correspond to a superimposition of the bits set to uniquely identify ‘the’ and
‘theatre’. We then slide the 3-gram one place to the right, input to the CMM
and threshold at three to find any words matching the 3-gram. We continue slid-

ing the 3-gram to the right until the first letter of the 3-gram is in the position

99



S| >>>=*5sT0 *| s>~ 300 TS *3T O
O oD OT=TDS S| o000 S DODOTTDS
Q OB ] o © DO @ © DO
— =0 — — =0 — — o —
= = .
o o 000 ~ o
=
)
[ 3312210| [ 000310 1| 0000000
[ 1100000| [ 0001000 0000000
OR
1101000

Figure 4.12: Diagram showing a 3-gram shifting right

of the last character of the spelling and the third letter of the n-gram is aligned
with the last letter of the input plus two characters. We match the length of the
input plus two characters as nearly all spelling mistakes are within two letters
of the correct spelling [63]. We logically OR the output vector from each 3-gram
position to produce an output vector denoting any word that has matched any
of the 3-gram positions for this 3-gram, see figure 4.12. We then move onto
the second 3-gram ‘hea’, left align, input to the CMM, threshold and slide to
the right producing a second 3-gram vector of words that match this particular
3-gram in any place. When we have matched all m 3-grams {‘the’, ‘hea’, ‘eat’,
‘atr’, ‘tre’} from the spelling, we will have m output vectors representing the
words that have matched each 3-gram respectively. We sum these output vec-
tors to produce an output activation vector representing a count of the number
of 3-grams matched for each word. We then threshold at the maximum value of
the output activation vector to produce a thresholded output vector with bits
set corresponding to the best matching CMM columns (word), i.e., the columns

(words) with the highest activation.

4.6.8 Recalling from the Network - Phonetic

The recall from the phonetic CMM is essentially similar to the Hamming Dis-
tance recall. We input the 4-character phonetic code for the search word into the
CMM and recall a vector representing the superimposed outputs of the match-
ing words. The Willshaw threshold is set to the maximum output activation to

retrieve all words that phonetically best match the input word.

4.6.9 Superimposed Outputs

Partial matching generates multiple word vector matches superimposed in a
single output vector after thresholding (see figure 4.10). These outputs must be
identified. A list of all words in the lexicon is held in an array. The position

of any set bits in the output vector corresponds to that word’s position in the

100



array (see equations 4.9 and 4.10). By retrieving a list of the bits set in the
output vector, we can retrieve the matched words from the corresponding array
positions (see figure 4.13). The time for this process is proportional to the

number of matching words ©(words) for orthogonal output vectors.

0 are
0 bit 2 - word array position 2 none
1 » | ot her ot her
0 bit 4 - word array position 4 spel !
1 » | the t he
! bit 5 - word array position 5 > theatre theatre
0 three
Matching words

Figure 4.13: Diagram showing matching word retrieval using the bits set in the

thresholded output vector as positional indices in to the word array.

4.6.10 Integrating the Modules

For exact matching (checking whether a word is present in a lexicon) we use the
Hamming Distance and a length match. We perform the Hamming Distance (see
section 4.6.5), thresholding at the length of the input spelling (number of bits
set) to find all words beginning with the input spelling. In figure 4.10, the input
would be thresholded at three (length of ‘the’) to retrieve {‘the’,‘therefore’}. To
count the number of characters in each stored word, we input a binary vector
with all bits set to one and threshold the output at the exact length of the input
spelling (number of bits set). There is one bit per character so if all bits are ac-
tivated and summed we effectively count the length of the word. N.B., we could
have stored the length of each word with the word array. However, we felt the
additional storage overhead created was unnecessary particularly as our exact
match is rapid (0.03 seconds for a 29-letter word from a 29,187 word lexicon) so
this additional length match step in the CMM is negligible with respect to time
and creates no additional storage. From figure 4.10, all bits are set in the input
and the output thresholded at exactly 3 to retrieve the 3 letter words {‘the’,
‘are’, ‘she’}. We can then logically AND the Hamming Distance output vector
with the length vector to retrieve the exact match if one exists, i.e., matching
all input characters AND the exact length of the input. A list of the bits set
in the logically ANDed binary vector is generated to index the matching words
in the word array (position of bit set equals location of matching word in word

array). The single matching word is {‘the’}.

If the exact match returns false (no matches), we assume the query word is
spelt incorrectly and we can then spell check using the query word to produce a
list of alternative spellings. We translate the word to the spelling binary vector

for Hamming Distance and present this binary vector to the Hamming Distance

101



& n-gram CMM. We then present the shifting n-gram vectors to this CMM.
We translate the word to the phonetic code, transform this word code to a bi-
nary vector and present the binary vector to the phonetic CMM. See section
4.6.1 for details of how the input vectors are produced. We generate a separate
output vector for each method with an output activation set for each word in
the lexicon. We threshold the output activation vector for the Hamming Dis-
tance method at the highest attribute value to retrieve the best matching words.
We also threshold the output activation vectors for the shifting n-gram method
and the phonetic spelling method at their respective highest attribute values
to identify their respective best matches. The resultant best matching words
are retrieved from the word array for each of the three thresholded vectors in
turn, i.e., we identify the array locations of the best matching words from the

positions of the bits set in each thresholded vector

With our maximum value thresholding, we only score the absolute best match-
ing words for each of the three spelling approaches in turn. It is possible that the
overall best matching word may be the second best match for n-gram and sec-
ond best for phonetic and would thus not receive a score from our approach. To
overcome this, we could calculate a Hamming Distance score, an n-gram score
and a phonetic score for every lexicon word. However, this would be computa-
tionally too expensive as we would also need to normalise all scores to ensure
that none of the three methods biases the overall score calculation. This would
inevitably slow the spell checking process too much. We have demonstrated the
high recall of our approach so we feel the negligible increase in recall introduced

by calculating scores for all words cannot mitigate the increase in retrieval time.

We produce three separate scores: one for the Hamming Distance best match
(see equation 4.12), one for the shifting n-gram best match (see equation 4.13)
and one for the phonetic best match (see equation 4.14) which we integrate to
produce an overall word score (see equation 4.15). We evaluated various scoring
mechanisms. Our first approach was to simply sum all three scores to produce
a word score but this favours words that match reasonably well on both n-gram
and Hamming Distance but they are usually complementary, as stated earlier in
this chapter. We evaluated the n-gram scoring mechanisms in [63] (2x¢/(n+n')
and ¢/maz(n,n') where ¢ is the number of common n-grams and n and n' are
the lengths of the query word and lexicon word respectively) but found all were
inferior to our scoring in equation 4.13. We keep the Hamming Distance and n-
gram scores separate as they are complementary and we add the Soundex score
to each of these two scores. We normalise the Soundex and Hamming Distance
score to give a theoretical maximum score for each, equivalent to the maximum
score possible for the n-gram so none of the three methods integrated biases the

overall word score; they are all equally influential. In the following equations,

102



diff = (strlen(queryWord) — strlen(lexiconWord)) where strlen() returns the
length of the word

ScoreHamming = 2 * (WillThresh — diff — ((2 * |n-gram|) — 1)) (4.12)

ScoreN-gram = 2 % (WillThresh — diff) (4.13)
. 2 x (WillThresh — diff)
ScorePhonetic = (2  [phoneticCode]) *
(strlen(queryWord) — (|n-gram| — 1)) (4.14)

The score for the word is then given by equation 4.15:

Score = maz((ScoreHamming + ScorePhonetic),

(ScoreN-gram + ScorePhonetic)) (4.15)

The word score exploits the complementary n-gram and Hamming Distance
scores and introduces a phonetic aspect to both n-gram and Hamming Dis-
tance. Hamming Distance and n-gram work well for typographical errors but
less well for phonetic errors. By adding the Soundex score we can introduce
homophone scoring and thus balance the word scores equally between all forms

of spelling error (typographical and phonetic).

We can also provide stemming sets from word stems to allow the user to see
all word forms derived from their word stem that are present in the lexicon.
This can assist matching by expanding the query and providing more flexibility
and robustness. Documents that may have been missed because they contain
alternative stemming variants will now be retrieved. For example, if the user
supplies ‘engine’ we can retrieve ‘engines’, ‘engineer’, ‘engineering’ as in figure
4.11 and allow the user to select from the stemming set any words they feel are

relevant to the query.

4.7 Evaluation

In this dissertation we evaluate our ‘Hybrid CMM’ spell checker against the
benchmark spell checkers detailed in this chapter for memory use, training time,
retrieval time and spelling recall. For all evaluations we use the lexicon from the
UNIX ‘spell’ program supplemented with the correct spellings of our test words
and comprising 29,187 words and 242,819 characters in total. All analyses were
performed on a SGI Origin 2000 with the following specifications (taken from
the IRIX hinv command):

e 32 X 180 MHZ IP27 Processors
This allows us to evaluate the various spell checking techniques in paral-
lel, each technique evaluated on one processor simultaneously to provide

identical system conditions for each technique evaluated.

103



Method Size (bytes)
Spelling CMM 1,480,144
Triple mapping method 3,827,680
Edit Distance word array 1,475,000
Phonetic CMM 460,464

Table 4.2: Table listing the memory sizes of comparable data structures used

to store words and their spellings.

CPU: MIPS R10000 Processor Chip Revision: 2.6

FPU: MIPS R10010 Floating Point Chip Revision: 0.0

e Main memory size: 8192 MBytes

Instruction cache size: 32 KBytes

Data cache size: 32 KBytes

4.7.1 Memory Use

We compare the memory usage of the two trained CMMs (one storing word
spellings for n-gram and Hamming Distance matching and the other storing the
4-character phonetic codes) against a standard static word array data structure
of 29,187 array elements with up to 50 characters in each element - declared in C
as char wordArray[29187][50] and against the 3-gram approach (denoted ‘triple
mapping’ and described in section 4.5) where all possible 3-grams are mapped
onto a 1-D vector and the appropriate bits are set for the 3-grams present in

each spelling.

From table 4.2, our spelling CMM uses approximately one third of the memory
used for the triple mapping approach that stores the same information (word
spellings). The triple mapping requires vectors of length 2,700 (there are 30
possible characters for each attribute of the 3-gram giving 30*30*30 possible
character permutations). Our spelling approach requires vectors of length (30
bits per character * maximum word length to be stored). Here the maximum
word length is 29 so we elected to use 960-bit vectors (30 characters + 2 extra
for the shifting n-gram). The matrix for the triple mapping is very sparse as
many of the triple possibilities never occur in the English language, for example

‘xyz’, ‘aaa’, ‘

zzz’. The memory usage of the Edit distance word array and the
spelling CMM are approximately equivalent although of course we need to store
a data structure that maps the words to the binary vectors. We have elected to
use the word array as described in section 4.6.1 which is identical to the Edit
Distance array so our memory usage is actually double the Edit Distance (i.e.,

CMM plus word array). The phonetic CMM memory usage is much lower than

104



the other data structures as all words are represented by 4 character codes so
the CMM is much smaller (number of words by 4 x 24 bits per character) and
thus the CMM memory usage is much lower. The total memory usage for the
‘Hybrid CMM’ spell checker is 1,480,144 + 460,464 + 1,475,000 = 3,415,608
bytes.

4.7.2 Training Time

For the spelling CMM, the training time was: the time to produce the binary
vectors for each word spelling, to associate each word with an orthogonal out-
put vector and train the input spelling-output word vector association into the
memory matrix. For the phonetic CMM, the training time was the time to pro-
duce the phonetic word code, to produce the binary vector for the phonetic word
code, to associate each phonetic code vector with an orthogonal output vector
and train the phonetic code-output word vector association into the memory
matrix. We train the two CMMs consecutively. We generate 1. the orthogonal
output vector, 2. the spelling vector, 3. the phonetic code and from the pho-
netic code we generate 4. the phonetic vector, training 1 and 2 into the spelling
CMM and 1 and 4 into the phonetic CMM for each word in turn. Qur ‘Hybrid
CMM’ approach processes the 242,819 characters of the UNIX ‘spell’ dictionary
and trains the two CMMs in 7.2 seconds. Therefore the approach may process
33,725 characters per second for training. Training is only performed once and

is a single epoch process.

4.7.3 Retrieval Time

We compare the retrieval times for an exact match search and a best match
search for each of the approaches described in the chapter. For comparison we
use a short word ‘the’ comprising one 3-gram and a very long word that we
added to the lexicon for evaluation purposes ‘floccinaucinihilipilification’ with
twenty-seven 3-grams. The length variation enables us to compare the running
time for each algorithm and see whether they are closer to O(n) or O(1), i.e.,
dependent on the length of the input or independent and approaching constant

time for retrieval.

Exact Match

Our methodology (denoted ‘Hybrid CMM’) implements exact match through a
Hamming Distance and length comparison as this is faster than the shifting n-
gram approach from empirical comparison (O(1) compared to O(n)). The triple
mapping approach retrieves the words matching all triples and retrieves the
words of equivalent length to the input in a second output vector and similarly
to our approach, forms a logical AND of the two output vectors to retrieve

the word that have all triples in common AND are equivalent length to the

105



Method Time (secs) for *flocci...” | Time (secs) for ’the’
‘Hybrid CMM’ 0.04 0.04
Triple mapping 0.03 0.02
Agrep 0.01 0.01
Levenshtein Edit Distance 1.93 0.22

Table 4.3: Table listing the exact match retrieval times for the systems evalu-
ated. Our hybrid system uses the logical AND of the output vectors from the

Hamming Distance and length match for the exact match procedure.

Method Time (secs) for flocci...” | Time (secs) for ’the’
‘Hybrid CMM’ 1.41 0.22
Phonetic CMM <0.01 0.01
Hamming Distance <0.01 0.01
Shifting n-gram 1.06 0.03
Triple mapping <0.01 0.03
Agrep 0.01 0.03
Levenshtein Edit Distance 1.93 0.22

Table 4.4: Table listing the best match retrieval times for the systems evaluated.
Our ‘Hybrid CMM’ approach combines the results of the phonetic match, n-
gram match and Hamming Distance match using our scoring equation to identify

the best matching lexicon words.

input, i.e., the exact match. From table 4.3, our ‘Hybrid CMM’ approach, the
triple mapping and Agrep are all ©(1) as the retrieval is independent of the
length of the input, only Levenshtein Edit Distance is O(inputLength). For our
hybrid, retrieval time depends only on the number of matches as these must be
retrieved from the word array, so more matches will entail slower retrieval. Our
hybrid matches against the 242,819 characters of the UNIX ‘spell’ lexicon in
0.04 seconds so extrapolating would be able to process approximately 6,070,475

characters per second.

Best Match

For best match (see table 4.4), our ‘Hybrid CMM’ approach is dependent on
the shifting n-gram which is O(n). Our combined ‘Hybrid CMM’ approach
took 1.41 seconds to retrieve the best match for ‘floccinaucinihilipilification’
compared with a time of 1.06 seconds for the shifting n-gram alone so the shifting
n-gram occupies 75% of the total retrieval time for our ‘Hybrid CMM’. For a
3-letter word input, our ‘Hybrid CMM’ approach took 0.22 seconds for 242,819
characters so could process 1,103,723 characters per second. For the 29-letter

word the retrieval took 1.41 seconds so we can process 172,212 characters per

106




second. We could speed this retrieval by having three CMMs, one with 1-grams
stored, one 2-grams and the third 3-grams. This would be faster, equivalent to
the n-gram triple mapping, i.e., <0.01 seconds for the 29-character word but
the memory storage would be approximate 6 times higher. Three times for the
3-gram CMM (as seen in the memory use evaluation in section 4.7.1), twice for
the 2-gram and equivalent for the 1-gram. We feel the slightly slower speed is
preferable to the higher memory requirement of the alternative representation.
Most searches are likely to be approximate 7 or 8 characters. N.B. for the
Hamming Distance and triple mapping the search for ‘the’ took longer than the
29-letter word. This is because there are many possible matches for ‘the’ which
must be retrieved from the word array using the bits set in the thresholded
output vector as indices into the word array but there is only one word to be
retrieved for the longer word. The retrieval speed of the bit indexing mechanism

is proportional to the number of bits set and thus words retrieved.

4.7.4 Quality of Retrieval

We evaluate our ‘Hybrid CMM’ approach against the benchmark spell checkers
described in this chapter for spelling recall. We extracted 583 spelling errors
from the Aspell [4] and Damerau [29] word lists and incorporated 17 additional
spelling errors from the MS Word 2000 auto-correction list to give 600 mis-
spelt words in total®. The results are given in table 4.5. We counted the
number of times each approach suggested the correct spelling among the top
10 matches and also the number of times the correct spelling was placed first.
N.B. We counted strictly so even if a word was tied for first place but was
listed third alphabetically then we counted this as third. However, if a word
was tied for tenth place (where the algorithm produced a score) but was listed
lower, we counted this as top 10. We include the recall scores for MS Word
97, 2000 and Aspell spell-checkers for a benchmark comparison. We used the
standard supplied dictionaries for both MS Word® and ‘Aspell’ [4]. For all other
evaluated methodologies we used the standard UNIX dictionary augmented with
the correct spelling for each of our phonetic misspellings giving 29,178 words
in total’. The final column of table 4.5 gives the average number of words
returned per query for the four approaches using the UNIX dictionary. For all
queries when the approach returned the correct word in the top 10, we counted
the position of the correct word. We then totalled the positions for all correct

queries and divided the total by the number of correctly found queries to give

5We implemented all aspects of our spell checker before extracting the mis-spelt words to

ensure no biasing of the results.
8We also checked that the correct spelling of each of the words not correctly matched

was present in the Word dictionary and the ‘Aspell’ dictionary before counting the correct

matches.
7 All spell checkers included some of the misspellings as variants of the correct spelling, for

example ‘miniscule’ was stored as a variant of ‘minuscule’, ‘imbed’ as a variant of ‘embed’ in
MS Word. We counted these as ‘PRESENT".

107



Method Found | First | Present Not | % Recall | Precision
(Top 10) | Place Found
‘Hybrid CMM’ 558 368 6 36 93.9 2.13
Aspell 558 429 6 36 93.9
Word 2k 510 432 17 73 87.5
Word 97 504 415 15 81 86.1
Edit Dist. 510 367 6 84 85.9 1.61
Agrep 481 303 6 113 80.1 2.57
Triple Mapping 449 115 6 149 75.6 2.51

Table 4.5: The table indicates the recall accuracy of the methodologies evalu-
ated. Column 1 gives the number of correct matches within the top 10 matches
returned for each word, column 2 shows the number of correct matches in first
place, column 3 gives the number of spelling variants already present in the
lexicon, column 4 gives the number of words not correctly found in the top 10.
Column 5 provides a recall accuracy percentage (the number of top 10 matches
/ (600 - number of words present)) and column 6 lists the average number of

words returned per query.

an average number of words returned.

Recall and Precision

If we consider the final column of table 4.5, the recall percentage (the number of
top 10 matches / (600 - number of words present)), we can see that our hybrid
implementation has the joint highest recall with Aspell. Our stated aim in the
Introduction was high recall. We have achieved the joint highest recall of the
methodologies evaluated, even higher than the MS Word benchmark algorithms.
The MS Word and Aspell spell checkers are optimised for first place spelling and
achieve more first place results than our hybrid. Both MS Word spell checkers
and the Aspell system were using their respective standard dictionaries. This
makes comparison of the first place spelling more contentious. However, as-
suming the comparison is valid, our approach has higher overall recall accuracy
than both MS Word systems. Aspell uses a version of the UNIX ‘spell’ dictio-
nary similar to our dictionary used in this evaluation. Aspell is a rule-based
system based on a technique that is similar in implementation to Phonix [39].
The approach would not integrate neatly with our MinerTaur system architec-
ture. Our spelling CMM produces superimposed output vectors that may be
input straight into the word-document matrix described in chapter 5 in a single
step. If we used Aspell as our spell checker, we would also need to compose the
vectors for the matched words after spell checking, inevitably slowing retrieval.
The user will see the correct spelling in the top ten an equal number of times
for both Aspell and our system so we feel the ability to integrate with the sys-

tem architecture offsets our hybrid approach’s slightly lower first place retrieval.

108



Our hybrid spell checker retrieves 2.13 words on average, the correct word plus
1.13 incorrect words. Our precision figure is slightly below the Edit Distance
figure but above both the Agrep and Triple Mapping figures. Our recall figure
is superior to the Edit Distance value and we feel that recall is more important
than precision. It is more important for the user to see the correct word possibly
in third place rather than to receive a minimal list of words, for example a list

of just 2 words with the correct word omitted because precision was the focus.

4.8 CMM Size Evaluation

For our size evaluation, we use the 29,187 and 9,485 word datasets from the
evaluation of the spell checker in this chapter and the word-document index
in chapter 5 respectively. We also use a large lexicon obtained by combin-
ing two word lists to give 1,423,237 words: one downloaded from [32] and the
other downloaded from [76]. Both word lists are intended for password cracking
programs which exploit a vast word base to compare and decipher user pass-
words. We sorted the large 1,423,237 word lexicon alphabetically and prepared
the smaller datasets by extracting the first 1 million, 750,000, 500,000, 250,000
and 100,000 words from the large alphabetically sorted lexicon. We trained
the words from the various-sized lexicons into the spelling CMM and phonetic
CMM as per the methodology described in this chapter using orthogonal output
vectors in all cases. Hence the output vector length is equivalent to the size of
the lexicon to enable orthogonal vectors that uniquely identify each word. We
calculated the memory usage for the spelling CMM and the phonetic CMM for
each lexicon size. We noted the time for three matches for each lexicon size using
our hybrid spelling methodology. We exactly matched a small word ‘and’, we
exactly matched a long everyday word ‘applications’ and we performed a best
match search using a long uncommon word ‘floccinaucinihilipilification’ ensuring
that the correct spelling was not present in any lexicon so we could just retrieve
a set of best matching spellings. We noted in this chapter that the best match
retrieval was slower than exact match due to our use of the shifting n-gram so
we can evaluate the worst-case scenario of a very long word best match retrieval

against large lexicon sizes.

4.8.1 CMM Size

Table 4.6 details the memory usage statistics and figure 4.14 provides a graph of
the memory usage for the spelling and phonetic CMMs with each of the lexicon
sizes. The memory usage grows linearly with the lexicon size due to the use of
orthogonal vectors - the output vector size increases linearly with the lexicon
size. The spelling CMM memory grows more rapidly as the input size is larger
(32 x 30 bit letter chunks see section 4.6.2 for the details) compared to the pho-

109



Lexicon size words | Spelling CMM | Phonetic CMM
memory usage | memory usage

1,423,237 147,313,072 23,134,392
1,000,000 96,725,812 14,761,992

750,000 68,814,124 10,510,632

500,000 42,034,544 6,266,048

250,000 18,071,472 2,895,124

100,000 6,069,600 1,054,432

29,187 1,480,144 460,464

9,485 971,256 214,112

Table 4.6: Table of the CMM sizes in bytes for the various lexicon sizes trained
in to the CMM.

netic input size of (30 bits + 3 * 16 bits see section 4.6.3 for the details). Due to

Graph for CMM memory usage with varying lexicon size
1.6e+08 T T T

I Memory uéage for the Ispelling CMiVI —
Memory usage for the phonetic CM

1.4e+08
1.2e+08 |-
1le+08 -

8e+07 -

Memory use (bytes)

6e+07 -

4e+07

2e+07 -

,,,,,,H,X,,_,,_,,_
T

0 - e A S I I I I I
0 200000 400000 600000 800000 le+06 1.2e+06  1.4e+06
Lexicon size (output vector length).

1.6e+06

Figure 4.14: Graph of the CMM memory usage for each of the lexicon sizes.

the larger input size, the total number of bits in the spelling matrix grows more

rapidly hence the memory usage for the spelling CMM increases more rapidly.

Figure 4.15 provides a graph of the retrieval times for the various lexicon sizes
for the three test matches. The time for retrieval grows linearly with the lexi-
con size for each of the three test matches. The two exact match retrievals are
extremely rapid even for the large lexicon size. The twelve-letter word ‘appli-

cations’ requires 4.2 seconds for an exact match with a trained lexicon size of

110



Time graph for word retrieval with varying lexicon size

120 T T T T T T T
Exact match (the) —+—
Exact match (applications) ---x---
Best match (floccinaucinihilipilification) ------
100 | o i
80 - i
—_ x '
0 .
O
3
< 60 | -
@
£ .
= &
40 | i
20 4
,~"*’,"
%" 2 Second Line ey
[ 7 - L + X t i I I I
0 200000 400000 600000 800000 le+06 1.2e+06 1.4e+06 1.6e+06

Lexicon size (output vector length).

Figure 4.15: Graph of the retrieval times for the three benchmark words with
each of the lexicon sizes. The best match search for a long word (floccinaucini-
hilipilification) not present in the stored lexicon is the worst case retrieval time
and hence the retrieval time is much higher than an exact match for shorter
words present in the lexicon which do not require the slower shifting n-gram

retrieval.

1,423,237 words. The times for the three-letter word exact match are very sim-
ilar to the twelve letter exact match. The times are just slightly less due to the
lower word size as the input bit vector representing the three-letter spelling has
less bits set (three compared to twelve) so less CMM rows need to be activated
and checked during a match. However, from the graph the best match is much
slower for the long twenty-nine-letter word. The slowness is due to our choice
of the shifting n-gram rather than the alternative approach of non-positional
n-grams as described in section 4.5. Our shifting n-gram approach has much
higher recall than the non-positional n-gram approach, see table 4.5, but is
slower particularly for longer words. However, we decided that the higher recall
of the shifting n-gram mitigates the slower retrieval as most query words are
likely to be seven letters or less and will have acceptable retrieval times whereas

a twenty-nine-letter word is likely to be encountered very rarely in user queries.

From the graph in figure 4.15, we can see that the intersection of the 2-second
line (i.e., the maximum feasible retrieval time for a spell checker) and the lexi-
con size axis for the 29-letter word best match retrieval is approximately 40,000
words. Hence, for a very long, uncommon word best match retrieval to take less

than 2 seconds we can train up to 40,000 words into the hybrid system’s two

111



lexicon CMMs using orthogonal output codes. From the memory usage graph,
for a lexicon size of 40,000 words the spelling CMM memory usage is 2MB.
This is not an unreasonable figure for a spell checker with a 40,000-word lexi-
con. However, 40,000 words is a small lexicon, password cracking dictionaries
can store in excess of 1 million words as exemplified by the lexicon used in this

evaluation.

4.9 Proposed Solutions for Large Datasets

We propose and analyse three solutions to the problem of storing larger lexi-
cons in CMMs, using a one million-word lexicon as an example. We desire a
uniform representation for each word vector in both the spelling and phonetic
CMMs to allow our integrated hybrid spell checker to easily derive matches.
If we permitted different representations we would require a complicated post
match processing module to retrieve the matches from both the spelling and
phonetic CMMs, to identify, to integrate and to score the matches. We also
keep identical bit vectors so we only need to store the bit vector — word as-
sociations once rather than storing two separate associations; one association
list for the spelling CMM and one for the phonetic CMM and hence this lowers
the memory usage. A further manifestation of using identical word vectors is
the ability to feed the output vectors from the phonetic and spelling CMMs
directly into the word-document CMM to retrieve matching documents without
recourse to computationally costly vector processing and translation. We note
that the memory usage reduction is less important for the phonetic CMM as
all words are translated to four-character codes which involves a much shorter
bit vector length (augmented by the fact that there are only 16 different codes
per character for the phonetic coding compared to the 30 possible characters
for the spellings). These shorter input vectors produce lower memory usage for
the phonetic CMM compared to the spelling CMM and accordingly a slower
memory usage expansion than the spelling CMM where all characters in the

word are translated into the bit vector.

4.9.1 Modularity

One possibility would be to alphabetically divide the lexicon into subsets of
40,000 words (first 40,000 words alphabetically, second 40,000 words etc) and
train each 40,000-word block into a separate CMM. We could use a series of bits,
one for each CMM, in the word vectors to denote in which CMM that word is
stored. We could then search the CMMs in parallel and each CMM would have
a maximum best match retrieval time of 2 seconds. This option would not
generate any false positives as each separate CMM would generate only correct
matches, the word vector output vectors would still be orthogonal. However,

all CMMs would need to be memory resident to enable parallel searching for

112



spelling matches so this may be infeasible for some computer systems due to the
total memory use. Furthermore, all CMMs would need to be memory-resident,
as we cannot know in advance in which CMM the correct spelling is stored.
If memory conservation is not of overriding importance then this option will
provide the quickest retrieval due to the parallel search capability and the guar-
antee of no false positive matches. The other two options postulated here both
generate false positives that need to be validated in a post-match verification

step.

We could also subdivide the word-document CMM equivalently using the 40,000
word blocks. Each word-document CMM would have an input size of 40,000
and an output equivalent to the number of documents. This subdivision would
speed the document retrieval phase as smaller CMMs are faster for matching
than a single large CMM as tabulated in table 4.15. Only the word-document
CMMs that are necessary for matching need be memory resident, i.e., those
that contain the words to be matched and known in advance if we use bits in
the word vectors to index the relevant CMM. The spelling CMMs would feed

directly into the corresponding word-document matrices in a 1-1 mapping.

4.9.2 Compression

An alternative solution using a single spelling CMM but reducing its memory
overhead is to use a compressed vector representation, reducing the width of
the CMM by employing output vectors with multiple bits set to represent each
word. There would be insufficient output vector attributes in the compressed
CMM to permit an orthogonal representation with a unique attribute denoting
each word. The word-to-document matrix could also use the same word vec-
tor representation for simplicity and ease of use, allowing the memory usage
for the word-to-document matrix to be reduced accordingly as the input vector
dimensionality will be reduced due to the word vector compression. Using mul-
tiple bits set in the vectors nullifies the storage advantage of compact bit vector
CMNMs so a binary bit vector CMM representation is preferred. For example, a
two-bits set vector doubles the number of bits set for each output vector trained
into the CMM during the learning phase. There will be a degree of overlap
between the output bit vectors forced by the multiple bit set representation,
only orthogonal vectors guarantee zero bit overlap, i.e., the same bit is never
used more than once in different vectors. Thus, the total number of bits set for
the spelling CMM will not be exactly double the number of bits set for the con-
ventional orthogonal efficient CMM. However, the increased number of bits set
on each row negates the storage efficiency of using compact CMMs or efficient
CMDMs that switch between compact where only the list of bits set is stored and
binary bit representations where all bits are stored for the rows. The bit set list

for the compact form becomes too long to introduce any storage gain and the

113



efficient CMM reverts to a binary representation for all rows.

However, using multiple-bits set output vectors introduces a storage gain for
binary CMMs compared to orthogonal vectors as the bit vectors are shorter
than the equivalent orthogonal bit vectors so there are less columns in the
CMM reducing the size and thus the CMM storage requirement. The number
of binary bits that need to be stored for each row is vastly reduced and thus the
overall storage of the binary CMM is reduced compared to a binary CMM with
orthogonal output vectors. For example to store 1,000 words in orthogonal bit
vectors requires a 1,000 dimension bit vector with a unique attribute for each
word. The equivalent two-bit set vector need only be 46-dimensional as there
are C3% = 1035 different combinations of two bits set in a 46-dimensional vec-
tor. We note that 46 is the theoretical minimum dimensionality. The practical
minimum dimensionality would in fact be higher to prevent too high a degree
of overlap between the word vectors and thus prevent too many false positive
matches being retrieved. Turner and Austin [105] investigated the performance
of binary CMMs with non-sparse vector encoding and introduced probability
distributions for modelling storage overlap due to the superpositioning of stored
vectors and false positive matches due to the overlap of output vectors. The
probability information may be used to determine the chance of false matches
and an optimal representation size for vectors and CMMs may then be selected
according to the system resources available and the maximum acceptable level

of false positive matches.

There is a point where a binary CMM with multiple bits set becomes more
efficient with respect to storage than the compact equivalent with orthogonal
outputs as there are many more columns in the orthogonal CMM and this in-
creases the storage too much. However, the switch point is very complex to
calculate for any specific dataset, as we cannot know beforehand the degree
of overlap of the bits in the associations to be stored in the multiple-bits set
CMM. We do not have prior knowledge of the spelling-word associations to be
stored and we can only generalise. An empirical evaluation would be necessary
using the theoretical framework introduced in Turner and Austin [105] to pin-
point the most suitable configurations, comparing the configurations’ respective
storage overheads and selecting the most efficient configuration with respect to
the specific dataset, the level of false positive matches deemed acceptable for
the system and the system resources available. This optimal multiple-bit set
representation could then be compared for storage overhead and retrieval time

against an orthogonal representation.

Using multiple bits set inevitably introduces the problem of false positive matches

due to bit clashes and introduces the necessity of a post-match back-check to

114



eliminate the false positives. Knuth [57] details superimposed coding and the
intrinsic problem of false positives. For example if we use two-bit set vectors

and we have the following three bit vectors each representing a unique word:
A: 10001000 B : 01001000 C': 01000100 (4.16)

If the superimposed thresholded output bit vector from the spelling CMM is:
output : 11001100 (4.17)

The output vector could denote A4+C or A+B+C. We would need to validate A,
B and C against the input to establish the correct matches. This introduces an
extra step into the matching procedure that slows the process. The three words,
A, B and C may in fact be very similar and difficult to separate. We cannot
possibly anticipate the false matching words or documents using this approach
as they are totally dependent on the input to be matched, for example an input
word may match 50% of the documents and the matching document vectors may
overlap to form many false positives so separation of the superimposed output
vectors may be difficult and slow due to many false positive matches. We can
model the general framework for false matches as in Turner and Austin [105] but
the specific false matches will vary greatly according to the inputs used. Turner
and Austin assume a generalised number of query words and a generalised partial
match level to generate the distribution model. In the approach described next,
we are able to completely control the false positives produced with each correct

match and can guarantee simple and efficient separation.

4.9.3 Binning

Our preferred option if memory conservation is of paramount importance is to
employ ‘binning’ as with Cavnar’s system [18] with single bit set (orthogonal)
vectors. The technique is also closely related to Aho and Ullman’s Address
Generation Hashing [1], described in section 5.1 and the superimposed coding
techniques also detailed in section 5.1. Cavnar uses binning to represent multi-
ple n-grams but we prefer to bin words. Binning maintains orthogonal vectors
which preserves the storage advantage of efficient CMMs as there are few bits
set in each CMM row and thus the bit set list to be stored is minimal. Bin-
ning with orthogonal output vectors should have a lower storage requirement
than using multiple bits set output vectors as we can use efficient CMMs with
their intrinsically lower storage requirement switching between the most storage
efficient method as opposed to the binary representation required for multiple
bits set that stores all bits in each row. Another advantage of binning is that
we will get the correct match plus the remaining words from the bin, which we
can control, rather than the uncontrolled false positives of multiple bit set false
positives. We can use a post match back check to verify the correct word from
the bin.

115



If we can have an orthogonal output vector size of 40,000 for a guaranteed
2-second maximum retrieval then we would need to have 25 words in each bin
for a 1 million word lexicon. Therefore, 25 words map on to each bit (there
are 25 words in each bin and each bin is represented by an orthogonal vector).
The approach equates to superimposing the 25 separate CMMs of our first rec-
ommended option on top of each other. If we ensure that the 25 words in the
bin are very different, with different lengths and different constituent charac-
ters we can simplify the back check. For each bit set in the thresholded output
bit vector, all words in the bin are retrieved as matches to be verified and we
can easily distinguish the correct match from the 25 words retrieved from each
bin. As there are only 25 words to match against the input we can perform
a character-based comparison relatively cheaply, for example, using Edit Dis-
tance as the words are very dissimilar the correct match from the bin should
be easily retrieved. It is also a relatively simple procedure to form the bin sets.
If we sort the input lexicon into alphabetical order then we can train each con-
secutive word in to each consecutive bin in a ‘round-robin binning’ technique.
This assumes that word length and the constituent characters of the words are
randomly distributed through the alphabetically sorted list, which we feel is a
reasonable assumption. It should also ensure dissimilarity in the bin sets. We
assume that similar words tend to occur close to each other alphabetically so
these will be spread across the bins before we cycle back to the first bin during

round robin binning.

4.10 Conclusion

Spell checkers are somewhat dependent on the words in the lexicon. Some words
have very few words spelt similarly, so even multiple mistakes will retrieve the
correct word. Other words will have many similarly spelled words so one mistake
may make correction difficult or impossible. Of the techniques evaluated, our
hybrid approach had the joint highest recall rate at 93.9%. Humans averaged
74% for isolated word-spelling correction [63] (where no word context is included
and the subject is just presented with a list of errors and must suggest a best
guess correction for each word). Kukich [63] posits that ideal isolated word-error

correctors should exceed 90% when multiple matches may be returned.

There is a trade-off when developing a phonetic spell checker between including
adequate phonetic transformation rules to represent the grammar and maintain-
ing an acceptable retrieval speed. To represent every possible transformation
rule would produce an unfeasibly slow system yet sufficient rules need to be in-
cluded to provide an acceptable quality of retrieval. We feel that our rule base

is sufficient for the spell checker that we are developing as the phonetic module

116



is integrated with alternative spelling approaches (n-gram and Hamming Dis-
tance). We cannot account for exceptions without making the transformation
rule base intractably large; we have mapped sc(e|ily) — s which applies with
the exception of sceptic pronounced skeptic. However, we feel our recall and
coverage are generally high for the system developed and that the combination

of the three methods should overcome any limitations of the individual methods.

Our exact match procedure is very rapid and independent of the length of the
input spelling. The best match process is slower because the shifting triple is
slower. However, we feel the superior quality of the shifting triple and the lower
memory requirement as compared to the regular 3-gram offsets the lower speed.
Our tripling approach exploits the spelling-word matrix used for the Hamming
Distance match and also allows the value of n to be varied according to the
length of the misspelt input. To implement variable length n-grams with the
conventional n-gram approach would require three CMMS, one for the 1-gram,
2-gram and 3-gram increasing the memory requirement and the additional Ham-

ming Distance CMM would also need to be stored.

For our system evaluation in this thesis detailed in chapter 6, the lexicon is
approximately 40,000 words so we can maintain orthogonal vectors. For the
spelling module we maintain a dual CMM representation, a spelling CMM and a
complementary phonetic CMM. When MinerTaur develops to encompass larger
datasets we will need to employ a more efficient representation with respect to
retrieval time and memory overheads. From our discussion in this chapter, the
solution chosen will depend on various hardware parameters of the underlying
computer such as available memory. We will therefore choose the best option,

either binning or multiple CMMs as hardware limits dictate.

A possible improvement to our spelling module would be to add a facility to
handle the UNIX wildcard character ‘*’ to allow more flexible word matching
for the user. We have already implemented the UNIX ‘?’ convention of allowing
any single character to match. However, the wildcard is more complicated as the
letters in the spelling do not align with those in the matches, for example, ‘el*t’
would match ‘elephant’ but only two characters are aligned and there is a large
difference in the lengths. We could not use the Hamming Distance approach
due to the non-alignment. We would also be limited with our shifting n-gram
as this shifts along the length of the input spelling so ‘el*t’ would not match
elephant if we restricted the length of the shifting. However, shifting along the
maximum possible length (30 characters) is not really an option as the shifting
would be slow and was not implemented with this facility in mind. We have
acknowledged that it can be slow for long words but as most words in common

usage are twelve characters or less, for example most words in this chapter, we

117



adopted the higher recall and lower memory overhead of the shifting n-gram as
opposed to the higher speed of the non-positional n-gram. The phonetic spelling
again aligns the phonetic code characters so this would not allow matching for
wildcards. If we were to implement the wildcard in a CMM we would need the
standard non-positional n-gram as this allows n-gram matching anywhere in the
lexicon word up to the maximum length of 30 characters. This would require
an extra CMM to store the n-gram binary vectors and lexicon word associations
and thus introduce a higher storage overhead. A more feasible alternative would
be to exploit the Unix ‘grep’ facility or possibly ‘Agrep’ as both allow wildcard
matching, are fast and do not store the lexicon during processing so impose only

a minimal storage overhead.

118



Chapter 5

AURA Word-Document

Association Data Structure

Many computational implementations require algorithms that are storage ef-
ficient, may be rapidly trained with data and allow fast retrieval of selected
data. IR requires the storage of massive sets of word to document associa-
tions. The data structure must allow the documents matching query terms to
be retrieved using some form of indexing. This inevitably requires an algorithm
that is efficient for storage, allows rapid training of the associations, fast re-
trieval of documents matching the query terms, allows new associations to be
added without a recompilation of the entire data structure and additionally,
permits partial matching (M of N) query terms where M < N and N is the
total number of query terms and M is the number of those terms that must
match. Many methodologies have been posited for storing these associations,
see for example [57]: including inverted file lists, hash tables, document vectors
and superimposed coding techniques. In this chapter, we only compare ‘Per-
fect’ techniques, i.e. those that preserve all word to document associations as
opposed to ‘Imperfect’ methodologies such as Latent Semantic Indexing (LSI)
[30] which compresses a document vector matrix to reduce the storage overhead
but factors out many word-document associations in the resultant compressed

representation.

5.1 Introduction

A representation strategy used in many systems is document vectors. There
are various adaptations of the underlying strategy but fundamentally, vectors
that have an attribute for each word in the corpus represent the documents.
The document vectors form a matrix representation of the corpus with one row
per document vector and one column per word attribute. For binary document

vectors, used in for example Koller & Sahami [61], the weights are Boolean so if

119



a word is present in a document the appropriate bit in the document vector is
set to 1. The matrix may also be integer-based as used in Goldszmidt & Sahami
[43] where wjj, represents the number of times word; is present in documenty,.
By activating the appropriate columns (words) the documents containing those
words may be retrieved from the matrix. LSI decomposes a word-document
matrix to produce a meta-level representation of the corpus with the aim of cor-
relating terms and extracting document topics. LSI reduces the storage using a
factor analysis algorithm called Singular Valued Decomposition (SVD) [30]. Al-
though this serves to reduce storage it also discards information and compresses

out the word-document associations we need for our evaluation.

There are alternative hashing strategies (as compared to the standard hash
structure evaluated in this chapter). They are aimed at partial matching and
minimise file accesses to speed retrieval by pre-selecting matching records or
groups of records but tend to retrieve false positives (documents appear to
match that should not) and are thus ‘Imperfect’. The techniques are similar
to the Binning technique we recommended in chapter 4 to accommodate large
lexicons and large numbers of word-document associations. There may be in-
sufficient dimensions for uniqueness in hashing so many words may hash to the
same bits and thus false matches will be retrieved. The extra matches then have
to be re-checked for correctness and the false matches eliminated thus slowing

retrieval. They are described in [56] and include:

Address Generation Hashing. Each document is subdivided into n fields of
words. A separate hash function is applied to each distinct word field
to produce a hash key (binary address) for the document. Each word in
the corpus activates pre-determined bits in the binary document address.
The document corpus is subdivided into equal size subsections (buckets)
by grouping all documents that hash to the same binary address. During
access, a binary address is generated from the user query by hashing the
fields. The binary address of the query is used to index the buckets and
identify any buckets (groups of documents) relevant to the query. All
documents within the relevant buckets are checked against the query in
a finer-grained match to determine the best matching document. Any
bits not set in the query are assumed to be multi-mode both 1 and 0 so
2% x R where z is the number of unknown bits and R is the number of
items per bucket will be retrieved and checked. A large amount of items
are retrieved where many are false positives that have to be back-checked
for correctness thus slowing retrieval by a significant degree. There may
be insufficient attributes for uniqueness so many words may hash to the
same bits. Determining the optimal size for the fields is NP hard. (See
also [1]).

Hashing with Descriptors A hash code is generated for each attribute of a

120



record to be stored. The hash codes are then concatenated to produce a
vector representing the record. Records are subdivided into groups (pages)
and the record vectors are bitwise ORed to produce a page descriptor, a
fixed length vector determined by the records in the page. The pages do
not need to be stored contiguously on physical storage. During a user
query, the page descriptors are checked to verify if any records match
the query. Only the pages matching the query vector are accessed. Ra-
mamohanarao et al. [81] demonstrated that hashing with descriptors has
a significant performance advantage compared to standard hashing such
as the hashing scheme evaluated in this chapter. Though hashing with
descriptors produces less false positives than address generation hashing
it still requires a time consuming back-check of the documents retrieved

to eliminate false matches. (See also [81]).

There are also superimposed coding (SIC) techniques (described in [56]) for hash
table partial matching applications but again these are ‘Imperfect’ and tend to

over-retrieve, for example:

One-Level Superimposed Coding One vector is generated for each docu-
ment by converting the constituent words into unique vectors with k& bits
set where k is pre-specified. The vectors from all of the document’s words
are bitwise ORed to produce a single vector representing the document,
the signature. Signature files have a lower storage requirement than com-
parative inverted file lists evaluated in this chapter. The document sig-
natures are stored using a ‘bit-slice’ mechanism, where the first bits of all
document vectors are stored contiguously, then the second bits of all doc-
ument vectors and so on. This reduces the cost of retrieval as the query
bits can be compared with the stored document vectors in bit order, iter-
atively eliminating unmatched objects. However, the retrieval speed gain
introduced by bit-slicing is at the expense of incrementality. The storage
cannot be augmented with new document vectors so the bit-sliced storage
structure would need to be rebuilt and stored again. Additionally, there
will be false positives retrieved as the approach uses multiple-bit set, word
vectors and a back check of the retrieved documents is required making
the process significantly slower and computationally expensive. (See also
[85]).

Two-Level Superimposed Coding The document signatures are generated
as with one level SIC. The set of all document signatures is then subdivided
into fixed length partitions (blocks). A descriptor vector is constructed for
each block by bitwise ORing the attribute vectors of the indexed words
from all documents in the block. This block descriptor vector is larger
than an individual document vector but much smaller than the sum of

all document vectors in the block. A block descriptor vector thus has a

121



lower storage overhead than the individual document vectors in the block.
The query vector is generated by bitwise ORing the attribute vectors for
the query words. The query vector selects the appropriate blocks for any
matching documents. The query vector is then applied to the retrieved
blocks to select the appropriate documents. However, again a post match
back check of the documents retrieved is necessitated due to false positive
matching. (See also [90]).

We wish to avoid the information loss inherent in LSI and also the false positives
of SIC with their intrinsic requirement for a post-match re-check to eliminate
false matches. Therefore we concentrate on ‘Perfect’ lexical techniques. We
analyse an inverted file list used in Agrep [115], [114] and a slightly more
sophisticated version of which is used in both the Google search engine [10] and
in Inquery [15]), against hash tables used by Higgins [44] - in this chapter we
evaluate two hashing functions, against the binary associative memory of
AURA described in [5] and chapter 3. We implement a novel binary matrix ver-
sion of document indexing using AURA where the word-document associations
are added incrementally and superimposed so new associations may be added as
and when required. Incremental knowledge addition, the ability to incorporate
new data in to the existing data structure without an entire recompilation, is
a key requirement of an IR indexing technique as identified in the Introduc-
tion in chapter 1. In AURA training requires only a single-pass through the
word-document association list and is incremental with new associations simply

incorporated into the binary CMM.

In all cases we evaluate the algorithms in their standard form without any so-
phisticated improvements to provide a valid comparison of the approaches. We
evaluate the algorithms for storage use; training speed!, retrieval speed, and
partial matching capabilities. Knuth [57] posits that hash tables are superior
to inverted file lists with respect to speed but the inverted file list uses slightly
less memory. Knuth also details superimposed coding techniques but focuses on
approaches with multiple bits set as described above, which inevitably generate
false positives. We implement orthogonal single-bit set vectors for individual
words and documents that produce no false positives. AURA may be used in
‘Imperfect’ mode where multiple bits are set to represent words and documents,
this reduces the vector length required to store all associations but generates
false matches as described previously and in Knuth [57]. In this chapter, we
focus on using AURA in ‘Perfect’ mode as the size of the dataset evaluated
permits both orthogonal input and output vectors. Orthogonal vectors produce

perfect retrieval; there are no false positives so we do not require a back-check

ltraining time and thus speed is implementation dependent. To minimise variance, we
preserve as much similarity between the data structures as possible particularly during training
- see section 5.2 (subsections 5.2.1, 5.2.2, 5.2.3 and 5.2.4) for details

122



procedure to validate the matches as the extra elimination step would increase

the retrieval time.

For our evaluation we use the Reuters-21578 Newswire text corpus [82] as the
dataset is a standard Information Retrieval benchmark. It is also large, consist-
ing of 21,578 documents with on average approximately 100 words per docu-
ment. This allows the extraction of a large set of word-to-document associations
for a thorough evaluation of the algorithms. We discarded any documents that
contained little text and any documents that were repetitions of previous doc-
uments. After pruning 18,249 documents remained that were further tidied to
leave lower-case alphabetical and six standard punctuation characters only. All
alphabetical characters were changed to lower case to ensure matching. We felt
numbers and the other punctuation characters added little value to the dataset
and are unlikely to be stored in an IR system. We left 6 punctuation characters
as control (verification) values. We extracted all 9,491 remaining words includ-
ing the six punctuation symbols ” : ; & () from the 18,249 documents and
derived 1,230,893 word-to-document associations. We created a file containing
the document IDs, which are represented by integers indexed from 0 to 18,248,
and a list of each word that occurs in that document. The word-document as-
sociation is binary, we only store whether a specific word occurs in a specific

document and we do not store a word frequency figure.

The fractions of documents that contain each individual word are shown in
the graph (see figure 5.1). The minimal fraction is 0.000055 (1 document) and
the maximal fraction is 0.8138 (14,850 documents). There is an even distribu-
tion of common and uncommon words when the words are sorted alphabetically.
Hence, when we extract the first 100 words and every 50th word from the alpha-
betical list we should extract a representative sample of common and uncommon

words correlated with the overall distribution.

We analyse the three data structures for multiple single query term retrievals
and also for partial match retrievals where documents matching N of M query
terms are retrieved. We assume that all words searched are present; we do not

consider error cases in this chapter, e.g., words not present or spelling errors.

5.2 Data Structures

5.2.1 Inverted File List (IFL)

For the inverted file list compared in this chapter, we use an array of words,
sorted alphabetically and linked to an array of lists. This data structure min-
imises storage and provides flexibility. The array of words provides an index

into the array of lists (see figure 5.2 and section A.1.2 for the C++ implemen-

123



Graph of the Word Frequency
09 T T T T T T T T T

0.7 |- —

0.6 |- —

05 | —

+H

o

=

o

=

j=2)

£

£

o]

=

c

[]

o

8 +
8 04} N + + i
—
o
o
2
S
o
©
=
w

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Words

Figure 5.1: Diagram showing the fraction of all documents that contain each
word. Each word has an integer ID indexed from 0 to 9,490 according to its

position in the alphabetically sorted list of all words.

tation). A word is passed to an indexing function (binary search through the
alphabetically sorted array of words) that returns the position of the word in the
array. The document list stored at array position X represents the documents
associated with the word at position X in the alphabetic word array. The lists
are only as long as the number of documents associated with the words to min-
imise storage but yet can easily be extended to incorporate new associations.
The document ID is appended to the head of the list for speed, appending at the
tail requires a traversal of the entire list and thus slows training. The approach
requires minimal storage for the word array (the array need only be as long as
the number of words stored as compared to the hash table below, for example,
that requires the word storage array to be only 50% full) but additions of new
words would require the array to be reorganised alphabetically and the pointers
to the array of lists updated accordingly. The retrieval of the index into the
array of lists, binary search, is O(log n) so the design of the data structure is a
trade-off between minimising storage but providing slower access, in comparison
the hash table below is O(1) for access.

The inverted file list achieves partial matching through the addition of a supple-
mentary data structure - an array of documents and counters. In this chapter,
the documents were identified by integer IDs so we exploit this to provide an

index into an array of counters that count the number of words matched by

124



Alphabetically ordered array of words

Array of p(;i‘nters tolists

Figure 5.2: Diagram showing the inverted file list data structure. We imple-
mented two separate, linked data structures to preserve similarity between this
data structure and the hash table structure. The speed of training and retrieval
are dependent on implementation. By maintaining similarity, we attempt to
eliminate as many differences as possible to permit comparisons between the

different data structures.

each document. The counter stored at position ID is the number of times that
document ID has been retrieved. During retrieval, each time a document is
retrieved from the document list of a query word, the corresponding document
counter is incremented. A single pass through the array, once retrieval is com-
plete, will retrieve the documents that have matched the required number of
words (N of M).

For the inverted file list, the training time was the time to input the words into
the alphabetically sorted word array and the time to add the word-document
associations, i.e. to add the document IDs to each respective word’s linked list.
The memory used equals the size of the word array plus the size of the array of
lists. For the partial match an additional data structure, an array of document
counters, was incorporated so the memory usage for partial matching is also

given.

5.2.2 Hash Table

The hash table employed in this chapter is used to maximise the retrieval speed
of the documents associated with a particular word. An array of words is again
linked to an array of pointers to linked lists (see figure 5.3 and section A.1.3 for
the C++ implementation) to minimise storage and maintain flexibility while a
hash function generates the indices. A hash function determines the location at
which a given item is stored based on some attribute of the item to be stored.
This computed location is called the item’s hash value. To insert a new item

into the hash array, it is necessary to compute the hash value of the item. If

125



e o N ™ R
]
[ e S S N
[ ] [ ] [ ) [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ) [ ]
e N .

Hash array of words N
indexing into an array of pointersto lists

Figure 5.3: Diagram showing the hash table data structure.

this location is empty, the new item can be inserted. However, if this location
is already occupied (a collision), an alternative strategy must be used. The
complexity of an ideal hash operation with no collisions is constant time ©(1).
The worst-case upper bound for the hash operation complexity is O(n) as the
table fills. The price for such a speed up is memory usage. The hash table
used in this chapter degrades as the table fills and thus must be kept less than
50% occupied otherwise there are too many collisions degrading both retrieval
and insertion speeds through the additional calculations that must be employed.
There are two methods for handling collisions known as collision rules; they are

Open Addressing (also known as Chaining) and Closed Hashing.

e In Open addressing, each hash location is a pointer to a linked list. All
items that hash to a particular location are added to the location’s linked
list. The approach is not feasible for the data representation required
in this chapter. We must have a unique hash location for each word
to indicate which documents belong to which words. We would need to
store both the words and the documents as two attribute records in the
list to identify the associations. This would waste storage space and slow
retrieval as the algorithm searched through the entire list of all documents
in the chain where many may be associated with the other words in the

word chain.

e In this chapter we use closed hashing where no more than one item is
stored at each hash location. The collision rule generates a succession of

locations until an empty array item is discovered.

It is desirable, for efficiency reasons, to have as few collisions as possible. To
achieve this, we employ an initial hash function that is not pre-disposed to
favour any particular location or set of locations. We want to spread the hash
values across the array as evenly as possible to minimise collisions and prevent
clustering [24]. This is most easily achieved if the hash function depends on

all parts of the item, computing a large integer value from the item, dividing

126



this integer by the table size, and using the remainder as the hash value. We
evaluated three common hash functions for strings given in equations 5.1 and
5.2 and the C code below, where a[n] is the character string of length n and a[0]

denotes the first character’s ASCII value, a[1] the second and so on:
al0]* 1 +a[l] *x2+a[2] *3+ .... + a[n — 1] xn, (5.1)
al0] 2% + a[1] * 2' + a[2] ¥ 2% + .... + a[n] x 2" (5.2)
and Horner’s rule given below in C code (adapted from Sedgewick [98]).

1 unsigned hash:: horner(char * word)

2 {

3 for (sum=0; *word; word++){

4 sum = (sum*131) + *word;

5 }

6 return (sum \% hashTableSize);
7 }

Horner’s Rule produced the least number of collisions of the three func-
tions during insertion of 9,491 words into the hash table. We then empirically
evaluated Horner’s rule and found a factor value of 131 (line 4) minimised the
collisions during insertion. We selected a hash table size that was a prime num-
ber to ensure that the modulo function (%) is not followed by an integer with
small divisors. If the integer has small factors then the hash algorithm will be
pre-disposed to clustering [3]. We selected the prime number 20,023 for the
table size, as this was the first prime number greater than double the length
of the word list (to ensure the hash table is less than 50% full). It also has
(hashTableSize — 2 = 20,021) as prime. This ensures the hash increment (de-
scribed below) does also not have any small divisors. If hashTableSize and
hashT ableSize — 2 are not relative primes at the least, they will have a greatest

common divisor (ged) and only gﬁ of the table will be probed (see [24]).

There are various methods that may be used to generate additional locations if
a collision occurs at the hash value location: Linear probing, Quadratic probing

and Double hashing.

e Linear probing, the next available space is allocated to the item whose

hash value caused a collision. The approach tends to cause clustering.

e Quadratic probing, this method iteratively generates locations exponential
distances apart until a free location is discovered; the offset quadratically
depends on the probe number. Again this method tends to cause sec-
ondary clustering and bouncing. Quadratic probing is not guaranteed to

find an empty cell even if one exists (see [24]).

127



e Double hashing is used for our investigations. Double hashing computes
a displacement directly from the key using another function of the key
and adds this displacement to the table position until a vacant position is
found. The C code is given below where sum is the value returned from

the Horner function listed above.

unsigned hash:: hashIncr(void)

{
return 1 + sum \J, (hashTableSize-2);

For double hashing, Q(n?) displacements are produced rather than Q(n)
for linear or quadratic probing improving the algorithm’s performance

(more possible free locations are examined), see [24].

Again for partial match we employ the additional document data structure
used for the inverted file list. The training time was the time to input the words
into the word hash array and then to add the word-document associations by
prefixing the document IDs to their respective lists. The memory used is the
size of the word array (50% full) plus the size of the array of lists (50% full). For
the partial match an additional data structure was incorporated so the memory

usage for partial matching is again given.

5.2.3 Two Stage Hashing - Hash Table Compact

The previous hash table in section 5.2.2 used a word array and a list array that
were both only 50% full thus wasting storage. For comparison, we utilise the
data structures from the previous hash table algorithm. However, we compact
the array of lists so that all array locations are used (see figure 5.4 and appendix
A.1.5 for the C++ implementation). The initial hash array of words stores both

n
><EE

1 Iniiil

Hash array of words with pointersto list array Iocauons,
indexing into an array of lists

Figure 5.4: Diagram showing the hash table data structure. The integer location
of the word’s list is stored with the word in the first data structure and may

then be used to access the contents of the list.

128



the word and an integer identifying the location of the word’s document ID list
in the list array. When the word string is passed to the hash function, the string
is hashed and an integer retrieved from the hash location giving the location
of the document list in the list array. The documents may then be read from
that location. The complexity of the algorithm is identical to the previous O(1)
degrading to O(n) for inserting a word into the word array or retrieving the
location of the word or its associated document list. We compare the two data
structures for memory use, training speed and retrieval speed. We evaluate the
additional overhead of storing an integer to point to the word’s document list
versus storing only the word but requiring gaps in the array of lists (empty array

elements) for the previous hash table.

Again for partial match we employ the additional document data structure used
for the inverted file list. The training time was the time to input the words into
the word hash array and then to insert the document IDs of the word-document
associations in to their respective lists. The memory used is the size of the word
array (50% full) plus the size of the array of lists (100% full). For the partial
match an additional data structure was incorporated so the memory usage for

partial matching is again given.

5.2.4 AURA

The words form the inputs and the documents form the outputs of the binary
matrix. Each word in the word list is represented by a unique m-dimensional
orthogonal (single bit set) binary vector where m equals the number of words
in the list. The first word’s vector has the first bit set and the last word in the
word list has the last vector bit set (see equation 5.3). We can then use the
word list as an index, setting the bit in the binary vector that correlates to the
word’s position in the word list. The documents are represented likewise with
n-dimensional single bit set binary vectors, the first document’s vector has the
first bit set through to the last document’s vector has the last bit set where n
equals the number of documents (see equation 5.3). We can use the document TD
(integer) as an index to identify which bit to set in the document binary vector

during training and also to identify the matched documents during retrieval.

bitVector? = p'"bit set; Vp where p = position{words} or p = position{documents}
(5.3)

We require a ‘Perfect’ recall technique as stated in the ‘Introduction’ 5.1. Or-

thogonal vectors ensure that unique vectors identify all words and all documents.

Orthogonal vectors ensure that the CMM does not return any false positives,

i.e., any erroneous matches. If more than one bit is set in the input vectors or

output vectors then we can get bit clashes and false positives will be returned

from the system as with the alternative hashing and superimposed coding ap-

proaches listed in the ‘Introduction’ and [57].

129



For the word-to-document matrix we use Compact Bit Vectors (CBVs, see chap-
ter 3) as only one bit is set in each word or document binary vector. Therefore,
this representation is the most storage efficient for the word or document or-
thogonal binary vectors as only one position index is stored in the list. We use
efficient CMMs with a switch value of 300, if more than 300 bits are set the
CMM row is stored as binary otherwise it will be stored as compact. We em-
pirically derived the optimal switch value where the CMM memory usage was
minimal. A comparison of the memory usage of the CMM using binary CMMs,
compact CMMs and efficient CMMs (see section 3.1.2) is provided in the results

section (see section 5.4.1).

Training the Network

The binary patterns representing the tokens are input to the network and the
binary patterns for the documents form the outputs for the CMM in a single
epoch supervised training process. The training process is 2(n) as there is
one association in the CMM per word-document pair producing a total of n

associations.

Recalling from the Network

For recall only the required word vector is input to the network. If more than
one word needs to be match then the required word vectors are superimposed

and the superimposed vector is input to the network. The columns are summed

all ¢

output; = Z input; A wy; (5.4)

and the output of the network thresholded to produce a binary output vector

(see figure 5.5). The thresholded output vector represents the superimposition

Here the input spelling is shown with 4-bit
chunksfor simplicity. Thewordisa?2 letter
word with 1 bit set in each chunk. To match
exactly, we set the Willshaw threshold to 2
to identify any lexicon words that match both
charactersin the relevant positions.

‘ooo»—\oo»—lo‘

02000100 \ Activation - 2 input bits set: threshold at 2

‘ 01000000 ‘ Output pattern after thresholding

Figure 5.5: Diagram showing system recall. The input pattern has 1 bit set so
the CMM is thresholded at 1.

of the matching documents trained into the network. We use the Willshaw

threshold (see [5]) set to the number of matches required for example if ten

130



words are input but we only need to match seven then we threshold at 7, (see
figure 5.5). The Willshaw threshold sets to 1 all the values in the output vec-
tor greater than or equal to a predefined threshold value (seven in the example
described above) and sets the remainder to 0. We can identify the matched
documents by retrieving a list of the bits set in the thresholded output vector.
Each bit set is the ID of a document (represented by integers). The time to
retrieve the matching documents is thus proportional to the number of bits set
in the output vector ©(bits set), there will be one matching document per bit

set for orthogonal (single bit set) vectors.

The training time was the time to input the words into the word array, read
in the list of documents and to store the word-document associations in the
memory matrix. The memory used equals the size of the word array plus the

size of the document array plus the size of the memory matrix.

5.3 Analyses

All analyses were performed on a SGI Origin 2000 with the following specifica-

tions (taken from the IRIX hinv command):

e 32 X 180 MHZ IP27 Processors
As in chapter 4, the 32 processors allow us to run our evaluations in
parallel, with one identical evaluation of each data structure running on
a separate processor simultaneously (4 processors in total) to provide an
identical system state for each data structure (IFL, hash, hash compact,

CMM) during each separate evaluation and thus minimise timing variance.

CPU: MIPS R10000 Processor Chip Revision: 2.6

FPU: MIPS R10010 Floating Point Chip Revision: 0.0

e Main memory size: 8,192 MBytes

Instruction cache size: 32 KBytes
e Data cache size: 32 KBytes

All data structures were compiled with the CC compiler using -Ofast (fast bi-
naries) and -64 (64-bit) - the AURA library requires 64-bit compilation so we
compiled the other data structures likewise for consistency. If the code had been
compiled as 32-bit for the inverted file list and hash tables the memory usage
would be less, the actual values are given in section 5.5.1 for comparison. The
algorithms were run with the command runon z <algorithm> and one identical

evaluation for each data structure was run in parallel.

The following analyses were performed on the data structures:

131



1. The memory usage for each algorithm was calculated using the C/C++

sizeof() utility.

2. The training time for each algorithm was calculated using the C/C++

clock() function. We described the components of the training time in the

description of each data structure.

Serial Match - the words are matched one at a time with the matching

documents retrieved after each word match. A canonical list of all words

occurring in 10 or more different documents was generated and sorted

alphabetically. For all data structures an identical output (the word to be

matched and the list of matching documents) was generated. Two serial

match investigations were run on each data structure.

(a)

For each of the first 100 words in turn taken from the alphabetically
sorted canonical list, retrieve the matching documents (all documents
that contain that word). This provides an iterative analysis:

word; — {matching documents}, then

wordy — {matching documents}., then

wordigo — {matching documents} .

The graph is given in figure 5.6. As each word is read, the matching
documents are retrieved and written to an output file, then the next
word is retrieved and matched etc. For all data structures the out-
put to the file is identical. We read all words in to an array of words
then read the first 100 words from the array using a ‘for’ loop. Ob-
viously we could have just read the first 100 words from the file but
to maintain consistency with the next evaluation we employed the
array here (we need to retrieve every 50th word from the alphabeti-
cal list of all words and hence need to read in the entire list for the
next evaluation). This analysis aims to evaluate the access speed of
each data structure and should favour the hash table as the first 100
words are less likely to have suffered collisions. The hash table was
virtually empty as these words were being inserted therefore the re-
trieval time will be approximately 2(1). The entire 100-word match
was performed ten times consecutively and the overall average time

calculated as averaging should eliminate any timing fluctuations.

Retrieve the documents that match every 50th word in the canonical
word list in turn (iterative).
wordsg — {matching documents}, then

wordgo — {matching documents},,, then

wordgasg — {matching documents}y,..
This matches the documents against 189 words (9,491 words /50).

132



We select every 50th word as the graph of the number of words in
each document is similar to the graph for the ‘first 100’ word retrieval
(see figures 5.6 and 5.7). This second analysis aims to negate any bias
present in the first analysis, for example, using the first 100 words
may favour the hashing algorithms as the first words to be inserted
in to the hash data structures will be less likely to collide, therefore
less hash table elements have to be probed to match these words,
thus speeding retrieval. Again all words are read from the word file
into an array and every 50th word is retrieved from the array in a
‘for’ loop. The matching documents for each word are written to an
output file in turn. This analysis will again evaluate the retrieval
speeds and should not favour any data structure as the words are
evenly spread through the alphabetically sorted list of words. The
match was performed ten times consecutively and the time averaged

for each of the ten retrievals.

4. Partial Match. For all data structures the output generated is identical to

maintain consistency. The following three partial match evaluations were

performed on each method.

(a)

Retrieve the documents that match at least 0, at least 1, ... at least 9
of the first 100 words taken from the alphabetically sorted canonical
word list. Figure 5.6 is a graph of the frequency distribution of the
first 100 words occurring in each document. There is only 1 document

matching at least 9 words so we cease partial matching at this value.

Retrieve the documents that match at least 0, at least 1, ... at least
9 of every 50th word taken from the alphabetically sorted canonical
list of words. Figure 5.7 is a graph of the frequency distribution of
the number of words occurring in each document taking every 50th
word of the alphabetical list of all words. Again there are only a
few documents matching at least 9 words so we maintain the same

evaluation values as with the ‘first 100’ evaluation.

Retrieve the documents that match at least 10, at least 11, ... at least
37 of the most frequently occurring words - the words that occur in
at least 20% of all documents. There are up to 38 words in the 20%
word set to match and from the graph (see figure 5.8) the documents

match between 0 and 38 words from this set.

5.4 Results

5.4.1

Memory Usage

The memory usage for each of the constituent sub-structures for each data

structure is given below (in bytes).

133



First 100 words from the alphabetical list of all words

14 T T T T T T T T T
12 -
10 + E
o -+ + + + + + + o+
o
©
c 8F ++ ++ + + B
2]
*'5 + 4 4+ + 4+ + + + ot R b
3
S 6 F AR W T AR A+ R + bt E
2
-t R R i -+ H-HiH- M -
A A0 BRI AL o B
N[ ST T
2 - -
0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Documents

Figure 5.6: Diagram showing the total number of the first 100 words from the
canonical word list present in each document. A word that occurs multiple
times in a particular document is only counted once for that document. Each

document has an integer ID.

1. Inverted File List Length: 9,491.
List memory use for all document lists is 9,847,144.
Array (array of lists) memory use is 75,928.
WordTable (array of words) memory use is 475,000.
Memory use for array of documents (counter for partial match) 73,000.
Memory use for array of words (to get every 50th word etc.) 474,550.
Total memory use is 10,945,622.

2. Hash Table Length: 20,023.
List memory use for all document lists is 9,847,144.
Array (array of lists with empty locations) memory use is 160,184.
WordTable (hash table of words length 20,023) memory use is 1,001,150.
Memory use for array of documents (counter for partial match) 73,000.
Memory use for array of words (to get every 50th word etc.) 475,000.
Total Memory use is 11,556,478.

3. Hash Table Compact Length: 9,492.
List memory use is 9,847,144. All three data structures have identical

memory usage for the lists.

134



Every 50th word from the alphabetical list of all words

14 T T T T T T T T T
I
12 B
+ + + +
10 + + + o+ + -
o H o+ o+ + + + o+ +
E 8 H+  HH e H+ + + B L o e E
'x'g b A A e e RES R R R R SN I et
*2 6 [t R - i R A - B
g I - - R R
4 _
2 -
0 A i i ; ) . " L\ \
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Documents

Figure 5.7: Diagram showing the number of words counted in each document
when taking every 50th word from the list of all words. Again, any word that
occurs multiple times in a particular document is only counted once for that

document. Each document has an integer ID.

Array (array of lists with length 9,492) memory use is 75,936.

WordTable (hash table of words with length 20,023) memory use is 1,121,288.
The memory use is higher than the hash table as this structure stores the
integers to indicate the word’s list.

Memory use for array of documents for partial match 73,000.

Memory use for array of words to get every 50th word etc. 475,000.

Total Memory use is 11,002,632.

4. CMM

e Binary - storing the CMM as a binary representation (see section
3.1.2).
CMM saturation is 0.007.
CMM uses 44,283,360 bytes. The memory usage is very high in

comparison to the other data structures.

e Compact -storing the CMM as a compact representation (see section
3.1.2).
CMM saturation is 0.711.
CMM uses 21,378,128 bytes. The memory usage is high in com-

135



40 T T T T T T T T T
++ +
+ o+ ++ + o+
+ + ++ + + + + -+ o+ H
35 H M+ A o+ ++ + B oo S E
T i e e L S Al o bt W
A b R e e A H A

No of words in doc

Words occurring in at least 20% of the documents

T .
+ A HHH+ + +
+ o+ -+ M + + -
T+ AR TR T e ——— + o+
0 F b b e i — ) s
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Documents

Figure 5.8: Diagram showing the number of frequent words (those in at least
20% of the documents) occurring in each document. Again, any word that
occurs multiple times in a particular document is only counted once for that
document. Each document has an integer ID indexed from 0 to 18,248. N.B.
Figure 5.8 has three lower frequency troughs between document ID 9000 and
ID 13000. This is due to the documents in this section of the Reuters corpus
containing relatively few of the common words and many abbreviations; there

are many shorter documents between 9,000 and 13,000.

parison to the other data structures.

o Efficient - storing the CMM as an efficient representation with a
switch value of 300 (see section 3.1.2).
CMM saturation is 0.007.
CMM uses 10,958,614 bytes. The memory usage is much lower
than the compact or binary representations.
Memory use for array of words 475,000 to retrieve every 50th word
etc. and to retrieve the word position for binary vector generation.
Memory use for array of document IDs 73,000 to store the integer
index for binary vector generation.

Total memory use is 11,079,114.

5.4.2 Training Times

Twenty training times were noted for each data structure technique and the

mean time for training was calculated. The table below gives the mean training

136



time in seconds for each algorithm.
‘ ‘ IFL ‘ Hash Table ‘ Hash Compact ‘ efficient CMM ‘

| Training time (secs.) | 1,965.365 |  1,570.48 | 1,568.96 | 98.31 |

5.4.3 Serial Match

The words are read from the data file and for each of the selected words in
turn, the associated documents are retrieved and written to an output file. Ten
times were recorded for each serial match for each data structure method and
the mean time calculated. The mean retrieval time in seconds is given in the
table below

IFL | Hash Table | Hash Compact | CMM - efficient

First 100 | 0.143 0.128 0.13 0.904
Every 50 | 0.253 0.223 0.202 1.907

5.4.4 Partial Match

A graph is given for each partial match evaluation, listing the number of words
to be retrieved (at least M) on the x-axis and the mean time in seconds for 20
retrievals on the y-axis. A separate plot is shown for each data structure on

each graph.

Partial Match on the First 100 Words

The graph of the mean time in seconds for the retrieval of M of N matching
words from the set of the first 100 words taken from the canonical list is given
in figure 5.9 for each data structure.

Partial Match on Every 50th Word

The graph of the mean time in seconds for the retrieval of M of N matching
words from the set of every 50th word taken from the canonical list is given in
figure 5.10 for each data structure.

Partial Match on Words Occurring in at Least 20% of the Documents

The graph of the mean time in seconds for the retrieval of M of N matching
words from the set of the words present in at least 20% of the documents is

given in figure 5.11 for each data structure.

5.5 Analysis

5.5.1 Memory Usage

If we disregard the final array of words from the memory totals of the inverted
file list, hash table and hash table compact (the array was only included for con-

sistency) then the memory totals in bytes for the four data structures in 64-bit

137



First 100 words from the alphabetical list of all words

0.5 T T T T T T T T
Word Array —+——
Hash Array ---x---
0.45 1 Hash Compact ---*---
CMM -~
0.4 - B
035 - .
. 03 R
2]
(8]
s 3
=~ 0.25 k B
() y
£ o
=
02| ]
0.15 - i
[ R 5
0 1 1 1 1 1 ? q q P
0 1 2 3 4 5 6 7 8 9

More than X matching words

Figure 5.9: Graph of the retrieval time for M of N matching with the first 100

words from the list of all words.

mode are in ascending order: IFL (10,471,072), hash table compact (10,527,632),
CMM (11,079,114) and hash table (11,081,478). If the IFL and two hashing
data structures are compiled using 32-bit compilation then their respective sizes
in bytes are: IFL (5,509,536), hash table compact (6,077,814) and hash table
(6,155,828). As stated previously, the IFL requires the least memory but, as
can be seen from the subsequent analyses, is slower for retrieval than the hash
tables. The hash table compact (storing an integer index to the document lists)
is more memory efficient than having empty list array elements in the standard
hash table. The CMM has the second highest memory usage but lower than the
conventional hash table. None of the memory usage statistics is significantly
higher than the other data structures; they are all within 10% of each other.
Therefore, we feel the timing comparisons for training and retrieval provide the
most informative insight into the optimum data structure for an IR system of

the structures evaluated.

We can see that the efficient CMM has a far lower memory usage than a binary
or compact CMM due to the ability to switch to the most memory efficient
representation for each row. The efficient CMM requires only 25% of the mem-
ory required for the binary representation and 50% of the compact memory

requirement.

138



Every 50th word from the alphabetical list of all words

0.9 T T T T T T T T
i Word Array —+—
Hash Array —-—x-—-
0s L Hash Compact ---*--- |
: CMM -
07t i
0.6 - R
2 o5t B, i
8 .
A2
o o4r i
03 =8 i
0.2] i
>\\‘\E -
‘*—lll';;;;;é;;:: >>>> ' ! : : : : |
0.1 | ;»*’;ﬁ"“";:55235!!—'lll’-’:;;'g;;;';:;;{_’;éj """""" ¥ooooioooi SRRty i
e N o N
0 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

More than X matching words

Figure 5.10: Graph of the retrieval times for M of N matching when taking
every 50th word from the list of all words.

5.5.2 Training Times

The IFL is the slowest to train as expected as each search to locate the position
of the word to link to the document requires a binary search through the entire
array of words O(log n) before the document may be inserted in the word’s list.
The training times for the two hash table approaches are similar, as we would
expect with both using the same document insertion procedure. The method
calculates the hash location for the word and prefixes the document ID to the
corresponding list of documents. However, by far the quickest to train is the
CMM. The CMM does not require the lengthy search for the word to add the
document ID to the word’s list. Although the hash table is ©(1) for word search
initially, if there are collisions, it will degenerate to O(n). The CMM simply
associates the word with the document in a single step association procedure so
when the word is input, the document will be recalled. The CMM takes 0.063
as long to train as the hash tables. This is a significant difference. The CMM
reads in the same data as the others so the file access can only constitute a
minor part of the IFL and hash table times. The majority is employed inserting
the words and word-to-document associations in the data structure whereas this

time is minimal for the CMM.

5.5.3 Serial Match Recall

The two hash tables are the quickest for the serial match as the match for

each word will be approximately ©(1). The IFL is marginally slower due to

139



Words occurring in at least 20% of the documents

09 T T T T T T T T T T T T T T T T T T T T T T T T T T
0.8 M |
— L
0.7 1 R
06 | Word Array —+—
o, Hash Array ---x---
— k% Hash Compact ------
0 B ORI - S et - CMM -
o 05 ¥ § ; Homoye - Kom o -
@ TR KKK O S S e S R VOO
Y .
£ o4} & -
=
= N
g
03 b
o
O
i=N
0.2 CH. 4
Beg
@,
=
01 = e, =, . -
-8
Begog T O B O = S
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
More than X matching words

Figure 5.11: Graph of the retrieval times for M of N matching with frequent

words (those in at least 20% of the documents).

the O(log n) binary search through the word array. The CMM is significantly
slower for serial match. For each word, the word has to be translated to a binary
vector, input to the CMM, the binary output vector retrieved and the set bits
in the output vector identified to retrieve the IDs of the matching documents.
The CMM takes 7.06 times longer for the first 100 word serial retrieval and 8.55

times longer for every 50th word serial retrieval than the standard hash table.

5.5.4 Partial Match Recall

The IFL is slower than the hash tables in all instances of partial matching. We
would expect this due to the binary search O(log n) through the IFL to locate
the words prior to finding the associated documents. The two hash tables are
both faster than the IFL in all instances and produce very similar results, the
differences between the graphs are negligible. The hash table compact does
appear slightly faster although the difference may be attributed to the slight
variation in the C/C++ timing utility and processor operation. The CMM is
slower than the hash tables for low frequency partial match but for higher fre-
quency partial match the CMM excels. The time curve for the CMM starts
above the hash table for all graphs but falls below at ‘at least 3’ words matched
on the ‘first 100’ word graph and at ‘at least 5’ on the ‘every 50th’ word graph.
For the words present in at least 20% of the documents (see figure 5.12), the

CMM is faster than the hash table with an increasing difference from ‘at least

140



13’ or more. The difference will level off and eventually fall as the y-axis forms

Retrieval Time Speedup for the CMM versus Standard Data Structures

25 T T T T T T T T T T T T T T T T T T T T T T T T T T

IFL —+—
Hash Array ---x---
Hash Compact -

Time for data structure / time for CMM retrieval

R TR

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
More than X matching words

Figure 5.12: Graph of the speedup of the CMM versus the other three data
structures when retrieving frequent words (those in at least 20% of the docu-
ments). The CMM is up to 24 times faster than the other data structures for

identical partial matching.

a lower bound asymptote to the CMM curve and the retrieval speed of the hash
table will continue to fall thus slowly approaching the CMM curve. However,
the hash table will only approach the CMM slowly and may never reach it due to
the intrinsic overheads of the data structure (collision resolution) so the CMM

is preferable for partial matching.

In all cases the number of words to be matched affects the times, as we would
expect. The ‘every 50’ match is slower for all data structures than the ‘first
100’. This is because there are 189 words in the ‘every 50’ set compared to 100
words in the first 100’ set to be matched to retrieve the documents containing
the required number of words. Also, the ‘first 100’ words are retrieved more
quickly by the ‘for’ loop from the word list. For the three data structures: IFL,
hash and hash compact, the retrieval time for M words from the ‘first 100’ set
is just over 50% of the time for the equivalent number of words from the ‘every
50’ set. For the CMM, the retrieval time for M words from the ‘first 100’ set is
just under 50% of the time for the equivalent number of words from the ‘every
50’ set. The quicker word access time for the ‘first 100’ match has more effect

on the overall retrieval time of the CMM than the other three data structures.

141



The match operation for the hash tables is very similar in all instances so for
each evaluation ‘first 100 words’, ‘every 50th word’ and ‘words in 20% of the
documents’ the timing only reduces slightly as the number of partial matches
reduces. The procedure for the hash table matching varies little. The method
reads in the words to be matched one at a time. For each word, the word is
hashed to find the associated document list; the documents are retrieved from
the list; for each document retrieved, the counter is incremented in the array of
document counters to indicate the retrieval; and finally, the array is traversed
writing to a file all documents that exceed the number of matches required.
The only variation is in the final step where, as the number of matches required
increases, the retrieval quickens as less documents are written to file. For the
CMM the match operation timing reduces rapidly as the number of partial
matches increases. The initial step is to read in the words to be matched, gen-
erate their associated binary vectors from the word array position, superimpose
and input to the CMM. This is identical in all instances. To vary the number
of matches the threshold is adjusted. When the threshold is low, the binary
vector retrieved from the thresholded output will have more bits set. Thus
when this binary vector is matched against the document vectors there will be
more matching documents and retrieval will be slower than for higher thresh-
olds where the thresholded output will be relatively sparse with fewer matches

required.

5.6 Conclusion

We introduced a novel neural approach for storing word-document associations
in an IR system. The neural approach uses single-epoch training, superimposed
storage and associative partial matching in a binary matrix where new associ-
ations are added incrementally. We compared this novel approach to existing

standard data structures for storing word-document associations.

For repeated serial, single word matching the compacted hash table is probably
the most efficient methodology, the storage is second best for the compacted
representation and the retrieval speed is fastest and second fastest for the two
retrievals. The standard hash table produced the fastest retrieval time for the se-
rial retrieval of the documents matching the first 100 words with the compacted
variant second fastest. The compact hash table was the fastest to serially re-
trieve the documents matching every 50th word from the alphabetically sorted
list of all words. The CMM is comparatively slow for the serial retrieval taking

up to nine times longer to retrieve the documents than the fastest data structure.

For partial matching the CMM performs best. The memory usage is higher

than the IFL, and hash compact but lower than the conventional hashing ap-

142



proach. The retrieval speed is superior to the other three approaches for partial
match; the greater the number of words to be matched at each retrieval, the

more superior the CMM is.

We recommend the CMM for Information Retrieval word-document association
storage, as the approach is superior with respect to training time and retrieval
time with comparable memory usage. The superimposition of the input vec-
tors allows one-shot multiple word retrieval and partial match. We also note
that more word to document associations could be added to the existing as-
sociation CMM without significantly increasing the memory usage due to the
superimposed storage. The CMM could therefore be used in an incremental
system, although we do not evaluate incremental data structures here we noted
the incremental training approach where associations are incorporated sequen-
tially and overlaid with the existing trained associations. The efficient CMM
can switch to the most memory efficient storage representation for each row to
minimise the storage requirement of the word-document CMM as new associa-
tions are added. For the other data structures evaluated, additional associations
would increase the memory use of the list array with one additional list node
for each additional association. If additional words were added the word arrays
would need to be incremented by two locations for the hash tables to keep the
array less than 50% full. The word array would need to be extended by a single
location for the IFL but the new word would need to be inserted in the correct
alphabetical location and not just appended to the end of the array. We can
add word-document associations to the CMM until the matrix is saturated, i.e.,

every word is linked with every document.

For our evaluation in this chapter, we assumed that all words searched were
present and there were no spelling errors. We demonstrated our spell checker in
chapter 4 and we also evaluate our overall MinerTaur system incorporating both
the spell checker and word-document association matrix using mis-spelt words
in chapter 6. The inverted file list, the two hashing algorithms and the word-
document matrix evaluated here have no error correction facilities included.
If a match was attempted on a mis-spelt word or a word not present in the
stored associations then all four techniques would search the stored word list
examining the maximal number of words for the respective search techniques:
binary search for the inverted file list and word-document matrix and hashing
for the two hash algorithms. They would all fail to match the search term and
hence would retrieve no matching documents. The time for this word list re-
trieval would equate to the maximum word list search time for the respective
data structures as the binary search is maximal for an item not present and
the maximum number of hashing locations would be probed for the hashing

algorithms.

143



Chapter 6

Information Retrieval

In this chapter, we describe out integrated modular Information Retrieval sys-
tem: MinerTaur. We evaluate memory usage statistics for the various mod-
ules. We compare the training time for MinerTaur to a benchmark IR system:
SMART. We evaluate the retrieval time for a wide range of queries supplied
to MinerTaur using various configurations of the system modules. We then
compare the recall and precision figures of various configurations of MinerTaur

against various configurations of the SMART benchmark system.

6.1 Introduction

A methodology is desired to: process documents unsupervised and generate a
multi-level and compact index using a data structure that is memory efficient,
speedy, incremental and scalable; overcome spelling mistakes in the query; sug-
gest alternative spellings for query terms; handle paraphrasing of documents
and synonyms for both indexing and searching; to focus retrieval by progres-
sively minimising the search space and finally calculate the document similarity
from statistics autonomously derived from the text corpus. Documents may be
retrieved according to the user’s exact requirements by progressively refining
the search and iteratively employing finer-grained and more specific matching

techniques.

Document and text processing may ultimately be considered a natural lan-
guage processing task. In our methodology described in this thesis we sim-
plify the process. We extract semantic word relationships by using averaged
word contexts (statistical co-occurrence vectors) to generate the hierarchical
thesaurus from which we can score the similarity of the words as described in
chapter 2. We store all word-document associations in a matrix structure as
full text indexing is more comprehensive and accurate [6]. We use the scores
from the query words and the thesaurus search to feed into the matrix and

accumulate document scores. The document with the highest cumulative score

144



denotes the best matching document. The technique is wholly data-driven and
unsupervised; the only knowledge regarding the words are the statistics of their
co-occurrence to infer semantic relationships and the associations between the
words and the documents containing them, we require no domain-dependent

background knowledge or prior classification.

6.2 The MinerTaur System

Our MinerTaur system comprises three modules, a spell checker, a hierarchical

Generate average
context vectors

TreeGCS ‘ Spell CMM ‘ ‘ Phonetic CMM ‘

Synonym Module Spelling Module v
Word-Document Word to doc CMM
Index
Module

Figure 6.1: Figure illustrating the modular architecture of our MinerTaur sys-
tem and illustrating the training process. The dashed boxes indicate artefacts

and the solid boxes illustrate system processes and modules.

thesaurus and finally a word-document association index (see figures 6.1 and
6.2 for an overview of the system during training and querying respectively). In
the training figure 6.1, the hierarchical thesaurus is represented by the TreeGCS
process and the preceding processes and artefacts derived from the text corpus.
The spelling system comprises the Spell CMM and Phonetic CMM processes
and their ancestor artefacts and processes again derived from the text corpus.
The word to document CMM represents the final system module and is derived
from the text corpus and a list of the document identifiers. In the query fig-

ure 6.2, each query word in turn (iteratively) passes through each of the three

145



A N )
Spelling

*‘ TreeGCS ‘ ‘ Spell CMM H Phonetic CMM ‘ Module

Synonm \ /
Module Word-Document

v oo Index
i ,Sfr[ih,vyl?rij 7||7 5{ Jr7$ Word to doc CMM Module

Figure 6.2: Figure illustrating the modular architecture of our MinerTaur sys-
tem and illustrating the querying process. The dashed boxes indicate artefacts

and the solid boxes illustrate system processes and modules.

modules, which are used serially. The query word is first validated against the
lexicon in the Spelling CMM. If there is a spelling error, the query word is
passed to the Spelling CMM and Phonetic CMM to generate a list of candidate
matches from the lexicon. The candidate matches from the spelling module
are amalgamated in a scoring process to rank the matches and the user selects
the correct spelling from the ranked list. The Spelling CMM also generates a
list of word stems if required. The TreeGCS module is used to determine any
synonyms at the user’s behest. Finally the query words, stems and synonyms
are passed to the word to documents CMM in a search word list to retrieve and

score all documents that match.

Front-end spell checking module to isolate any mis-spelt query words. We
only perform isolated word error correction [63] and identify query terms not
present in the lexicon. Our spell checker does not perform context-based spell
checking [63] to identify substitution errors where one correctly spelled word
is substituted for another for example ‘there’ and ‘their’. This context-based
error correction necessitates complete natural language processing capabilities
and may not be feasible within a terse, term-list IR query. Our spell checker
validates each query word against the lexicon. If a word is not matched we
assume a spelling error and our spell-checking module provides a list of the best
candidate matches for the user to select from. Our spell-checking module also
provides a word stemming capability so the user can input a word stem and
the spell checker returns a set of matching stemming variants from the stored
lexicon. For example, if the user inputs ‘engine’ our word stemmer will suggest
‘engines’, ‘engineer’ and ‘engineering’ from the lexicon. This allows the user to
ascertain all appropriate words in the corpus without requiring knowledge of

the corpus vocabulary and to expand their search to all apposite words.

Hierarchical thesaurus. We employ the statistical gathering and inference

146



methodology described in chapter 2 to automatically develop a hierarchical the-
saurus from word context correlations in the text corpus. TreeGCS evolves an
unsupervised, hierarchical semantic map of the corpus using word co-occurrence
statistics. We can then exploit the intra-cluster distances and the inter-cluster
distances to ascribe scores to query words and their synonyms. Once the hier-
archy has been generated the hierarchical data structure evolved can be written
to a file and stored. The stored data structure can be read in by the system
when the IR system is initialised. Hence, hierarchical thesaurus generation is
a one-shot process and only the data structure then needs to be read from a
file which is a rapid procedure. This also allows incremental training. We can
write the data structure to the file as it evolves during training and the system
can read in the data structure from the file to obtain the most contemporary

hierarchy each time the system is initialised.

Word-document matrix implemented using orthogonal word vectors and or-
thogonal document vectors to ensure perfect matching with no false positives
or false negatives. As the Reuters’ dataset [82] used in our retrieval evalua-
tion comprises 18,249 documents (the same documents used in our evaluation
in chapter 5), indexing 48,766 words with 890,071 word-document associations
to be stored, we are able to use the orthogonal binary vectors. Each row of
the matrix effectively represents and indexes a particular word and each col-
umn effectively indexes a specific document. We described the word-document
matrix implementation in chapter 5. We index all words except a small set of
stop-words (i.e., very common words with a very low discriminatory power with
respect to text corpora such as ‘the’ and ‘and’ taken from the SMART stop-
word list! [99]). We have reduced the number of word-document associations to
be stored compared to chapter 5 where we stored the associations for commonly
occurring words. As we have removed the stop-words we have removed many
word-document associations. Unlike many other systems described previously in
this chapter, we store word-document associations for infrequent corpus words.
We only remove very common words and hypothesise that low frequency words
may have a low discriminatory power across the corpus but they have a high
discriminatory power with respect to the documents that contain them; they
uniquely identify a single or small set of documents and should be indexed by
the IR system.

6.2.1 Query Processing

We provide a walk-through for an example query ”grain, wheat, oatts, barley,

soy” which includes a spelling error for demonstrative purposes. For a multiple

1 As we compare our MinerTaur system against the SMART system we used the SMART
stop-word list to process our system and thus to maintain standardisation across the evalua-

tion.

147



word query, each individual query word is processed in order grain then wheat
then oatts then barley then soy and an accumulator vector is produced with the
scores for each document with respect to each individual query word. After all
query words have been processed the document accumulator vectors are added

and a total score for each document with respect to all query words is produced.

The first question presented to the user is “Do you want word stemming?”.
This will perform word stemming matching on all query words and present the
user with a set of word stemming variants for each query word input. If the
user selects ‘yes’ then this facility is activated for all query words otherwise it

is switched off for all query words.

The first step for our MinerTaur system is for the user to input their first
query word. The query word is converted to the spelling binary vector, as de-
scribed in section 4.6.1, and input to the spelling CMM. We perform an ezact
match retrieval (described in section 4.7.3) to identify any lexicon words that
match all letters of the input spelling and have an identical length. If there is an
exact match then the output from the spelling CMM is a single binary vector
representing the matching word. The first, second, fourth and fifth words in
our example query grain, wheat, barley and soy are correctly spelt and present
in the lexicon so all represent an exact match. The binary vectors representing
the words trained in to the spell checker are identical to the binary vectors rep-
resenting the same word trained in the word-document matrix. Therefore, we
can use the thresholded output vector from the spell checker as the input vector
to the word-document matrix. The user is asked to supply a score (userScore)
for the word between 1 and 10 if they wish to denote the relative importance
of the word to the query. A higher score signifies higher importance. For our
evaluations in this dissertation we did not input user scores so all userScores
were automatically set to the default value of 1. The topics assigned to the
Reuters document collection do not indicate any degree of importance for each
topic word so we left all word scores equal. The exact matching word is assigned

a score of 1000*userScore. We describe why we use a scale factor of 1,000 later.

If there is no exact match from the spelling CMM the word is not present
in the corpus so we assume the query word is spelt incorrectly and perform
a best match retrieval. We identify the best matching words from the lexicon
trained into the spelling CMM using the query word as input. The user is pre-
sented with the top 10 matches (or less if fewer matches) and allowed to select
the correct word from the list. From our example query oatts is incorrectly
spelt and MinerTaur presents the user with the top matches in order: oates,
oats, boats, coats, floats, outs. The correct match is the second word in the list

which the user may select. This corrected word will now be used throughout

148



the further query processing. If the user does not select any words from the top
10 matches and there are more matches available in the candidate set retrieved
then the user can select from the next 10 best matches and so on until all possi-
ble matches are exhausted or the user selects a matching word. If the user does
not select a matching word then no further retrieval is performed for this query
word. Otherwise the selected word is passed to the word-document matrix and
also to the synonym hierarchy traversal if this option is selected. Again the user
can input a score (userScore) for the word if they desire to signify the relative
importance of each query word between 1 and 10. The best matching word are
all assigned a score of 1000*userScore. For our evaluations in this dissertation,

we left all user scores at 1 as stated previously.

If the user has activated the stemming facility, then we perform the word stem-
ming operation described in chapter 4 and produce a list of stemming variants for
the query word. From our query example, grain will produce the stemming vari-
ants {grains, grain-filling, grain-producing, grain-quality, grains-oilseeds} while
soy will produce the stemming variants {soya, soyabean, soyabeans, soybean,
soybean-planted, soybean-producing, soybean-specific, soybeans, soybns, soyfood,
soymeal, soyoil, soyproduct, soyproducts}. The user can select any variants they
wish and these will be passed to the word-document matrix to retrieve matching
documents and also to the synonym hierarchy of this option is selected. The
stemming variants are all assigned a score of 1000*userScore where userScore is
the value assigned to the word stem by the user, a value between 1 and 10 to
signify word importance. We left all user scores at 1 for the evaluation in this

dissertation.

The user is asked if they wish to perform synonym matching. If they do then
all variants (spelling or word stemming variants) selected for the query word
are matched against the synonym hierarchy in turn. For the system evaluated
here, we only clustered 2,192 frequently occurring words from the total Reuters’
vocabulary of 48,766 words to ensure the average context vectors were close to
the true mean and not unduly biased by a lack of averaging. Thus not all query
words will have a match in the synonym hierarchy. An empty set is returned for
an unmatched word. Each word is input to the TreeGCS hierarchy and the best
matching cell is located if the word is present. Any other words (synonyms)
mapping onto this GCS cell are assigned a score of 0.5. At this stage we have
not yet empirically derived an optimum value for this setting but as can be seen
from the later recall results, adding in the synonym hierarchy increases the re-
call significantly so the setting may be near optimal. From our running example
query, the query word barley maps onto the same TreeGCS node as {sorghum,

maize} so sorghum and maize each score 0.5.

149



We then perform a Dijkstra shortest path traversal [24] through the cluster
containing the best matching cell using the connections in the GCS network,

see figure 6.3. The cumulative distance is calculated to each cell in the cluster,

Figure 6.3: Figure illustrating a GCS cluster and the cell distances.

all distances are normalised in a range 0-0.25 and the normalised distance is
subtracted from 0.5 to ascribe a score to each cell in the cluster. Any corpus
words mapping on to those cells are thus ascribed the respective scores. From
the example query, {wheat, corn, cotton, grain} are in the same cluster as barley
and score 0.45, 0.43, 0.37 and 0.25 respectively. The scores for the synonyms
derived from the hierarchical thesaurus are floating point numbers in the range
0 to 1 with accuracy dependent on the local C++ installation (floating point ac-
curacy). We need to convert all word scores to integer values for inputting to the
word-document CMM during the integer vector accumulation phase of retrieval
(as the integer vector requires integer values). The range 0 to 1 floating point
needs to be converted to a suitable integer range. All scores are multiplied by
1,000 to give scores ranging from 500 for words mapping on to the same cell as
the query word down to 250. These scores are then multiplied by the userScore
(importance) for the original query word. We score from 500 for this cluster to
ensure that synonyms do not over influence the document scoring (they are half
as important as exact matching words). We score down to 250 as the all words
in the next matching cluster in the scoring process are awarded 250 so we score

down to this value in the best matching cluster.

The integer selected is a trade-off between speed and accuracy. The CMM
processes integer vector inputs by repeatedly activating the CMM row a num-
ber of times equivalent to the value of the integer. The more times the row is
activated (i.e., the higher the integer) the slower the retrieval but paradoxically
the more accurate the word scoring phase of our IR system. The greater integer
range gives higher scoring precision thus percolating greater precision to the
cumulative document scores. We selected an integer range of 0 to 1,000 as we
felt this range provides acceptable precision while maintaining a high retrieval

speed. The range is arbitrary and selectable for the installation. A faster pro-

150



B
O/

°é'°¢e)

Figure 6.4: Figure illustrating the TreeGCS hierarchy scoring traversal. The
word we are searching for is in cluster G. We assign scores to all words in
cluster G according to the cumulative Euclidean distances in the cluster. We
then score all other words in the hierarchy by assigning scores to the clusters.
All clusters and cells categorised together are awarded identical scores. All cells

in descendent clusters of node D would be awarded identical scores.

cessor would permit faster retrieval so a higher precision (larger integer) range
could be used. For the 180MHz processors used for our evaluations and analy-
ses, we felt 0 to 1,000 was the optimum range. We did not empirically evaluate
the value with respect to speed of retrieval or scoring precision but may do so

at a later date to verify our range or indeed select a new optimal range.

Once all cells in the query word’s cluster have been assigned a value using
the reciprocal of the Dijkstra shortest cumulative path distance algorithm [24],
we assign scores to the remaining clusters in the hierarchy. The scores are the
reciprocal tree distance and all cells in each cluster are assigned the same score.
As the clusters are disjoint we felt it was inappropriate and also computationally
expensive to calculate cell distances from the original query word’s cell to all
cells in the GCS network. We exploit the grouping advantages of the hierarchy
and its ease of traversal by assigning scores on a per cluster basis. As mentioned
in chapter 2 our hierarchical tree structure is symmetric. In figure 6.4, we do
not know which descendent of node D is closer to G so we assign all cells in all
descendent clusters of D (and thus all lexicon words mapping on to those cells)
the same score. The algorithm traverses the tree moving from parent to parent,
halving the score on each step and assigning that score to all successor clusters

not already scored.

Score := 0.5
While unprocessed cluster {

Score := Score / 2;

151



Move up from current node to parent;
Depth first search from parent to all successor nodes;
For each successor node not yet processed{
If cluster is a leaf
Assign current score to all cells in cluster;

Mark cluster as processed;

All cluster scores are multiplied by 1,000 and converted to integer values as
we require integer inputs to the word-document matrix giving a score range of
500 to 0 for the synonyms. From the example query, {rice, sugar, soybeans}
are in the next hierarchy cluster to barley and all score 0.25. {land, coal, prod-
ucts, silver, gold} are in the next hierarchy cluster and all score 0.125 and so on
through the hierarchy. This score value is further multiplied by the userScore
for the query word to signify relative importance of the query term. All words
are assigned the score of their best matching cell’s cluster. As the C++ lan-
guage only processes numerical values (floats and integers) to a specific degree
of precision, many scores will be rounded to 0 during conversion so only seman-
tically close synonyms (those with stochastically similar co-occurrence vectors)
will score highly. Many will be too distant in the hierarchy to score or will score

very low values.

Each input row of the word document matrix is activated with the integer
score of the corresponding word from the initial spelling match, the stemming
match if selected and the synonym hierarchy traversal if selected. We sequen-
tially input each word that scored more than 0 to the word-document matrix to
keep the scores awarded to documents separate. The matrix precludes a parallel
score match where the scores differ as we do not know which documents have
matched which specific words and which specific scores. We would just retrieve
an output activation of the total match score. Each attribute of the integer
vector represents the score for that document with respect to the query word,
each document takes the highest integer value with respect to the query word:
a query word match, a stem match or a synonym match. We threshold the
CMM output activation vector from the query word input, stemming input or
synonym input using the Willshaw threshold set to the score value to produce a
binary thresholded vector. We multiply the binary vector by the input integer
score to produce a current score vector. This awards each document containing
that word a score equivalent to the input word score. We use an accumula-
tion integer vector to collate the output for each query word in turn (collating
the query word, its stems and its synonyms). We compare the current score
vector for each retrieval against the accumulation integer vector. If the value

of the current score vector is higher than the accumulation integer vector for

152



any attribute, the accumulation integer vector attribute is set to that score for
that document. We essentially maintain a separate accumulating score vector
for each query word with each document attribute accumulating the maximum

score for that word.

We note that serial matching is slow as we demonstrated in chapter 5 but we
have not yet optimised the synonym module while we assess the merit of the
hierarchical clustering technique and consider alternative options so we have not
yet optimised word retrieval and thus employ serial matching. We can group
the synonyms and their respective vectors according to the word scores, i.e., all
vectors for identically scoring words are superimposed to speed and parallelise
retrieval. The single superimposition vector may then be input to the word-
document CMM and the CMM thresholded at one to retrieve any document
matching any input word. The resultant thresholded binary vector can then be
multiplied by the current synonym score and added to the accumulation vector
if the current synonym score is greater than the existing score for that document
attribute.

The whole process of exact match, best match if no exact match, word stem-
ming if selected, synonym hierarchy traversal if selected and passing the selected
words to the word-document matrix to generate an accumulation integer vector
is repeated for each query word. This produces one accumulation integer vector
per query word. We then add all accumulation integer vectors together to give a
single total score vector for the particular user query. Fach attribute of the total
score vector indexes a document, analogous to the output vectors for the word-
document CMM and the value of the attribute represents the total accumulated
score for all query words for the corresponding document. We can then select
the best matching document(s) by identifying the attribute(s) with the highest

values and returning the document(s) indexed by the maximal attribute(s).

From our example query “grain, wheat, oatts, barley, soy” -

If we have no stemming or synonyms then there are 2 top matching documents
after spelling correction each with a score of 5000 indicating that they match
all query words (each query word carries a score of 1000 in our evaluations in
this chapter). The best matches are:

15762, 17936 @score5000

We list document 17936 below with the five query words in bold to allow the
reader to view an example document’s contents:

17936: winnipeg oilseeds were higher , with rapeseed gaining 2.10 to 2.50 dollars
a bushel and flaxseed up 1.50 to 2.70 . oilseeds were supported by the rally in the
chicago soy complex , trade sources said . further , recently active producer sell-
ing subsided , while exporters provided underlying support in flaxseed and crushers

153



bought rapeseed , they said . feed grain trade was quiet with locals and commission
houses dominating activity . rye fell 0.10 to 0.20 . barley ranged 0.40 lower to 0.40
higher . oats ranged unchanged to 0.30 lower . wheat fell 0.20 to 0.50 .

If we have no stemming but activate synonyms then the top 15 matching doc-
uments are:

15762, 17936 @score5000

6232, 14593, 15768, 15769, 15770 @score4000

2060, 4020, 8663, 10878, 11222, 13425, 13426, 14266 @score3500

We list document 14266 below with the three of the five matched query words
in bold along with the synonyms maize, sorghum from the query word barley.
Both synonyms score 500 as they map onto the same TreeGCS cell as barley
giving a total document score of 3500. We take the highest score for each query
word. Barley is not matched so the highest score for barley derives from its
synonyms, so the document scores 500 with respect to this query word plus
3000 for the three matching query words:

14266: the argentine grain market was quiet in the week to wednesday , with prices
rising slightly on increased interest in wheat , millet and birdseed . wheat for
domestic consumption rose six australs per tonne to 118 . for export it rose eight
to 108 per tonne from bahia blanca , increased 0.50 to 104 at necochea and was
unchanged at rosario at 108.30 . maize increased one to 90 per tonne at buenos
aires , was unchanged at 82 in bahia blanca , increased 0.50 to 85 at necochea and
fell one to 88 at parana river ports . sorghum from bahia blanca increased 0.50
australs to 76.50 per tonne and dropped one to 75 at rosario . it was quoted at 75
at villa constitucion , san nicolas and puerto alvear . oats were unchanged at 168
per tonne at buenos aires . millet from buenos aires and rosario rose five per tonne
to 140 and birdseed rose 15 to 205 at buenos aires .

If we have stemming but no synonyms then the top 15 matching documents
are:

15762, 17936 @score5000

2060, 6232, 14593, 15746, 15768, 15769, 15770, 16773, 17492, 17935 @score4000
1259, 1835, 1836 @score3000

We list document 2060 below with the three of the five matched query words in
bold along with the stemming variant soybeans derived from soy which scores
1000 as stemming variants score the same as query words giving a total docu-
ment score of 4000:

2060: best basis bids posted by grain dealers at the close - chicago corn processors
spot , 4 under may - unc I/h april , 1 under may - unc f/h may , may price - up
1 exporters april , 4 under may - unc new crop , 10 under dec - unc burns harbor
april , 5 under may - unc merchandiser spot , 4 under may - unc chicago oats
merchandiser spot , 20 over may - unc chicago soybeans exporters april , 3 under

154



may - unc new crop , 10 under nov - unc burns harbor april , 3 under may - unc
merchandiser spot , 3 under may - unc chicago srw wheat millers 57 |b spot , 35
over may - unc elevator 58 Ib spot , may price - unc new crop , 7 under july -
unc exporters spot , ua new crop , 5 under july - unc merchandiser spot , 35 over
may - unc toledo corn , spot , 5 under may - up 1 soybeans , spot , 1 under may
- unc srw wheat , spot 58 lbs , 35 over may - unc illinois river - seneca corn ,
spot , 2-1/2 under may - up 1-1/2 soybeans , spot , 5 under may - dn 1-1/2 cif
gulf - barge corn , april , 21 over may - nc soybeans , april , 24 over may offered
- dn 2 srw wheat , unquoted pik certificates - percent of face value out by april
7,104-1/2 percent bid 105-1/4 asked - dn 1/2 nc - no comparison unc - unchanged

If there are too many matching documents for a particular query, we allow
a more refined search to minimise the matching document set. We exploit the
synonym hierarchy further by utilising any synonyms that map onto the same
GCS cells as the query terms; we exploit the statistically closest words to en-
hance the search by expanding the query. N.B. we treat all query terms as
equally weighted. At present we do not differentiate using the word weights
initially assigned by the user. We pass each query word in turn to the TreeGCS
hierarchy, we return any words that map onto the same GCS cell as the query
word and set the corresponding bit representing that word in the single input
vector. We use a single input vector to the word-document matrix representing
the superimposition of all query words and statistically close synonyms by set-
ting the vector bit representing each query word and their respective synonyms.
When we have processed all query words, we present the input vector to the
word-document matrix. We threshold the output activation vector at its highest
attribute value to retrieve the best matching documents. The best matching
document will be the document or small set of documents that contains the
maximal number of query terms and statistically correlated synonyms. We only
use synonyms that map onto the same cells as the query words as these are very
statistically similar synonyms and we also want to minimise the search word
set. If there are too many words in the search word set we may well retrieve too
dissimilar documents, we want to expand the search slightly from the original
query words but still maintain a tightly focussed search. This way we hope
to reduce the number of best matching documents while preserving our search
focus. This process has been implemented in the MinerTaur system but not yet
fully evaluated to empirically assess the effect on the precision and recall cal-
culated from the documents retrieved. The procedure should improve precision
without detrimentally affecting recall. We also need to evaluate the procedure
against a benchmark IR system such as SMART [99] to compare the recall and
precision for queries which retrieve many documents that have identical scores

with respect to matching words.

155



6.3 Evaluation

We evaluate our MinerTaur system against the benchmark IR system SMART
version 11 from Cornell University [99]. We measure our system against SMART
for training time. We compare the retrieval time for our ‘basic’ system against
system configurations with each module (spelling, stemming, synonym hierar-
chy) activated in turn for a series of different length queries to demonstrate
how the times compare, how the number of query words affects the system,
whether it is O(1) or O(n) with respect to query words and the proportion of
the overall system retrieval time occupied by each module in turn. We evaluate
our MinerTaur system for memory usage and compare the memory usage of the
spelling and word-document CMMs against the stored data files to evaluate the
overheads introduced by the CMM data structure. Finally, we evaluate our Min-
erTaur system against SMART for recall and precision using 18,249 documents
and 66 queries we extracted from the Reuters-21578 dataset. We provide statis-
tical analyses of the 66 queries to investigate statistical correlations and system
biasing of the query set to ensure impartiality of the query test set with respect
to the systems evaluated. [82]. We describe how we pre-processed the corpus
below. All analyses were performed on a SGI Origin 2000 with the following

specifications (taken from the IRIX hinv command):

e 32 X 180 MHZ IP27 Processors
Again the multi-processor system allows us to assess the respective systems
in parallel. We can have one process from each evaluated system running
an identical assessment simultaneously and hence, we can minimise timing

variance.
e CPU: MIPS R10000 Processor Chip Revision: 2.6
e FPU: MIPS R10010 Floating Point Chip Revision: 0.0
e Main memory size: 8,192 MBytes
e Instruction cache size: 32 KBytes
e Data cache size: 32 KBytes

We generated the memory usage statistics for our MinerTaur system using the
C/C++ sizeof() utility. We calculated the timing values using the C/C++
clock() function and the UNIX /bin/time function.

6.3.1 Memory Usage Evaluation

We derived the memory usage figures for the phonetic spelling CMM, the inte-
grated Hamming Distance and n-gram CMM and the word-document associa-
tion CMM using the C++ sizeof() function. The figures are tabulated in table

156



6.5. We do not include an exact figure for the growing hierarchical cell struc-
ture as the size is dependent on the complexity of the hierarchy; a more complex
hierarchy signifies a higher memory usage. Paradoxically, a more complex hier-
archy indicates more refined clustering which is more desirable for scoring the
words as the scores are much finer-grained and fewer words are grouped on the
same score. Hence, words awarded the same score will be more similar. The
hierarchy is written to a file periodically and the most contemporary hierarchy
is stored on disk and read in to the system during system initialisation so we
have not included the memory usage figure of the hierarchy as it is constantly
evolving. However, we do include the size of the tree and GCS files written to
disk after a training run of 10,000 epochs with 1,000 GCS cells underpinning
the superimposed hierarchy and 2,192 average word context vectors in the input
space. The files contain a representation of the tree hierarchy and the structure

and parameters of the GCS network, respectively.

6.3.2 Training Time Evaluation

We do not include a precise TreeGCS hierarchy generation timing as the genera-
tion process is not currently optimised while we consider possible improvements
or replacements (see chapter 7 for a discussion) and also the hierarchy generation
is a separate and incremental process. The hierarchy is written to disk period-
ically during generation and each time the IR system is initialised the most
contemporary hierarchy is read in from the file. However, we do include an ap-
proximate figure for a training run of 3,000 epochs on a 1,000 cell GCS network
with a hierarchy dynamically superimposed and with 2,192 average word context
vector inputs. We measured the training time for our MinerTaur system as: the
time to read in the GCS structure and superimposed hierarchy from a file stored
on disk; the time to label the TreeGCS cells with the synonym hierarchy words
using the average context vectors; the time to read in the spelling-word associ-
ations for the lexicon plus the time to read in the word-document associations.
To label the GCS cells, the system reads in a word and its associated average
context vector, finds the best matching GCS cell and labels that cell with the
word. The figures are given in table 6.7. In table 6.8 we provide a comparative
training time for the SMART system using the most commonly used SMART
vector format and no stemming. MinerTaur trains with no stemming so for an
authentic comparison we compare the non-stemmed SMART variant. We timed
the SMART system by calling the training routine from within a C++ program
and using the C++ clock() function to sample the system clock as the training
routine was called and immediately as training finished. By timing from within

a C++ program we are replicating our timing method.

157



6.3.3 Retrieval Time Evaluation

We perform timing comparisons for a series of retrievals with MinerTaur. We
provide a series of comparative figures: a bare-bones (‘basic’) system time with
no spell checking or synonym hierarchy traversal; a system with spell checking
incorporated; a system with word stemming activated and a system with syn-
onym traversal activated. This allows us to ascertain the proportions of the
overall system retrieval time attributable to each system module. We timed our
system by adding two clock() lines to the C++ code, one clock() that sampled
the system time after the last word of the user query was entered and a second
clock() that sampled the system time after the last matching document had

been output. The results are detailed in section 6.4.2.

6.3.4 Recall and Precision Evaluation

We pre-processed the Reuters’ dataset by removing all meta-information and
just storing the body text? (demarcated by the <BODY> <\BODY> tags) for each
document. We stored all documents regardless of whether they were from the
test or training set in the Reuters database. We use the 18,249 documents from
chapter 5 stored in a text file with one document per line. We could then use
the line number as the identifier for the document allowing us to use the UNIX
‘lines’ function to retrieve the required documents. The SMART system uses
the line number as the document identifier so this numbering approach ensured
regularity across all systems. SMART outputs the line identifier for the match-
ing documents and we could also exploit the line identifier to determine the bit
to set in the binary vector representing each document and output the numerical
identifier from the bits set in the thresholded output vector from MinerTaur.
We converted all text in the document file to lower-case as our spell checker
requires lower case. We ensured that all words and all punctuation marks were
separated by spaces to allow words and punctuation to be discriminated by any
text pre-processor. All systems are processing an identical text file to maintain

equivalence.

We compiled a list of all topic sets for all 18,249 documents using the UNIX
‘grep’ facility, sorting the list into order using UNIX ‘sort’ and then applying
the UNIX ‘uniq’ command to ensure no topic repetitions. We then selected 82
distinct topic sets as queries generally containing three words or more to ensure
that the matching document set is reasonably small and compact. Topic sets
with fewer than three topic terms produce too many matching documents. We
did include 2 queries of two words but the words were very specific and each
word matched few documents providing a narrow focus of retrieval. We ensured

minimal repetition of topics and ensured that each query was unique. We se-

2We stored the meta-information in a separate file to allow us to generate the topics and

queries for our evaluation.

158



lected all topic sets before commencing the evaluation to ensure impartiality
over the systems, we felt we may favour our MinerTaur system if we selected
any topic sets after evaluation had commenced. We also only selected queries
where at least one of the evaluated systems retrieved at least one correct match

in the top 15 matches and this left 66 queries from the initial set of 82 queries.

The default SMART system retrieves 15 best match documents for each query
so we commenced our retrieval and precision calculation by retrieving the top 15
documents. We also tried to limit the matching document set to fewer than 15
documents for each query as we felt that searching for more than 15 matching
documents was likely to produce human errors in the matching and counting
process. We adhered to the 15-match threshold for all but two queries that
had 16 and 23 matching documents respectively. We also felt that collating
more than 50 retrieved documents for each system configuration investigated
was likely to introduce human errors. We therefore calculate recall and preci-
sion figures for the systems for the top 15, top 20, top 30, top 40 and top 50

retrieved documents.

By evaluating a range of best matching documents, we eradicate any statis-
tical irregularities in the queries and eliminate any bias towards a particular
system. We ensured that we had maximal coverage of all topic sets and did
not favour any particular topic from the set of all topics. We also ensured that
for example, documents assigned the topics {copper, gold, lead, zinc} were re-
trieved with documents assigned the topics {copper, lead, gold, zinc} and all
other permutations of the four topic terms. We also matched topic subsets so
for example, when searching for topics {copper, gold, lead, zinc} we also re-
trieved documents that matched {copper, gold, lead, zinc, silver, platinum} and
any other supersets of the query words. We input identical queries to all sys-
tems evaluated, just a simple list of the topic words. All words were awarded
a score of 1 in MinerTaur to ensure equality as the Reuters’ dataset does not

differentiate between the topics so we do not attempt to impose any inequity.

The Reuters’ dataset was designed for classification where the documents are
trained against the topic sets. The terms used for the topics do not necessarily
occur in the document body texts that we are using for our evaluation, many
are hyphenated abbreviations, for example sun-oil for sunflower oil or veg-oil
for vegetable oil. We therefore decided to convert the topics to terms present in
our body text file. This benefits all systems equally as SMART and MinerTaur
both index using words in the text corpus only. For example, we converted
sun-oil to {sunflower} {oil}, pork-belly to {pork} {belly}, nat-gas to {natural}
{gas} and searched for the new terms separately. We did not conjoin {pork +
belly} as a phrase but searched for {pork} OR {belly}.

159



RELEVANT | NOT RELEVANT
RETRIEVED ANB ANB B
NOT RETRIEVED | AnB ANB B
A A

Table 6.1: Table from [107] identifying the relevant and retrieved sets.

We input each topic set (query) to each system in turn and counted the number
of correct matches and the number of false positive matches retrieved by each
system in the top 15, top 20, top 30, top 40 and top 50 best candidate matches.
We produced recall figures for each system evaluated, given in table 6.10 for
the top 15, top 20, top 30, top 40 and top 50 documents retrieved. We totalled
the number of correct matches retrieved (RELEVANT A RETRIEVED: |ANB|
from table 6.1) for all queries and divided this figure by the expected number of
relevant documents for all queries (RELEVANT |A|) giving equation 6.1 where
| | is the modulus function.

|AN B|
4]

RECALL = (6.1)

We also produced a precision figure for matching, given in table 6.11. We
calculated precision as the number of correct matches retrieved (RELEVANT A
RETRIEVED |ANB|) for all queries divided by the number of matches retrieved
(RETRIEVED |B|) giving equation 6.2 for the precision.

|AN B

PRECISION =
|B|

(6.2)

If all matches are correct then the precision will be 1.0. All SMART system
configurations and the two MinerTaur configurations with synonymy activated
(‘syn’ and ‘synStem’ described below) return the top 15 to top 50 documents.
For the third MinerTaur configuration, ‘basic’, we only retrieve the set of high-
est scoring documents, for example if there are 6 documents with the highest
score we return the top 6. We only return the top X when there are X or more
best matching documents. We found the sets of lower scoring documents were
often too large and this approach does not provide finer-grained scoring differ-
entiation so we only return the set of top matching documents. Documents are
simply scored according to the number of query words present. SMART and
our synonym system allow a finer-grained match due to their respective scoring
systems which permit a higher degree of scoring differentiation. If all correct
matches are retrieved by any configuration in the top X (where X ranges from 15
up to 50), we count the number of retrieved documents (RETRIEVED |B|) as
the number of documents up to and including the lowest ranked correct match-
ing document. For example if there are three matching documents assigned the

topic set represented by the query and they are retrieved at positions 1, 2 and

160



4 in the top 15 matches then we count four documents as retrieved; we exclude
the lower matches from the precision calculation when all correct matches are
found. For all systems we calculate precision from the top X documents in all

other cases.

The recall and precision figures for the Reuters-21578 Dataset [82] should be
considered from a relative perspective, system against system and not from
their absolute values. The topics attributed to each document are somewhat
arbitrary, inconsistent and objective. For example, document 2,085 (from our
numbering convention) contains the words copper, gold, lead, silver but has
the topic {earn} ascribed. Whereas the other documents ascribed the topics
{copper, gold, lead, silver} all contain the words and are in fact very similar in
content to 2,085. Another example anomaly are documents 3,311 and 14,684
from our numbering scheme that have the topic {oilseed} ascribed but oilseed
or rapeseed or similar are never mentioned in the documents. We also noted
that some documents do not have topics ascribed so may be recalled and de-
noted as incorrect matches for a particular query, even though, of course, they
may match the query if they had their topics assigned. There are also spelling
errors in the dataset. For example, document 13,274, from our numbering, has
the topic {aluminium} ascribed but the only occurrence of aluminium in the
document is incorrectly spelled. We did not attempt to spell check the cor-
pus due to the sheer size of the corpus and the number of proper names that
would render spell checking intractable. These anomalies all serve to reduce
the recall and precision values for all systems evaluated and we feel an absolute
value should only be considered for a consistent topic allocation. We do note
though, that all systems should be affected equally, so a relative comparison
is still valid. Therefore we ask the reader to compare the relative recall and
precision values of: our system with no synonyms (we call this variant ‘basic’
in our analyses, it is similar to a UNIX ‘grep’ best partial match); our system
with synonymy incorporated, we denote ‘syn’ in our analyses; our system with
stemming in conjunction with synonymy, we denote ‘synStem’ for our analyses
and the SMARTv11.0 system configurations.

We evaluate our system with the synonym hierarchy traversal switched off (‘ba-
sic’), with synonym traversal activated (‘syn’) and with the word stemming
activated in conjunction with the synonym traversal (‘synStem’) to compare
the effects on the recall and precision figures. We demonstrate the need for
synonym matching to permit paraphrased documents to be retrieved by noting
the higher recall and precision for the system with the synonym traversal acti-
vated. We also note the improved recall and precision when the word stemming
is activated in conjunction with the synonym hierarchy allowing word stemming

variants not specified in the query to be included in the retrieval along with their

161



synonyms, for example, if the query word is ‘grain’, the stemming variants are

{‘grain’, ‘grains’}.

For our evaluation, we clustered the average context vectors of the 2,192 most
frequently occurring words in the Reuters-21578 database [82]; words that occur
more than 100 times. This ensures that the context vectors generated for these
words are fully averaged and unbiased. If the word seldom occurs then the aver-
age context vector can be biased towards the initial vector representations and
is not a true mean. The more frequent the word, the closer the average context
vector will be to the true mean. We also reduced the input size for the TreeGCS
algorithm, as the underlying GCS algorithm is slow. It took approximately 220
hours to perform 9,000 epochs using the 2,192 average context vectors as in-
puts. Even though we can read in the data structure incrementally, sampling
the most contemporary hierarchy each time the IR system is run, we need to
allow the hierarchy to evolve sufficiently before it can be initially sampled. This
however, means that it is not always possible for us to generate synonyms for
query words. In our evaluation we generate synonyms where they are avail-
able but otherwise just have to rely on the actual query words. In chapter 7 we
discuss possible adaptations and alternative approaches for our hierarchical the-
saurus production to speed the training and evolution process. The hierarchy
generated from the 2,192 words is too complex to illustrate but we illustrate
three clusters below, (two complete clusters and a subset of a third cluster).
The first two complete clusters demonstrate the general qualitative excellence
of the clustering process we employ to generate the hierarchy. The final partial
cluster demonstrates one of the main problems of the approach, the inability
to differentiate word senses and the resultant clustering ambiguities produced.
In chapter 7, we discuss possible adaptations to the clustering process aimed at

overcoming such problems.
1. {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}

2. {January, February, March, April, May, June, July, August, September,
October, November, December, Calendar, Fiscal, Chapter}

3. {Act, Block, Expire, Guarantee, Pay, Become, Operate, Remain, Serve,
Post, Stand, Use, Yield, Advance, Design, Apply, Begin, Continue, Delay,

Exercise, Test, Consider, Decide, Go, Resume, Be ...}

The first two clusters can be deemed excellent quality regardless of the analysis
method used. The final partial cluster contains a mixture of words, many pol-
ysemic or representing multiple parts-of-speech. All senses or parts-of-speech
are merged in to a single average context vector for the word and thus distort
the average vector to misrepresent the word. If all senses or at the least all
parts-of-speech could be separated and a vector produced for each, then the

vectors would not be distorted and the clustering would be improved. We also

162



note that we have not separated any proper names and these are all included in
the average context vector generation and synonym hierarchy production. We

posit recommendations in the final chapter for possible solutions to this problem.

We elected to compare our MinerTaur system against the SMART system as
we felt SMART is a benchmark system, extensively examined in the IR litera-
ture. It was documented initially in the late 1960’s and has been developed and
refined since. The source code for the SMART system is available for download
from the World Wide Web and is thus well known. The SMART system has
always placed highly in the TREC conference performance comparisons and is

place consistently in the top 5 systems evaluated [102] and [103].

For the SMART system the user must write a specification file to overwrite
the default specifications with their own requirements. We wrote a minimal
specification file to preserve SMART default settings for most SMART param-
eters. For all evaluations, any reader familiar with the SMART system and the
settings will know the default specifications we have used. They are listed in the
documentation accompanying the system downloaded from [99]. The only set-
tings we specified were for the document and query vectors, the vector matching
process and whether word stemming should be activated. We also elected to
index only words and proper nouns, which is an identical indexing approach to
MinerTaur for the evaluated corpus. We hope that by maintaining the default
values we have not biased the investigation and have used a known benchmark
system. All configurations eliminate stop-words from the indexing and match-
ing processes. We used the standard SMART stop-word list; we also used this
stop-word list as the stop-word list for our system to maintain uniformity. We
used the SMART system in interactive mode for all retrievals, entering each
query word separated by a space and terminating the query with a ‘.”. All con-
figurations of the SMART system used for our empirical evaluation are detailed
below. We describe the SMART configuration using identical notation to the
SMART documentation [99] and the published SMART papers for the vector

formats.

1. ‘SMARTnnn.nnn’ We deactivated word stemming so all document vector
terms are indexed exactly as the words appear in the text corpus. The
documents and queries are converted to vectors represented by the nnn
format and the inverted file index is constructed in the nnn format. nnn

format vectors are:
(a) none - the term frequency (tf) component is calculated as:
new tf = current tf (6.3)
(b) none - the document weight is calculated as:

new weight = new tf (6.4)

163



(c) none - there is normalisation:

result weight = new weight (6.5)

All documents and queries are matched to the nnn format. This format
essentially counts the number of times any query word occurs in each doc-
ument and assigns the document score as the matching query word count.
The documents are assigned integer scores. We included this configura-
tion as a control mechanism to demonstrate the inadequacy of merely
using a count of the number of matched words as a similarity metric for
an IR system. The format scores comparatively poorly for both recall and

precision.

. ‘SMARTatc.atc’ Again we deactivated word stemming for this configura-
tion. The documents and queries are converted to vectors represented by
the atc format and the inverted file index is constructed in the atc format.

Atc format vectors are:

(a) augmented normal form - the tf component is calculated as:

tf
tf = 0. ) ;
new 0.5+0.5+ maz(tf in vector) (6.6)

(b) tfidf - the document weight is calculated as:

num docs
new weight = new tf x log— - (6.7)
tf in entire corpus
(c) cosine - the entire vector is normalised:
new weight
result weight = W wele (6.8)

\/ S, (new weights®)

Given a new query, SMART converts it to an atc vector, and then uses
a cosine vector similarity measure to compare it to the documents in the
vector space. The resultant similarity is scored between 0 and 1. We
included this configuration in our empirical investigation as it is commonly

used and quoted in the literature.

. ‘SMARTatc.atcStem’ - this format is similar to SMARTatc.atc but SMART
word stemming is activated. In SMART stemming, all corpus words are
stemmed prior to indexing and only the stems are indexed. The query is
also stemmed and matching performed according to matching word stems.
This contrasts to our stemming approach where the system suggests to the
user a list of stemming variants generated from a stem initially input by
the user. The user may then select which stemming variants they wish
to use in the matching procedure. We hope this user selection will elim-
inate such anomalies as ‘trainers’ being stemmed to ‘train’ and the user
presented with train timetables rather than sports shop links as occurs in

unconstrained stemming.

164



4. SMARTatc.ntcStem - this format is analogous to SMARTatc.atcSTEM
but the queries are converted to the ntc vector format. Both the docu-

ments and the inverted file list remain as atc vectors.

(a) none - the term frequency (tf) component is calculated as:

new tf = current tf (6.9)

(b) tfidf - the document weight is calculated as:

num docs

ew weight = new tf [ 6.10
new weig new Ogtf in entire corpus ( )
(c) cosine - the entire vector is normalised:
) new weight
result weight = (6.11)

\/ > ilnew weights®)

Salton & Buckley [93] recommend this format in their paper. For the
document vectors they recommend using the augmented normalisation for
documents comprising technical vocabularies and meaningful terms such
as the Reuters’ dataset, they recommend the tfidf weighting format and
using the cosine normalisation when the documents vary in length as they
do in the Reuters’ dataset. For the queries they recommend using the word
frequency count to provide greater discrimination among query terms, the
tfidf weighting format and any normalisation as this is unimportant for

overall performance.

. SMARTInc.ltcSTEM - this vector format was used in the SMART system
for the TREC 2 evaluation [12] where the SMART system was ranked
fourth of the systems evaluated [102]. The document vectors and inverted
file are stored in the Inc variant and the queries are converted to the ltc

variant. Stemming is applied to all document words and all query words.

(a) log - the term frequency (tf) component is calculated as:

new tf = In(tf) + 1.0 (6.12)

(b) mnone - the document weight is calculated as:

new weight = new tf (6.13)

(c) cosine - the entire vector is normalised:

ight
result weight = oW wele A (6.14)
\/ S, (new weights®)
(a) log - the term frequency (tf) component is calculated as:
new tf = In(tf) + 1.0 (6.15)

165



Meta-Topic Matching Queries | Correctly Matching Documents
Agriculture 25 81
Finance 12 12
Metallurgy 11 27
Energy 8 14
Miscellaneous 10 21

Table 6.2: Table listing the meta-topic categories, the number of queries in each

category and the number of documents assigned to the queries in the category.

(b) tfidf - the document weight is calculated as:

num docs

ight = tf* 1 6.16
Hew welg new 9 tf in entire corpus ( )
(c) cosine - the entire vector is normalised:
ight
result weight = oW e (6.17)

\/ S, (new weights®)

We use default settings for SMARTv11 in all other cases.

Query Analysis

We investigate the statistical correlations and thus the statistical validity of the
66 Reuters’ topic queries by first grouping the queries according to the meta-
topic of the set of topic words. We use a majority voting system to assign the
meta-topic categories, i.e., the category is the meta-level topic represented by
the majority of the topic words in the query. If there is no obvious majority we
assign the query to the miscellaneous category. We evaluate the recall figures
for each meta-topic category and for each system configuration by evaluating
the top 15 documents retrieved by each system for all queries belonging to each
category. We input each query in the meta-topic category to each system con-
figuration in turn and retrieved the top 15 matches. We counted the number of
correctly matching documents in the top 15 matches and calculated the recall for
each system as the total correct matches retrieved for all queries in the category
divided by the expected number of correct matches as assigned by the Reuters’
dataset. We can pinpoint whether the queries in each meta-category are favour-
ing or penalising any system. The meta-topics, the number of matching queries
and the number of documents correctly matching those queries according to the

Reuters’ topic assignments are given in table 6.2.

We further investigate the statistical correlations of the Reuters’ query set by
categorising the queries according to the number of correctly matching docu-
ments for each query. We calculate the recall figures for each system configu-

ration for each category of matching documents (1, 2 and 3 or more) using the

166



No. of Matching Documents

Queries in Set

Correctly Matching Documents

1
2

3 or more

40
11
15

40
22
99

Table 6.3: Table listing the categories, the number of queries in each category

and the number of documents assigned to the queries in the category.

Number of Words in Query | Queries in Set | Correctly Matching Documents
20r3 11 34
4 17 46
5 16 43
6 13 21
7 or more 9 11

Table 6.4: Table listing the number of words in each query, the number of
queries in each category and the number of documents assigned to the queries

in the category.

top 15 matches returned by each system for each query input. We can identify
if any system is unduly favoured or unduly disadvantaged by queries with a spe-
cific number of matching documents. The number of queries and the number of

correct matching documents are tabulated in table 6.3.

Our final investigation of the statistical correlations of the Reuters’ query set
is by categorising the queries according to the number of words in each query.
We calculate the recall figures for each system configuration for each category
of query words (2 or 3, 4, 5, 6 and 7 or more) using the top 15 matches returned
by each system for each query input. We can identify if any system is unduly
favoured or unduly disadvantaged by queries with a specific number of query
words. The number of queries and the number of correct matching documents
are tabulated in table 6.4.

Spelling Analysis

We perform a series of retrievals using MinerTaur with spelling switched off to
compare the effect on the recall and precision figures. We compared the effec-
tiveness of our spell checker against comparative and benchmark spell checkers
in chapter 4 and noted the superior recall of our integrated modular approach,
superior to benchmark spell checkers such as MS Word 2k and equivalent to the
highest performing alternative, Aspell. In this chapter, we effectively demon-
strate the necessity of a spelling pre-processor module to identify query word

spelling errors. We reveal the effect on recall and precision of not detecting and

167



Component Information Capacity Memory Usage

(bytes)
Spelling CMM 48,766 spelling-word associations 3,025,892
Phonetic CMM 48,766 phonetic codes 780,868
Word-Document CMM | 890,071 word-document associations 19,464,422

Table 6.5: Table listing the memory usage statistics for the modules in our

system.

correcting spelling errors prior to the document retrieval phase. We repeat the
query run of 66 topic queries and retrieving the top 15 candidate documents
but with one word incorrectly spelt in each query. We studied each query and
pre-selected the word we felt would be most likely misspelled by a user. We
note that we are performing partial match for all queries so the query may not
depend on the misspelt word. The misspelt word may not discriminate in the
query; it may not be present in any of the set of best matches or may be present
in all. The discriminatory power of the correctly spelled word with respect to
the best matching documents influences the misspelt word’s effect on the recall
and precision figures. However, the importance of the spell checker should still

be revealed across the 66 queries.

6.4 Results

6.4.1 Memory Usage

For our integrated, modular MinerTaur system we calculated the memory usage
with the C++ ‘sizeof()’ function. The statistics are given in table 6.5.

We compare the file size for the word file and word-document association list
file against the spelling (Hamming + n-gram) CMM and the word-document
CMM to evaluate the memory requirement of the data structure against the
data stored. An ideal data structure should have an equivalent or lower over-
head without introducing any storage errors such as false positive matches. We
could subdivide the vector sets and use multiple smaller CMMs for each sys-
tem module, we could reduce individual CMM storage by using binning or we
could use multiple bits set to compress the CMM size and thus the CMM’s stor-
age overhead (see chapter 4 for a discussion of the alternative representations).
However, to maintain perfect retrieval with no false matches we use orthogonal
vectors and single CMMs for each module (a dual CMM for the hybrid spell
checker and a single word-document CMM) for the data capacity of the Reuters
corpus. A larger corpus would necessitate subdivided or compacted data struc-

tures. The storage overhead of the SMART system may become intractable

168



Component | Memory Usage | File size
Spelling CMM | 3,025,892 445,087
Word-document CMM | 19,464,422 14,469,449

Table 6.6: Table listing the CMM sizes and the file sizes of the corresponding
data.

Component Information Capacity Training Time

(seconds)
Spelling CMM 48,766 spelling-word associations 25
Word-Document CMM | 890,071 word-document associations 18
TreeGCS hierarchy GCS + hierarchy and 2,192 words 87

Table 6.7: Table listing the training times for the modules in our system.

without modification for a very large dataset as the matrix of document vectors
and the inverted file list of words become too large to read into memory as
single structures. Finally we provide an indication of the file size for the stored
TreeGCS hierarchy for a network of 1,000 GCS cells after 10,000 training epochs
with 2,192 input vectors. This is a notional figure dependent on the complexity
of the hierarchy dynamically imputed by the TreeGCS algorithm but is included
as an indicative value. The size was 8,672,517 bytes for the GCS network and
16,861 bytes for our superimposed tree. The GCS file includes the parameters
for each GCS cell (ID, winning count, square deviation, 630-D vector, number
of connections, list of cells connected to). The tree file contains a representation
of the cluster tree (parent-child and sibling-sibling links) and a list of the GCS

cells in each cluster.

6.4.2 Timing Statistics
Training Time

In table 6.7 we detail the training times for each component of our integrated,
modular MinerTaur system. We compare the total training time for MinerTaur
versus SMART using the SMARTatc.atc configuration. The SMARTatc.atc
training time includes the time to produce the nnn representation and convert
all vectors to the atc format with no word stemming. The figures are listed in
table 6.8. We note that the training time to infer the synonym hierarchy using
the TreeGCS algorithm with 1,000 cells and 2,192 input vectors for 3,000 epochs
is approximately 70 hours. This is a one-off process, run to generate a synonym
hierarchy that is stored on disk and read in to the MinerTaur system during the
training time (87 secs) in table 6.7. We discuss potential speed enhancements

for the entire TreeGCS methodology in chapter 7.

169



System Training Time (seconds)
MinerTaur 130
SMART 289

Table 6.8: Table listing the training times for our system compared to SMART.

Retrieval Time

We input a series of queries with 2, 4, 6, 8, 10 and 12 words in the queries
and compared the retrieval times for our ‘basic’ system. We input each query
ten times and calculated the average retrieval time over the 10 retrievals. We
also activated and deactivated the synonym traversal, word stemming and spell
checking to measure the affect on the overall retrieval time of each component.
We note that not all words are present in the synonym hierarchy so we record
the number of words that were present in the synonym column as this affects
the number of times the synonym hierarchy is traversed and hence the retrieval
time for the query. We also note that we indicate the number of misspelt words
as again this impacts on the retrieval time. We perform the 6-word match with
spelling activated and with one to six misspelt query words to note the affect of
the spelling module exact match in proportion to the overall system retrieval.

All retrieval figures are listed in table 6.9.

6.4.3 Recall and Precision
MinerTaur versus SMARTv11

We input the 66 topic queries we extracted from the Reuters corpus to the
systems in turn and counted the correct number of documents returned (A)
from table 6.1 and the number of false positives returned for each query in the
top 15 to top 50 matches. These two figures added gives the total retrieved for
each query (B) from table 6.1. If all correct matches were found inside the top
X (where X ranges from 15 to 50) then we calculated the false positives as the
number of incorrect matches between the first document and the last correct
match. There are a total of 155 correct matching documents for all queries as
identified by the Reuters’ topic assignments for the top 15 matches, 161 for the
top 20 and 164 for the other evaluations. We list the recall and precision figures
in table 6.10 and table 6.11 respectively and include graphs for the recall and

precision in figures 6.5 and 6.6 respectively for easy comparison.

Query Analysis

We identify any statistical correlations and biases in the queries by categorising
the queries by meta-topic, the number of matching documents and the number
of words in the query and calculating recall figures for the top 15 documents

retrieved by each configuration of SMART and our MinerTaur system. We

170



Query words | Synonyms | Stemming | Spelling Retrieval Time

(Present) (Incorrect) (seconds)
2 word N N N 0.225
4 word N N N 0.422
6 word N N N 0.621
8 word N N N 0.823
10 word N N N 1.035
12 word N N N 1.277
2 word Y (0) N N 0.227
4 word Y(4) N N 23.363
6 word Y(5) N N 35.328
8 word Y(4) N N 47.676
10 word Y (6) N N 59.445
12 word Y (4) N N 77.020
2 word N Y N 0.222
4 word N Y N 0.445
6 word N Y N 0.661
8 word N Y N 0.875
10 word N Y N 1.109
12 word N Y N 1.360
6 word N N Y(1) 0.775
6 word N N Y(2) 0.917
6 word N N Y(3) 1.006
6 word N N Y (4) 1.136
6 word N N Y(5) 1.432
6 word N N Y(6) 1.579

Table 6.9: Table listing the retrieval times of the various modules of our system.
The synonym column denotes whether synonym traversal was activated and how
many words were present in the synonym hierarchy (i.e., how many times the
hierarchy was traversed), the stemming column denotes whether stemming was

activated and the spelling column denotes whether input words were misspelt

and how many were misspelt.

171




System 15 20 30 40 50
SMARTnnn.nnn 0.245 | 0.292 | 0.402 | 0.494 | 0.506
SMARTatc.atc 0.413 | 0.447 | 0.518 | 0.579 | 0.646
SMARTatc.atcSTEM | 0.452 | 0.484 | 0.567 | 0.622 | 0.652
SMARTatc.ntcSTEM | 0.464 | 0.511 | 0.575 | 0.634 | 0.694
SMARTInc.ltcSTEM | 0.477 | 0.534 | 0.610 | 0.677 | 0.713

Basic 0.555
Syn 0.665 | 0.667 | 0.683 | 0.738 | 0.762
SynStem 0.729 | 0.745 | 0.762 | 0.780 | 0.805

Table 6.10: Table listing the recall figures for the systems and their respec-
tive configurations. For ‘basic’ we only retrieved the single set of best partial

matching documents so only a top 15 figure is given.

System 15 20 30 40 50
SMARTnnn.nnn 0.044 | 0.041 | 0.042 | 0.041 | 0.036
SMARTatc.atc 0.089 | 0.077 | 0.066 | 0.059 | 0.056

SMARTatc.atcSTEM | 0.100 | 0.089 | 0.078 | 0.070 | 0.062
SMARTatc.ntcSTEM | 0.110 | 0.101 | 0.085 | 0.075 | 0.069
SMARTInc.ltcSTEM | 0.111 | 0.102 | 0.086 | 0.078 | 0.071

Basic 0.340
Syn 0.229 | 0.206 | 0.165 | 0.150 | 0.136
SynStem 0.282 | 0.255 | 0.215 | 0.186 | 0.167

Table 6.11: Table listing the precision figures for the systems and their respec-
tive configurations. For ‘basic’ we only retrieved the single set of best partial

matching documents so only a top 15 figure is given.

172



Recall Figures for the System Configurations Evaluated
l T T T T T T T

0.9

0.8

0.6 |-

05

Recall

03 |

0.2 -

0 1 1 1 1 1 1 1 1
nnn.nnn atc.atc  atc.atcST atc.ntcST Inc.ltcST Basic Syn SynStem
System & Configuration

Figure 6.5: Graph illustrating the recall figures for all system configurations
evaluated for the top 15 to top 50 matches retrieved. The recall figures are

given in table 6.10.

can thus pinpoint whether any category is favouring or penalising any system
configurations. We input each query to each system variant in turn. We counted
the number of correct matches (as identified by the Reuters’ dataset’s topic
assignments) in the top 15 documents. The recall graph for the queries grouped
by meta-topic is given in figure 6.7, the graph for the recall figures for the
queries grouped by the number of matching documents is given in figure 6.8
and the graph for the recall figures for the queries grouped by the number of
query words is given in figure 6.9.  We also include three further stacked
column graphs in figures 6.10, 6.11 and 6.12 illustrating the contribution of
each category to the total documents retrieved for each system configuration
for the meta-topic categories, the number of matching document categories and
the number of words in the query categories, respectively. The final column
in each graph illustrates the maximum possible retrieval for each category as
defined by the Reuters’ topic assignments and forms a benchmark to illustrate
the expected contributions of the categories to the total documents retrieved

for each system configuration.

Spelling

We investigated the importance of our spell checker by noting the effect on
the recall and precision figures with the spell checker activated and deactivated,
given in table 6.12. We repeated the 66 topic queries used for our previous recall

and precision investigations. We input each query to the system in turn with

173



Precision Figures for the System Configurations Evaluated

1 T T T T T T T T
Top 15 —+—
Top 20 --x---
09 | Top 30 --—-*--- o
Top 40 &
Top 50 ——m-—
0.8 | B
0.7 | —
0.6 - 4
o
2
8 05} .
o
a
0.4 E
0.3 - 4
0.2 B
0.1 B
0 1 1 1 1 1 1 1 1

nnn.nnn atc.atc  atc.atcST atc.ntcST Inc.ltcST Basic Syn SynStem
System & Configuration

Figure 6.6: Graph illustrating the precision figures for all system configurations
evaluated for the top 15 to top 50 matches retrieved. The precision figures are

given in table 6.11.

System Relevant | False Matches | Total Retrieved Recall | Precision

4 Bl | |4/155] | |4/B|
Spelling Off 58 363 421 0.374 0.138
SpellingOn 86 171 253 0.555 0.340

Table 6.12: Table listing the recall and precision figures for our system with

spelling activated and deactivated.

spelling activated and deactivated. We counted the number of correct matches
and the number of false positives in the top 15 documents. If all correct matches
are found inside the top 15 then we counted the number of false positives as the
number of incorrect matches in between the first matching document and the

last correct match as previously.

6.5 Analysis

6.5.1 Memory Usage

We demonstrated in chapter 5 that our word-document CMM compared favourably
with an inverted file index and hash table representations for memory usage.
We demonstrated in chapter 4 that our CMM lexicon representations compared
favourably with other lexicon storage techniques with respect to their memory

overheads. From table 6.6, the spelling CMM requires 6.8 times more memory

174



Recall Figures for the System Configurations Evaluated

l T T T T T T~\\ T T
09 T x .
0.8 B
0.7 b
0.6 [ i
8
g 05 B
14
0.4 -
0.3 i
0.2 PN /// o Agriculture Queries —+— o
x Finance Queries ---x---
o Metallurgy Queries ------
0.1 Energy Queries 8-~ o
Misc. Queries ——m—
0 1 1 1 1 1 1 1 1

nnn.nnn atc.atc  atc.atcST atc.ntcST Inc.ltcST Basic Syn SynStem
System & Configuration

Figure 6.7: Graph illustrating the recall figures for all system configurations

evaluated for the top 15 matches with queries categorised by meta-topic.

than the lexicon data file. This is mainly due to the overheads of the CMM
data structure. The memory requirement for the word-document CMM and
the corresponding data file are much closer, the CMM having 1.35 times the
memory usage of its corresponding data file. The CMM structure overheads
form a much lower proportion of the overall storage and are much less signifi-
cant in the storage requirement. Even though CMMs are memory conserving,
the data structure overheads when only a small data file is stored and the data
file requires relatively many input rows in comparison to its size can exacerbate
the memory expenditure. We can see from the file sizes that our superimposed
hierarchy requires minimal storage with only a 16,861 byte file to represent the
hierarchy. The GCS structure needs to store a 630-D vector for each cell so
the storage overhead is higher with a corresponding file size of 8,672,517 bytes.

Nevertheless, we feel this overhead is acceptable.

6.5.2 Training Time

From table 6.8, the SMART system takes 222% longer to train than MinerTaur
from the prepared data. We should note that once both systems are trained,
they could both perform multiple retrieval runs. SMART can be run repeatedly
without recourse to retraining the document vectors and inverted index unless
the system needs altering in some way such as a new database or a change of
vector format. SMART writes the document vectors and inverted index to disk
in a binary format that may be read rapidly into the system. In fact, once the

document vectors and inverted index are generated, SMART is ready to query

175



Recall Figures for the System Configurations Evaluated

1 T T T T T T T T

0.9

0.8

0.6 |-

05

Recall

03 |

0.2 Queries matching 1 document —+— A
Queries matching 2 documents ---x---
Queries matching 3+ documents ------

0 1 1 1 1 1 1 1 1
nnn.nnn atc.atc  atc.atcST atc.ntcST Inc.ltcST Basic Syn SynStem
System & Configuration

Figure 6.8: Graph illustrating the recall figures for all system configurations
evaluated for the top 15 matches with queries categorised by the number of

matching documents.

in less than 1 second. MinerTaur needs to be trained on each initiation taking
130 seconds; we intend the system to be left running and only retrained if any
information such as the word-document association list changes. We have men-
tioned previously that we did not include the TreeGCS training in the training
time for our MinerTaur system as we have not yet optimised this module and
it may also be trained incrementally with the system sampling the most con-
temporary hierarchy each run-time. We feel MinerTaur is thus faster to train
unless the system needs to be stopped and started repeatedly, requiring multiple

training runs where SMART would be faster to train.

We have tried various approaches to speed the training of the algorithm includ-
ing using the previous winner approach which is similar to a speedup exploited
for SOMs [58], [55]. We store the identification of the winning cell for each
input vector in an array. On the next epoch, if the previous winning cell (stored
in the array) was closer to the input vector than any of its directly connected
GCS neighbours then we set the new winner as the previous winning node.
If the previous winner is not closer than any neighbour then we perform the
usual traversal through the GCS topology to determine the winner. Again, we
store all new winning cell identifiers in the array and repeat the process on each
successive epoch. This assumes that if the previous winner is closer than its
neighbours to the input vector then the previous winner is the closest node to

the input vector. However, this had an adverse effect on the hierarchy quality

176



Recall Figures for the System Configurations Evaluated

1 T T T T T T n hal
0.9 ; P .

0.8 - ”m‘ // |

| N Som
¥ . :

0.6 |-

05

Recall

03 |

02r ¥ Queries comprising 2 or 3words —+—
Queries matching 4 words ---x---
Queries matching 5 words ---%---
0.1 Queries matching 6 words 8-+ o
Queries matching 7+ words ---m—

0 1 1 1 1 1 1 1 1
nnn.nnn atc.atc  atc.atcST atc.ntcST Inc.ltcST Basic Syn SynStem
System & Configuration

Figure 6.9: Graph illustrating the recall figures for all system configurations
evaluated for the top 15 matches with queries categorised by the number of

matching documents.

and the topology generated was very dissimilar to the standard approach. In
the SOM there is a more regular topological configuration of neighbouring cells
such as a square or hexagonal configuration that surrounds the central cell. In
the GCS structure all neighbours may be situated in the vector space on one
side of the previous winning node so the node may appear closer than the neigh-
bours to the input vector but yet not be the closest node as another indirectly
connected is closer. We also tried reducing the precision of the average context
vectors processed by the TreeGCS algorithm from ‘doubles’ to ‘floats’ but this
introduced only a negligible speedup. We attempted to convert the real-valued
average context vectors to a binary representation but this lost too much ac-
curacy. The hierarchical cluster topology generated by the binary vectors was
affected unduly with little similarity between the real-valued cluster topology
and the binary topology and also little similarity between the clusters produced,

both in the number of clusters and their contents.

6.5.3 Retrieval Time

Examining table 6.9, our retrieval is O(n) where n is the number of query words.
For a simple query, the retrieval time is approximately 0.1 * numberOfWords
seconds. We can see that the increase in retrieval time when stemming is added
to a simple query is negligible. This is to be expected, as the algorithm we use
for stemming is extremely rapid. The system only requires a single input to

the lexicon CMM and the retrieval of all matched words by using the indexes

177



Recall - Queries Grouped by Meta-Topic
180
160 -
B Miscellaneous
” 140 14 Energy
'qc: 120 | mMetallurgy
% 100 |@Finance
o M Agriculture
O 80
o
° 60 =
2
40 -
0 .
nnn.nnn ac.atc atc.acSt atc.ntcSt Inc.IteSt basic syn synStem Max
System & Configuration

Figure 6.10: Stacked column graph illustrating the contribution of each query
category for the top 15 matches with queries categorised by their respective
meta-topics. The right-hand column represents the maximum number of doc-
uments associated with each query category as defined by the Reuters’ topic

assignments.

of the bits set in the thresholded output vector to retrieve the list of stemming
variants. The spell checking retrieval adds a small proportion of additional time
but the overhead, while more than the exact match required for stemming, is
still acceptable. Our spell checking module is slowed by our shifting n-gram as
we stated in chapter 4. This is slower than the conventional non-positional n-
gram but we have demonstrated the higher recall of our shifting n-gram and also
noted that the shifting n-gram integrates with the Hamming Distance whereas
the conventional non-positional n-gram would require a separate CMM to func-
tion, increasing the system storage overhead. We therefore feel the advantages of
the shifting n-gram mitigate the speed penalty. The number of matching words
affects the spelling retrieval time. If there are many possible matches then re-
trieval is slowed more than for a misspelt word with few possible matches. There
will be more bits set in the thresholded output vectors of the spelling module’s
two CMMSs so more bit position indexes will have to be matched to determine
the matched words. However, we feel that a retrieval time of less than 2 seconds
per query is a suitable benchmark [74] and for a 6-word query with 6 misspelt

words, retrieval was still below this benchmark.

The only really slow retrieval speed derives from the synonym hierarchy traver-

sal. We feel the speed of retrieval is unacceptably slow for this method. As we

178



Recall - Queries Grouped by No. of Matching Docs

180

160
M 3 or more

02
120 ym1

140

100

80 -

60

40

20 j
0 4

nnn.nnn atc.atc atc.atcSt atc.ntcSt Inc.ItcSt basic syn synStem Max

System & Configuration

No. of Documents

Figure 6.11: Stacked column graph illustrating the contribution of each query
category for the top 15 matches with queries categorised by the number of
matching documents. The right-hand column represents the maximum number
of documents associated with each query category as defined by the Reuters’

topic assignments.

have many criticisms of the speed of this module we have not yet optimised the
retrieval. We can identify many possible speed optimisations that will improve
retrieval speed. An obvious adjunct would be an array of pointers containing
the alphabetically sorted array of all words in the synonym hierarchy. Each
array word could point to the GCS cell or tree node that represents that word.
At present we have to search to locate initially whether a word is present in
the synonym hierarchy. If the word is present, we have to return the GCS cell
that represents that word. We can then commence hierarchy traversal from
that GCS cell. The array would eliminate the searching and hence speed the
retrieval time. If two query words map to the same GCS cell or even the same
GCS cluster, we can eliminate repetitious searches and use the scores from the
previous search to speed the new traversal. If the new word maps to the same
GCS cell, we can reproduce the scoring exactly. If the new word maps to the
same cluster but not the same cell, we can calculate the scores for the word
cluster but re-use the synonym hierarchy traversal scores as these are identical.
We have already noted that we can superimpose the vectors for all words in
each cluster, which would speed retrieval rather than serially inputting each
vector. We noted in chapter 5 that CMMs were slower than comparable data
structures for serial retrievals but much faster for parallel partial matching. By

superimposing vectors, we can replicate parallel matching and thus speed the

179



Recall - Queries Grouped by No. of Words

180
160 -
E 7 or more
140 H
@ 06
$ 120 {|m5
€
3 100 {4
8 m2or3
©
=)
=

nnn.nnn atc.atc atc.atcSt  atc.ntcSt  Inc.ltcSt basic syn synStem Max
System & Configuration

Figure 6.12: Stacked column graph illustrating the contribution of each query
category for the top 15 matches with queries categorised by the number of
words in the query. The right-hand column represents the maximum number of
documents associated with each query category as defined by the Reuters’ topic

assignments.

retrieval process.

6.5.4 Recall and Precision
MinerTaur versus SMARTv11

The first point we would like to make is how the evaluation highlights the crit-
icality of the vector format selection for document and query vectors in vector
methods such as the SMART system. The vector configuration has a profound
influence on the recall and precision figures and may be cited as a criticism
of this technique as the user may not know in advance which configuration to
select for their data instead having to rely on a heuristic evaluation to identify

the optimal vector format.

From tables 6.10 and 6.11 and figures 6.5 and 6.6, we can see the higher re-
call and precision figures achieved by our MinerTaur system compared to the
SMART configurations for 66 Reuter’s queries. There is a significant improve-
ment in the recall and precision figures for MinerTaur compared with all SMART
variants. We can also observe the improvement in recall and precision when the
synonym traversal ‘syn’ and when the synonym traversal in conjunction with

the stemming module ‘synStem’ is added to the ‘basic’ system.

180



We only retrieved the single set of top matching documents for our ‘basic’
system so the recall and precision figure remains static across all evaluations.
Often there are many documents in the second best set of matches. The ‘basic’
system cannot discriminate between these, as the scoring is not sufficiently fine-
grained so we elected to just retrieve the single best matching set of documents.
The evaluation was intended to demonstrate the expected recall and precision
achieved by retrieving the set of documents representing the best partial match
of the query words. We note that the ‘basic’ system has the highest precision
figure of the systems evaluated. For most queries (61 of 66) this returned less
than 15 documents in the set. All other systems were returning the top 15 and
up to the top 50 matches except where all correct matches were found in which
case the document up to and including the lowest ranked correct match were
returned. This gives the ‘basic’ system a higher precision due to the smaller
matching sets. The highest-ranking SMART variant, ‘SMARTInc.ltcSTEM’,
only surpasses the basic system’s top 15 recall figure when the top 30 documents

retrieved, double the number of documents retrieved for our ‘basic’ system.

Analysing the recall and precision graphs in figures 6.5 and 6.6 respectively,
all system variants (excluding our ‘basic’ system) have an increasing recall and
conversely a decreasing precision as the number of documents retrieved for each
query increases from 15 to 50. This is exactly as we would expect as the higher
number of retrievals increases the probability of retrieving more correct matches
but paradoxically increases the number of false positives if the correct match is
not found and thus decreases the precision figure. The highest ranked SMART
variant, ‘SMARTInc.ltcSTEM’, has a lower recall figure for the top 50 docu-
ments than our ‘synStem’ configuration achieves by retrieving only the top 15
documents. Our ‘synStem’ correctly identifies 113 of 155 correct matches in
the top 15 with ‘SMARTInc.ltcSTEM’ retrieving 117 of 164 documents in the
top 50. For the precision, all variants of our MinerTaur system exceed the
highest-ranking SMART precision figure for all evaluations. For the top 50
matches, our ‘synStem’ variant retrieves 789 documents of which 132 are cor-
rect matches. ‘SMARTInc.ltcSTEM’ retrieves 1,654 documents of which 117
are correct matches for the top 50 documents retrieved per query. Our ‘syn-
Stem’ variant retrieves fewer documents in total for the top 50 matches (789
documents in total) than ‘SMARTInc.ltcSTEM’ retrieves in total for the top 20
matches, retrieving 841 documents. We also note that adding global stemming
to the ‘SMARTatc.atc’ configuration increased the recall and precision figures
slightly by 0.039 and 0.011 respectively but adding user-selected stemming into
our MinerTaur system induced a more marked increase in both recall and preci-
sion of 0.064 and 0.053 respectively. We feel our stemming approach of allowing
the user to select from a list is more effective than global word stemming that

can often introduce errors into the stemming process, such as stemming ‘train-

181



ers’ to ‘train’. We note that we did not select the word stems with any bias
towards the dataset, we attempted to select the stemming variants that we felt

were most similar to the word stem, such as plurals.

Next we analyse just the top 15 matches and the queries where the Miner-
Taur or SMART systems failed to find a single correct match. For the 66
queries, there was 1 query when all SMART configurations found one correct
match (of two correct matches) and all configurations of our system failed to
find a single correct match. Conversely, there were 17 queries when ‘synStem’
found correct matches but ‘SMARTInc.ltcSTEM’ failed, the best performing of
the SMART configurations. The vast majority (14) of these queries had just
one correct matching document as indicated by the Reuters’ topic assignments.
Paradoxically, figure 6.8 illustrates that ‘SMARTInc.ltcSTEM’ has highest re-
call for queries matching 1 document so these queries are not disadvantaging the
SMART system. Essentially, ‘synStem’ identified matches on 16 more queries
than ‘SMARTInc.ltcSTEM’. There were 21 queries where ‘synStem’ found more
correct matches then ‘basic’ and 2 queries where conversely ‘basic’ found more
correct matches than ‘synStem’. For the latter, the ‘basic’ system found the
single correct matches for two queries where the addition of synonym traversal
and stemming boosted the scores of other documents and caused the single cor-
rect match to fall out of the top 15 matches. ‘SynStem’ outperforms the ‘basic’
configuration by identifying correct matches when ‘basic’ fails to find any on 19

queries

Analysing the graphs in figures 6.8 and 6.11, for all systems with the excep-
tion of ‘SMARTnnn.nnn’ the queries matching 1 document (as assigned by the
Reuters’ dataset) induced the highest recall figure. For our ‘synStem’ configu-
ration the recall was 0.975 as this configuration retrieved 39 of the 40 matching
documents in the top 15 retrieved documents. We would expect the systems to
have the highest recall figure when only a single document correctly matches the
query as only one of the 15 documents retrieved needs to match, so the proba-
bility of a correct match and 100% recall in the top 15 matching documents is
high. The ‘SMARTatc.ntcSTEM’ and ‘SMARTInc.1tcSTEM’ variants, our ‘syn’
and our ‘synStem’ configurations all produce the second highest recall figure for
the queries matching 2 documents and have their respective lowest recall figures
for the queries matching 3 or more documents. Conversely, ‘SMARTatc.atc’,
‘SMARTatc.atcSTEM’ and our ‘basic’ variant all have their respective lowest
recall figures for the queries matching 2 documents and their second highest
recall figures for the queries matching 3 or more documents. We feel the recall
graph indicates that the queries are not favouring any particular system when
grouped by the number of matching documents, they affect the SMART variants

and indicate the criticality of the vector configuration selected for the Reuters’

182



dataset. The graph does not highlight any statistical correlations with respect
to the query groups. The only anomaly derives from the ‘SMARTnnn.nnn’ con-
figuration that produces the lowest recall from the queries matching 1 document
and the highest recall from the queries matching 2 documents. We included this
configuration as a control mechanism to illustrate that merely counting match-
ing words is not an apposite metric for document-query similarity estimation in

an IR system and this is born out by the recall figures.

The graphs illustrating the recall figures for the respective system variants when
the queries are categorised by meta-topic in figures 6.7 and 6.10 indicate that
again there are no overall statistical correlations and system biasing for the
queries. The agriculture queries comprise the largest category of queries and
the plot for the agriculture recall in figure 6.7 essentially mirrors the overall
recall plot for all systems in figure 6.5. The finance query plot indicates that
queries falling into the finance category favour our system and in particular the
‘basic’ variant which has 100% recall. We feel this 100% match is due to the
documents in the ‘finance’ category using a focussed vocabulary and tending
to contain the subject words in the text of the document, for example {money,
dollar, yen, german, mark} are all contained in the single document assigned
this subject. MinerTaur matches on the percentage of the query words present
so if all query words are present the document represents a high match. SMART
matches on both the percentage present and the number of each word present
so the frequency of each query word will affect the documents retrieved and
hence may lower both recall and precision. Conversely, the energy and miscel-
lany plots indicate that queries falling in to those two categories slightly favour
the SMART systems as here the subject words tend to occur many times in
the document but not all terms may be present. The recall figures for these
categories are relatively higher compared to our system than the overall recall
figures. We feel that these slight biases cancel each other in the overall recall and
thus there are no overall statistical biases with respect to the query categories.
We can also see from figure 6.7 that our ‘synStem’ system has the highest recall
figure for all categories irrespective of any statistical favouritism for any specific

categories.

The graphs illustrating the recall figures for the respective system configura-
tions when the queries are categorised by the number of query terms in figures
6.9 and 6.12 indicate that again there are no overall statistical correlations and
system biasing for the queries. All systems except the ‘basic’ variant have their
highest recall percentages for the ‘seven or more’ category as we would expect as
these queries are the most specific and narrow the focus of retrieval maximally,
facilitating the correct recall. For the ‘syn’ and ‘synStem’ configurations of our

system, the 6 word queries produced the next highest recall paradoxically the

183



2 or 3 word queries produced the second highest recall for all SMART config-
urations except ‘SMARTnnn.nnn’. We stated in section 6.3.4 that we selected
the short queries carefully to ensure specific topics and minimise the focus of
retrieval to very specific words so we would expect the 2 or 3 word queries to
have a high recall but probably not higher than the much more specific 6 word
queries that produced the higher recall in our system variants. The 5-word
category produced the lowest recall for all variants of our MinerTaur system
and the ‘SMARTInc.ltcSTEM’, ‘SMARTnnn.nnn’ and ‘SMARTatc.atc’ config-
uration. The 4-word category produced the second lowest recall for all systems
except ‘syn’. These 4 or 5 word queries are the least specific as the terms may
be general or only m of the n query topics are matched where m < n producing
more candidate matches and hence less specific retrieval. We can also see from
figure 6.9 that our ‘synStem’ system has the highest recall figure for all cate-
gories irrespective of any statistical favouritism for any system configurations

across the categories.

We feel the top 15 recall figure of 0.729 and top 50 figure of 0.805 from ta-
ble 6.10 for synonym traversal in conjunction with stemming (‘synStem’) in
MinerTaur is commendable particularly with the inconsistencies and anomalies
of the Reuters’ topic assignments with respect to retrieval. The topics were as-
signed for a train and test classification task and as such probably have vagaries
and objectivity deliberately included. A 73% success rate for retrieving correct
match is very high particularly as this far exceeds the SMART system and our
‘basic’ system. We feel we have validated the accuracy of our implemented sys-
tem and demonstrated the necessity of our synonym traversal and stemming
modules. We also note that the synonym traversal we employed for this evalua-
tion only clustered 2,192 frequently occurring words of the approximately 49,000
words in the documents. Therefore, we have demonstrated the necessity of such
a module and can also surmise that a complete hierarchy, clustering all words in
the corpus (minus non-essential words such as stop-words) would improve the

recall further.

Spelling Analysis

Our spell checker detected and suggested the correct spelling to the user in
the top 10 ranked spelling matches for all spelling mistakes investigated. The
spell checker activated test run has identical recall and precision figures to our
standard system ‘basic’ evaluated previously. The merit of the spell checking
module is revealed by the lower recall and precision figures in table 6.12 produced
when the spell checker was deactivated. Even though the mis-spelt word may not
figure in the partial match for best matching documents and thus the word may
not discriminate for this specific query, across a series of queries the importance

of a spell-checking module is apparent. For the 66 queries, the spell checking

184



influenced the number of correct matches retrieved in 18 queries, i.e., when the
spell checker was deactivated the system retrieved less correct matches in 18
queries. The spell checker influenced the number of false positives in 35 queries.
For 34 queries the lack of spell checking increased the number of false positives.
However, for one query the spell checker did actually decrease the number of
false positives as the correctly spelt word was causing false positive matches and
these were eliminated by the misspelling. However, such an eventuality is rare
and we have shown from table 6.12 the importance of an accurate spell-checking

module for the recall and precision of an IR system.

6.6 Conclusion

In this chapter, we have empirically demonstrated the superior training time for
MinerTaur versus the SMART benchmark IR system. We denoted the training
time as the time to learn the corpus vocabulary and word-document associa-
tions. We have empirically evaluated the retrieval times for the various modules
comprising our system in chapters 4 and 5. The exact word match to validate
query words against the stored lexicon in the Hamming Distance/n-gram CMM
is very fast. The word-document association retrieval from the CMM is very fast.
The combined time for these two stages is approximately 0.1 seconds per query
word. It is very rare that a user employs more than 10 query words so query
word validation and matching document retrieval will generally be less than
1 second on the hardware evaluated. This is below our threshold of 2-second
retrieval [74]. Our query word stemming retrieval is also fast. The stemming
uses the rapid Hamming Distance retrieval technique. The spelling retrieval
employed if a query word is not verified by the exact match, is slightly slower
due to the shifting n-gram retrieval which is O(length of query word), i.e., the
number of shifts is proportional to the number of letters. However, the retrieval

time is still acceptable, below 2 seconds when six of six query words are misspelt.

In this chapter, we have demonstrated the superior recall and precision dis-
played by our MinerTaur system compared to the benchmark SMART system.
We also observed how recall was improved in MinerTaur by incorporating the
synonym traversal module and was further improved by amalgamating the syn-
onym traversal and user-selected stemming with the basic system. We have
investigated the potential statistical correlations and biases in the query set
but none were apparent. We have identified several areas that we feel con-
tribute most to our MinerTaur system outperforming the SMART system for
recall and precision. SMART uses a global stemming algorithm compared to
the user-selected local stemming employed in MinerTaur. Global stemming is
omnipotent but conversely can lead to incorrect stemming such as stemming

‘glasses (spectacles)’ to ‘glass (vitreous substance)’. The user directs the stem-

185



ming in MinerTaur by initially supplying the stem in the list of query terms and
then selecting their required stemming variants from a list of all possible stem-
ming variants identified by MinerTaur for the particular stem supplied by the
user. This ring-fences the stemming and prevents spurious errors such as those
introduced by global stemming. MinerTaur has a synonym hierarchy available
to pinpoint synonyms and hence include the synonym distances in the docu-
ment scoring process. The SMART configurations evaluated in this chapter did
not have synonymy incorporated. We should note that MinerTaur outperforms
SMART for our recall and precision evaluations in this chapter even when syn-

onymy is deactivated.

MinerTaur uses a binary word-document association representation. If a spe-
cific word is present in a particular document the association is denoted by a
binary 1. The frequency of occurrence is not stored. The SMART configura-
tions evaluated use a word frequency count or normalised word frequency count
for the word-document association. SMARTnnn.nnn uses purely a count of the
number of query words present in each document to score the documents. This
distorts the scoring and produces poor recall and precision through favouring
longer documents with more words present even though a shorter document may
be a ‘better’ match for the user’s criteria. In chapter 7, we discuss a possible
extension of our word-document representation to encompass 0, 1 and 2 or more
words present. If a word occurs twice in a document the document will receive
double the score of a document where the word occurs only once. However, we
limit this scoring to 2 or more words present to prevent the scoring distortions

inherent in word frequency counting.

One potential adjunct to our recall and precision evaluation would be a larger
query set. We could not glean any more queries from the Reuters’ topics as we
felt the remaining query sets were too similar to the queries already used in our
evaluation and hence may favour certain systems. We wanted a good spread of
topics with minimal similarity to evaluate all systems across all topics and to

minimise partiality.

The one real weakness of the current system, which we have alluded to pre-
viously, lies with the TreeGCS hierarchy. The training time is very protracted
for the large corpus vocabularies mandatory for an IR system. We have also
not optimised the retrieval phase from the hierarchy due to the problem as
we felt it unrealistic to speed the retrieval before we solve the more important
training time problem. Even though we have identified the weakness with the
training time for TreeGCS, we have identified the qualitative effectiveness of
the TreeGCS algorithm against the SOM algorithm and also the quality of the
TreeGCS system module with respect to system recall. In this chapter adding

186



synonym traversal increased the recall by 0.11 compared to the recall for the ba-
sic system. Ideally we need to speed the TreeGCS algorithm while maintaining
the qualitative effectiveness of the cluster sets. Many techniques are faster than
TreeGCS but at the expense of cluster quality. We need to find an algorithm

with a minimal trade-off between speed and quality.

187



Chapter 7

Overall Conclusions and the

Future

In this chapter we summarise our criteria for an ideal IR system, relate our
evaluated MinerTaur system against our ideal technique, identify weaknesses in
the current implementation described in this dissertation and posit some rec-
ommendations for possible improvements and expansions of the modules and

integrated system.

In the introductory chapter and at the beginning of chapter 6 we outlined our

necessary criteria for an ideal IR system

“A methodology is desired to: process documents unsupervised and
generate a multi-level and compact index using a data structure
that is memory efficient, speedy, incremental and scalable; overcome
spelling mistakes in the query; suggest alternative spellings for query
terms; handle paraphrasing of documents and synonyms for both in-
dexing and searching; to focus retrieval by progressively minimising
the search space and finally calculate the document similarity from
statistics autonomously derived from the text corpus. Documents
may be retrieved according to the user’s exact requirements by pro-
gressively refining the search and iteratively employing finer-grained

and more specific matching techniques.”

Our word context vector generation method is unsupervised, requiring only un-
structured text as data, gathering statistical correlations from the corpus and
inferring the word similarities purely from their contexts. We produce a multi-
level (hierarchical) thesaurus that we can use to infer synonyms in the corpus
using multi-level clusters of similar words and to thus handle paraphrasing of
documents at query time. The hierarchical thesaurus represents the semantic
relationships of the text corpus and permits the system to vary the degree of

specificity of the search using both fine-grained and high-level categorisations of

188



the words as the user query is serviced. We showed in chapter 2 that TreeGCS
coupled with our context vector generation process using a wider context win-
dow and high dimensionality word vectors produced high quality clusters - more
similar to human generated vocabulary or Euclidean distance clusters of a den-
drogram than the equivalent SOM vector generation approach or WEBSOM
method.

In chapters 4 and 5 we demonstrated equivalent memory requirements for the
spelling and word-document matrix modules of our system compared to corre-
sponding techniques and benchmark data structures. In chapter 5 we empirically
demonstrated that our word-document indexing structure was faster than com-
parable benchmark data structures for the partial match retrieval necessary in
an IR system. We noted that CMMs are trained incrementally and are scalable
with new word-document associations trained incrementally and overlaid with
the existing associations allowing the CMM to train until saturation is reached
when every word is linked to every document. We can also extend CMMs by
copying an existing CMM into a new, larger CMM with additional rows or
columns to permit new words and documents to be added. This is facilitated
by our use of orthogonal vectors where each row represents a word and each
column a document so we need only add a new row at the bottom or a new
column on the left to extend the data structure to a new word or document
respectively. The data structure does no have to be recompiled to assimilate
new words or documents unlike may data structures used in IR systems such as

the compressed word-document matrix used in LSI systems.

We empirically demonstrated the superior recall of our spell checker compared
to analogous techniques and benchmark spell checkers in chapter 4. Our spell
checker integrates elegantly with the architecture of the word-document ma-
trix allowing us to replicate the vector representations of the lexicon words in
both modules and thus speed retrieval, as no vector conversions are necessary.
We demonstrated in the previous chapter the system recall improvement when
the spell checker module is activated compared with the recall when the spell
checker is not included in MinerTaur. For 66 queries, including the spell checker
increased recall by 0.181. Even though we are performing partial matching in
the IR system and the incorrectly spelled word may not be discriminating for
the specific query, across a series of queries the benefit of the spell checker is val-
idated. We also note that the word stemming capability we have incorporated
into the spell checker further improves the recall figure. Rather than perform-
ing global stemming as SMARTv11.0, we allow the user to select from a series
of stemming variants retrieved by the spell-checking module for a word stem
input by the user. This eradicates the errors of global word stemmers which,

for example, stem ‘glasses (spectacles)’ to ‘glass (vitreous substance)’, and our

189



technique includes only the query word stemming variants desired by the user.
Incorporating the stemmer into our MinerTaur system increased the recall figure
more than incorporating the global word stemmer into the SMART system. For
the top 15 matches, the SMART global stemmer improved the SMART system
recall by 0.039 (SMARTatc.atc versus SMARTatc.atcSTEM) compared with a

0.064 recall improvement when we incorporated our local stemming technique.

In the previous chapter, we demonstrated the superior recall and precision fig-
ures for our MinerTaur system compared to all configurations of the SMART
system. We calculate document scores purely from statistics gathered from the
text corpus. We employ both fine-grained and abstract matching techniques us-
ing the word relationships identified by the synonym hierarchy. The similarity of
a document to the user query takes account of the spelling, word stemming and
synonyms. Scores are awarded for each factor according to a diminishing return,
the more similar a word to the query words, the higher the score awarded to
that word and thus the higher the score propagated to any document containing
that word.

The TreeGCS algorithm we developed from Fritzke’s Growing Cell Structures
[34], [36], [35], [37], [38] and described in chapter 2 is extremely slow to train
and is also slow for retrieval. The latter problem is less significant as we have
not optimised the retrieval due to the inherent problems with the slow training
time. We have tried various approaches to speed the training of the algorithm
but none have yet proved successful. We will continue to investigate further

enhancements.

One possibility would be to use an alternative technique to cluster the aver-
age context vectors. We could use the AURA system to perform the clustering
introducing the advantage of total synergistic modular integration; all system
modules would be derived from an identical architecture. We could perform a k-
nearest-neighbour matching process using the average context vectors converted
to a binary vector format. AURA has been used successfully to implement the k-
nearest neighbour algorithm. We have previously experimented with converting
the context vectors to a binary format including adapting Zhou & Austin’s [119]
k-nearest-neighbour binning approach but the binary conversion process lost too
much accuracy due to the high vector dimensionality. If we could successfully
determine a suitable binary conversion function that maintains sufficient ac-
curacy then we could exploit the speed of AURA. We may need to use higher
dimensionality word vectors and thus higher dimensionality average context vec-
tors compared to the 630-dimensional average context vectors used previously.
AURA matching is a single step O(1) and not dependent on the dimensional-

ity of the input or output vectors. Retrieval in TreeGCS is dependent on the

190



vector dimensionality. We needed to minimise dimensionality while ensuring
maximal orthogonality of the vectors ascribed to the words to generate the av-
erage context vectors to ensure no similarity is imputed by the vectors ascribed.
Increasing the dimensionality would introduce more accuracy for the binary
method; our previous 630-dimensional binary conversions introduced too much
error. We can use AURA for k-nearest neighbour by systematically reducing the
threshold value for the output activation vector to retrieve the nearest vectors
with respect to Euclidean distance; we do not need to specify the value of & in
advance. We can either iteratively reduce the threshold until we have retrieved
the k nearest neighbours or we can systematically reduce the threshold by z
stages and retrieve any neighbours that lie within the threshold. We could also
exploit the approach to generate a hierarchical representation by progressively
determining the most similar clusters and merging them in an agglomerative
clustering process analogous to a dendrogram. A successful implementation
would introduce a massive speedup from months of training for the TreeGCS
algorithm to seconds of real-valued to binary conversion and nearest neighbour
matching in AURA. The only time penalty for the AURA k-nearest neighbour
technique is the need to iteratively reduce the threshold and this time constraint

is negligible in comparison to training TreeGCS.

We feel the average context vector generation methodology also needs improving
and the approaches we discuss below may have an added bonus of speeding the
TreeGCS clustering (or an alternative approach) by allowing us to subdivide
the input space to allow parallel clustering on the subdivisions or to reduce the
input space markedly by just clustering nouns. The average context vector gen-
eration and hierarchical clustering process differentiate many sets of synonyms.
When we clustered the 2192 words for our system, we found the methodology
had identified a cluster containing all and only the days of the week. A further
cluster contained the months of the year along with the words ‘calendar’ and
‘fiscal’. However, other words, particularly polysemic or those with multiple

parts of speech, are not separated.

One possibility would be to include some form of part-of-speech (POS) tagging
in the average context vector generation process prior to clustering to group
the different parts of speech separately for greater differentiation, for example
supply<noun> and supply<verb> would be separated by the tagging and an
average context vector generated for each, which would then be clustered sepa-
rately. For the current approach, all meanings of polysemic word are averaged
together. POS tagging would introduce some separation although of course the
different meaning but same part of speech word senses would still be clustered
together, for example bank<verb> would be distinguished from bank<noun> but

bank<noun> meaning river bank and bank<noun> meaning financial institution

191



would still be averaged together. The only way to distinguish the different
senses would be to employ a human knowledge engineer to mark the different
occurrences with separate tags to differentiate the word senses. Automated
word sense disambiguation is very complex, and still in its infancy. The only
viable methods are supervised and human implemented but these are human-
intensive and time-consuming for both the knowledge engineer and the system
so probably still intractable. If the corpus is restricted to a specific domain
many word senses may not be pertinent anyway. We feel a POS tagger would
be the preferred option as it is automated, POS tagging is tried and tested and
highly accurate and any mistakes would probably be nullified in the context
vector averaging procedure. We would just need a separate word identification
vector (90-D vector) for each distinct POS tag for each unique word. We could
also cluster each POS set separately which would also allow parallel clustering
runs, speeding the clustering process greatly. We have noted that the cluster-
ing process needs speeding so any acceleration is vital. We could separate the
average context vector sets with one set for each part of speech, this would also
reduce the input space for each cluster run from one large input space to several
smaller subsets. The smaller subsets would enable the cluster algorithm to run
much faster i.e., the training would be much less time-consuming than a single
large input space. One cluster algorithm process could run for each part of

speech simultaneously providing a large speed increment.

Another option would be to just cluster average context vectors for nouns in
the hierarchical thesaurus generation as in other systems, for example Yarowsky
[118]. We would still use all words in the average context vector generation
seven-word windows but vectors would only be produced for words tagged as
nouns. This would eliminate some ambiguity and users generally search using
nouns very rarely do they need to search using verbs. The POS tagger could
isolate nouns in an automated and accurate tagging stage. This would also
greatly reduce the quantity of average context vectors in the input space for the
clustering algorithm, which is desirable as clustering process (discussed above)

is very time-consuming and computationally intensive.

The hierarchical clustering process we have developed produces high quality
cluster topologies as we demonstrated in chapter 2 and in the higher recall fig-
ure when the synonym hierarchy was incorporated into our MinerTaur system in
chapter 6. The GCS algorithm that underlies TreeGCS is parameter sensitive.
Our hierarchical construction process that overlies the GCS network is flexible
and requires only the original GCS parameter settings; we have introduced no
additional parameters with our hierarchical addition to GCS. However, selecting
suitable parameters for GCS is a heuristic process. It is very time-consuming to

implement a train and test parameter selection approach on a large vocabulary

192



(a large input space of context vectors as required for an IR system). TreeGCS
needs to be run with each set of parameter settings for at least 10000 epochs to
allow the hierarchy to evolve and settle. All hierarchies produced must then be
assessed on completion to select the optimal parameter combination. We need
a superior parameter setting approach. One possibility would be to exploit a
simple ensemble and/or bagging methodology see [75]. During our evaluations,
we have observed that altering the input data order and altering the GCS pa-
rameters produces different cluster topologies. We would run TreeGCS with
different parameters for the simple ensemble approach and/or with different
arrangements of training set for bagging to produce an ensemble of different
hierarchies. We could then generate an average clustering from all hierarchies
produced. However, the hierarchical thesaurus is a very complex data struc-
ture with many branches and child clusters so averaging may be difficult. The
ensemble approaches are more aimed at classifiers than clustering algorithms
as they use the average classifier vote to produce the ensemble. Generating an

average vote would be more difficult for a clustering algorithm.

Another problem with TreeGCS is the difficulty of assessing the stopping point
of the cluster topology evolution. When do we stop? One possibility is to de-
termine when the number of clusters remains static for a specific predetermined
number of epochs. However, there are two problems. The cluster number can
remain static for many epochs and then commence changing again. A further
problem is an oscillation problem where the same cluster is constantly deleted
and reinstated so although stability has essentially been reached it is not ap-
parent particularly in a large and complex cluster structure like a hierarchical
thesaurus. One advantage of our current implementation is that we have written
TreeGCS so we can cluster for a specific number of epochs, run the IR system
using the cluster topology evolved, continue the clustering process and then run
the IR system. We can cluster incrementally until we have a satisfactory cluster

topology or we can be certain that stability has been reached.

Our current MinerTaur system makes no attempt to identify proper names in
the text corpus. We converted the entire document collection to lower case and
all company names were added to the average context vector generation process.
We feel we need to isolate any proper names in a linguistic pre-processing phase
similar to the pre-processing in the INQUERY [15] system. We can then remove
the proper names from the average context vector generation and clustering pro-
cess. We could even cluster them separately if we felt this was propitious thus
reducing the input space for the clustering algorithm (by removing many con-
text averages) and allowing the TreeGCS algorithm to run faster. We could
replace all company names by ‘companyName’ and all personal names by ‘per-

sonalName’ in the text corpus for the average context vector generation process.

193



Tag Pattern | Example

AN Allied Zurich

NN Burger King

AAN British American Tobacco
ANN International Business Machines
NAN South African Breweries

NNN Shell Oil Company

NPN Smith and Nephew

Table 7.1: POS combinations from [53] for detecting phrases and names.

These replacements would then be included in the average context vector gen-
eration for other words but no context vectors would be produced for proper
names. Cavnar [16] postulated the use of capital letters to identify such names
in a proposed extension to his IR system. This method works well but is depen-
dent on the names being capitalised in the text corpus, i.e., it is reliant on the
diligence of the author. However, it would be helpful to separate e.g., ‘Shell’ oil
company from ‘shell’ exoskeleton. The Reuters 21578 dataset we have used for
our evaluation in this dissertation has some meta-tags included to denote for
example, proper names but they are not consistently applied. If each name is
tagged once we can extrapolate and tag all occurrences but vitally each name
needs to be tagged once and the name typed unchanged e.g., ABC Company is
not changed to ABC Co. on some untagged occurrences later in the corpus, as
these will be missed when we extrapolate the tags. If we were to implement the
POS tagging discussed above, another option would be to modify Justeson and
Katz’s approach [53] for phrase identification to encompass name identification.
They suggest that the POS combinations listed in table 7.1 identify collocations
for phrases and we could use these to detect names. The identification would
need to be supervised but could be conflated with a phrase identification step.
Any possible phrases or proper names could be flagged to a knowledge engineer

who could tag them appropriately.

Name identification is very problematic if for example ‘shell’ is not initially
capitalised due to a typographical error and is not listed as the phrase ‘shell
oil company’. How do we know whether an occurrence of ‘shell’ is ‘the com-
pany’ or ‘an exoskeleton’? It would be intractable to achieve 100% reliability
for name identification with such inconsistencies inherent in unstructured text.
We would need computationally complex procedure using contextual informa-
tion and these are rarely reliable. However, we should be able to achieve a
sufficiently high reliability rate possibly up to 90% by using a hybrid procedure
with a fast text scan to identify all capitalised names or meta-tagged names if

available, extrapolating the tags to untagged occurrences of the proper names

194



and then employing a slower more computationally intensive and supervised
phase using the POS tags and Justeson & Katz’s phrase identification tech-
nique to identify any names missed by the initial capitalisation or tag-detection

processes.

We could also use Justeson & Katz’s [53] phrase identification technique to
identify phrases in the corpus to allow phrase-based searching by users. As we
mentioned in the previous paragraph, this stage could be amalgamated with
the proper name identification in to a single supervised phase. Currently Min-
erTaur only permits term-based searches and we feel it would be beneficial
to extend searching to phrases. We could identify phrases in the lexical pre-
processing phase where we generate our context averages. We could assimilate
the POS tags and the context vector generation phase to identify any words
that regularly co-occur and thus indicate possible phrases. We could tabulate
the word co-occurrences in a matrix when generating our average context vec-
tors so co-occurrence statistics would be readily available. We would need to
treat the phrases as single, conjoined units for the spell checker and also for the
word-document association matrix. We would augment the existing term-based
approach with the phrase identification facility rather than replacing any terms.
We could use a separate CMM to store phrase-document associations. Bates [6]
and Salton & Buckley [93] concur that single word indexing maximises IR accu-
racy so we feel the term-based index should be augmented with a phrase-based
index rather than replacing any conjoined terms with their respective phrases

in the index.

We feel another useful adjunct to the system would be to add Boolean query-
ing capabilities such as ‘AND’, ‘OR’, ‘NOT’ to the querying process. Our
MinerTaur system described in this dissertation currently just performs par-
tial ‘AND’ match; identifying the best match according to the word scores. An
‘OR’ or ‘NOT’ capability is not currently included. As we use binary vectors for
word-document matching a both ‘OR’ and ‘NOT’ capabilities will be straight-
forward to introduce. To implement ‘NOT’ is merely a case of inverting vector
bits. Boolean logic is considered esoteric and unfriendly for novice users but
for experienced users it allows highly accurate matching. The experienced user
can pinpoint their required information accurately minimising the false positive

matches and ensuring the correct match is always retrieved.

We could extend querying even further to encompass SQL and possibly even
NLP queries for novice users who may feel that Boolean logic or SQL is un-
friendly, esoteric and unintuitive. Users could then select whether to query
using Boolean logic for experienced users, SQL for users familiar with conven-

tional database techniques or natural language querying for novice users. Many

195



natural language interfaces have been produced for IR systems (SMART ver-
sion 11.0 [99] evaluated in this dissertation handles natural language queries) or
many databases have natural language interfaces [95]. We could either incor-
porate off-the-shelf SQL and NLI packages or develop our own interface in the
AURA system to seamlessly integrate with the existing IR modules and permit
both SQL and natural language querying.

A further extension to the current system could be to amalgamate the CMM
row saturation from the word-document matrix into the scoring process. The
saturation is high for common words as many document bits are set (where each
document is represented by a column) and the row saturation is low for infre-
quent words. This equates to the inverse document frequency (idf) of systems
such as SMART, for example we could use the following equation to determine

the word score analogous to the idf score,
wordScore = currentScore x (1 — rowSaturation) (7.1)

High frequency words would score lower and low frequency words that differ-
entiate between documents more according to the SMART idf approach would

score more highly using the row saturation factor.

We infer from our evaluations that we may need a more complex frequency
count for the word-document associations. This would help differentiate candi-
date matches more finely when ranking the matches for retrieval. Cavnar [16]
suggested counting 0, 1 and 2 word associations per document separately as
a word occurring twice in a particular document is twice as important as if it
occurred just once. We can ignore higher frequency occurrences as that is irrele-
vant according to Cavnar and anyway just biases the system towards longer doc-
uments that have higher frequency word histograms. We could use different arity
CMMs, providing a separate CMM for single-occurrence word-document associ-
ations and a CMM for multiple-occurrence word-document associations (where
multiple denotes two or more). If the word were in the multiple-occurrence then
it would score double than if in single-occurrence when calculating the docu-
ment scores. The CMMs could be searched in parallel so retrieval would not
be slowed in fact the retrieval speed may be increased as the retrieval time in
CMMs is largely dependent on the number of matches. If the word-document
associations were split into two, the number of matching documents retrieved
from the CMMs would be approximately half the cardinality retrieved from a
single CMM assuming a roughly equal distribution of associations between the
two CMMs and thus this large slice of retrieval time could be halved. Tt is a
simple process to amalgamate the outputs from two CMMs particularly as we
are using orthogonal binary vectors to represent the documents. The vectors

can simply be logically ORed to retrieve the matches.

196



In conclusion, we have described, compared and implemented a modular, in-
tegrated IR architecture. We have evaluated each individual module and the
integrated system against comparative benchmark approaches identifying the
strengths and any potential weaknesses. We have recommended possible exten-

sions and improvements for the future development of the system.

197



Appendix A

Code Listing

A.1 Code Listing for the Data Structures Eval-

uated

All routines are adapted from the hash tables in [3].

A.1.1 Array of Lists

Used in word array, hash array and hash compact.

struct elem{char * name; elem *next;};
class list {
public:
list () {pStart = NULL;}
~“list();
private:
elem *pStart;
I

void list::ListInsert(const char *s){
//insert a document ID into the list
elem *p = new elem;
elem *q = new elem;
if (FindPosition(s) == NULL) {
int len = strlen(s);
p->name = new char[len + 1];
strcpy(p->name, s);
p—>next = pStart;
pStart = p;

198



void list::writeList(const char * wordFile) {
//write to file entire list (all docs that match a particular word)

FILEx F = fopen(wordFile, "w");

elem *p

while (p){

pStart;

fprintf(F, "Doc is: %s ", p->name);
P = p—>next;

}

fprintf(F, "\n");

fclose(F);

A.1.2 Inverted File List - Word Array

class StringHash {
StringHash(unsigned len=1021): N(len) {

a = new list[len];//array of lists of document IDs

void insert(const char *s, const char * doc) {
//add a doc ID to a word’s list - the location is found by hashing the word
alhash(s)].ListInsert(doc);

void writeDocsToFile(const char * wordFile, const char *s) {
//write the documents associated with a particular word
a[hash(s)] .writeList (wordFile);
}
private:
unsigned N;
list *a;

};

void StringHash::getWords(const char * wordFile)const{
//read in a file of words to initialise the array of words
count = 0;
FILEx F = fopen(wordFile, "r");
while (!feof(F)) {
fscanf (F, "%s", wordLabel);
strcpy (wordArray[count++], wordLabel);
}
fclose(F);

199



unsigned StringHash::hash(const char *s)const{
//find the location of a word in the array (binary search)
unsigned sum = O;
int middle;
int left = 0;
int right = N-1;
while (right-left > 1) {
middle = (right+left) / 2;
(strcmp(s,wordArray[middle]) <= O 7 right : left) = middle;
}
if ((strcmp(s, wordArray[middle]) == 0)){
sum = middle;
}
if ((strcmp(s, wordArray[left]) == 0)){
sum = left;
}
if ((strcmp(s, wordArray[right]) == 0)){
sum = right;
}

return sum;

A.1.3 Hash Table of Words : Length 20023

struct elem2 {char name[50];};

int collisionCounter;

class HashTable{

public:
HashTable(unsigned len = 1021);
elem2 *a;

+;

HashTable: :HashTable(unsigned len){
//initialise the hash table
N = (len > 3 ? len : 3);
a = new elem2[N];
for (unsigned i=0; i < N; i++){
a[i] .name[0] = ’\0’;
}

collisionCounter = 0;

200



unsigned HashTable::hash(const char *s)

//Horner’s hash function

{
for (sum=0; *s; s++){
sum = (sum*131 + *s);
}
return (sum % N);
}

int HashTable::h2(const char *t, unsigned &i)const{
//secondary hash function
unsigned count = 0, incr;
if (strcmp(al[i].name, t)) {
incr = HashIncr();
do {
if (++count == N) return 0; // Failure
i = (i + incr) % N;
} while (strcmp(ali].name, t));
}

return 1; // Success

void HashTable::insert(const char *s){
//insert a word in to the hash table
unsigned i = hash(s);
if (!strcemp("", ali].name) == 0)
++collisionCounter;
if (th2("", i)){
cout << "Hash table full" << endl;
exit(1);
}

strcpy(ali] .name, s);

unsigned HashTable::getPos(const char *s){
//return the position of a particular word
unsigned i = hash(s);
if (h2(s, 1)) {

return i;

201



else return O;

A.1.4 Array of Lists
Used in both hash table: length 20023 and hash table compact: length 9491.

class StringHash {
public:

//Hash table implementation - length 20023
StringHash(unsigned len = 1021) : N(len){
a = new list[len];

wordTable = new HashTable(len);

//Hash table compact implementation len = 20023, hlen = 9491
StringHash(unsigned len = 1021, unsigned hlen 1021) : N(len){
a = new list[len];

wordTable = new HashTable(len);

“StringHash(){delete[] a;}

void writeDocsToFile(const char * wordFile, const char *s){
//write all docs associated with a particular word

a[hash(s)] .writeList (wordFile);

void insert(const char *s, const char * doc){
//insert a docID in a particular word’s list

al[hash(s)].ListInsert(doc);

private:

unsigned N;

list *a;

HashTable *wordTable;
s

int StringHash::getAllCollisions(void){
//return the number of collisions

return wordTable->getCollisions();

202



void StringHash::getWords(const char * wordFile)const{
//read in all words and insert them into the hash table
count=0;
FILEx F = fopen(wordFile, "r");
while (!'feof(F)) {
fscanf (F, "%s", wordLabel);
wordTable->insert (wordLabel) ;
}
fclose(F);

unsigned StringHash::hash(const char *s)const{
//return the position of a word in the hash table

return wordTable->getPos(s);

A.1.5 Hash Table Compact
All routines are identical to the hash table except those given below.

struct elem2 {char name[50];int listPos;};

int collisionCounter;

class HashTable {
public:
HashTable(unsigned len=1021);

elem2 xa;

};

HashTable: :HashTable(unsigned len) {
//initialise the hash table

N (len > 3 ? len : 3);
new elem2[N];

a

for (unsigned i=0; i < N; i++){
a[i] .name[0] = °\0’;

}

collisionCounter=0;

listNum = 0; //set list ID counter to 0

void HashTable::insert(const char *s) {

203



//insert a word in the hash table and add an integer to identify the
//word’s list in the compact list array
unsigned i = hash(s);
if (!stremp("", a[i].name) == 0){
++collisionCounter;
}
if (!h2("", )4
cout << "Hash table full" << endl;
exit(1);
}
strcpy(ali] .name, s);
ali].listPos = listNum++;
//the location for the word’s list in the list array

}

unsigned HashTable::getPos(const char *s){
//return the position of a particular word’s list
//NB this is the list pos and not the word’s position in the hash table
unsigned i = hash(s);
if (h2(s, 1)) {
return a[i].listPos;

}

else return O;

204



Bibliography

[1] A. V. Aho and J. D. Ullman. Optimal Partial-Match Retrieval When
Fields are Independently Specified. ACM Transactions on Database Sys-
tems, 4(2):168-179, 1979.

[2] S. Amari. Characteristics of sparsely encoded associative memory. Neural
Networks, 2(6):451-457, 1989.

[3] L. Ammeraal. Algorithms and Data Structures in C++. John Wiley &
Sons, Chichester, England, 1998.

[4] Aspell. Web page http://aspell.sourceforge.net/.

[5] J. Austin. Distributed associative memories for high speed symbolic rea-
soning. In R. Sun and F. Alexandre, editors, IJCAI ’95 Working Notes of
Workshop on Connectionist-Symbolic Integration: From Unified to Hybrid
Approaches, pages 87-93, Montreal, Quebec, Aug. 1995.

[6] M. J. Bates. Indexing and Access for Digital Libraries and the Internet:
Human, Database, and Domain Factors. Journal of the American Society
for Information Science, 49(13):1185-1205, Nov. 1998.

[7] R. Beale and T. Jackson. Neural Computing: An Introduction. Institute
of Physics Publishing, Bristol, U.K. and Philadelphia, PA, 1990.

[8] R.Belew. A Connectionist Approach to Conceptual Information Retrieval.
In Proceedings of the International Conference on Artificial Intelligence
and Law, 1987.

[9] C. M. Bishop. Neural networks for pattern recognition. Oxford, Clarendon
P., 1995.

[10] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. In 7th International World Wide Web Conference, 1998.

[11] J. Broglio, J. Callan, and B. Croft. An Overview of the INQUERY System
as Used for the TIPSTER Project. Technical Report UM-CS-1993-085,

University of Massachusetts, Amherst, Computer Science, 1993.

205



[12]

[13]

[16]

[17]

[20]

[21]

C. Buckley and J. Walz. SMART in TREC 8. In Proceedings of the Eighth
Text Retrieval Conference (TREC 8). NIST Special Publication, 1999.

W. R. Caid, S. T. Dumais, and S. I. Gallant. Learned vector-space
models for document retrieval. Information Processing and Management,
31(3):419-429, 1995.

J. Callan and W. Croft. An Evaluation of Query Processing Strategies
using the TIPSTER collection. In Proceedings of the 16th ACM SIGIR
International Conference on Research and Development in Information
Rerieval, pages 347-356. ACM, 1993.

J. Callan, W. Croft, and S. Harding. The INQUERY Retrieval System. In
Proceedings of the 3rd International Conference on Database and Expert

Systems Applications, pages 7883, 1992.

W. B. Cavnar. N-Gram-Based Text Filtering for TREC-2. In D. K. Har-
man, editor, Proceedings of the 2nd Text REtrieval Conference (TREC-2),
pages 171-179, NIST, 1994.

W. B. Cavnar. Using an N-Gram-Based Document Representation with
a Vector Processing Retrieval Model. In D. K. Harman, editor, Proceed-
ings of the Third Text RFEtrieval Conference (TREC-3) , Gaithersburg,
Maryland, 1994.

W. B. Cavnar and A. J. Vayda. Using Superimposed Coding of N-Gram
Lists for Efficient Inexact Matching. In Proceedings of the 5th USPS Ad-
vanced Technology Conference, pages 2563-267, Washington, DC, 1992.

C.-H. Chen and V. Honavar. A Neural Network Architecture for High-
Speed Database Query Processing. In Dale, Moisl, and Somers, editors,
Handbook of Natural Language Processing. Marcel Dekker, New York,
1999.

H. Chen. Machine Learning for Information Retrieval: Neural Networks,
Symbolic Learning, and Genetic Algorithms. Journal of the American
Society for Information Science, 46(3):194-216, Apr. 1995.

H. Chen, C. Schuffels, and R. Orwig. Internet Categorization and Search:
A Machine Learning Approach. Journal of Visual Communication and Im-

age Representation, Special Issue on Digital Libraries, 7(1):88-102, 1996.

I. Cheng and R. Wilensky. An Experiment in Enhancing Information
Access by Natural Language Processing. Technical Report CSD-97-963,
University of California, Berkeley, Division of Computer Science, Univer-
sity of California, Berkeley, CA, 1997.

206



[23] V. Cherkassky, N. Vassilas, G. Brodt, and H. Wechsler. Conventional
and Associative Memory Approaches to Automatic Spelling Correction.
Engineering Applications of Artificial Intelligence, 5(3):223-237, 1992.

[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, 1990.

[25] F. Crestani. A Model for Adaptive Information Retrieval . Journal of
Intelligent Information Systems, 1997.

[26] D. Cutting, D. Karger, J. Pedersen, and J. W. Tukey. Scatter/Gather:
A Cluster-based Approach to Browsing Large Document Collections. In
Proceedings of the 15th Annual International ACM/SIGIR Conference,
Copenhagen, 1992.

[27] 1. Dagan, L. Lillian, and F. C. N. Pereira. Similarity-Based Methods for
Word Sense Disambiguation. In 35th Annual Meeting of the Association
for Computational Linguistics, San Francisco, California, 1997. Morgan

Kaufmann.

[28] M. Damashek. Gauging Similarities with n-grams: Language-Independent
Categorization of Text. Science, 267(10):843-848, 1995.

[29] F. Damerau. A technique for Computer Detection and Correction of
Spelling Errors. Communications of the ACM, 7(3):171-176, 1964.

[30] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman. Indexing by Latent Semantic Analysis. Journal of the Society
for Information Science, 1(6):391-407, 1990.

[31] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive Learn-
ing Algorithms and Representations for Text Categorization. In CIKM-
98: Proceedings of the Tth International Conference on Information and

Knowledge Management, page to appear, 1998.

[32] Elcom Ltd - ©Password Recovery Software. Web  page
http://www.elcomsoft.com /prs.html.

[33] B. S. Everitt. Cluster Analysis. Edward Arnold, 1993. 3rd Edition.

[34] B. Fritzke. Unsupervised Clustering With Growing Cell Structures. In
Proceedings of the IJCNN-91, Seattle, WA, 1991.

[35] B. Fritzke. Growing Cell Structures - a Self-organizing Network for Un-
supervised and Supervised Learning. Technical Report TR-93-026, Inter-
national Computer Science Institute, Berkeley, CA, 1993.

[36] B. Fritzke. Growing Cell Structures - a Self-organizing Network in & Di-
mensions. In I. Aleksander and J. Taylor, editors, Artificial Neural Net-
works II, pages 1051-1056. North-Holland, Amsterdam, 1993.

207



[37] B. Fritzke. Kohonen Feature Maps and Growing Cell Structures - a Per-
formance Comparison. In C. Giles, S. Hanson, and J. Cowan, editors, Ad-
vances in Neural Information Processing Systems - § -(NIPS*92). Morgan
Kaufmann, San Mateo, CA, 1993.

[38] B. Fritzke. Growing Self-organizing Networks - Why? In M. Verleysen,
editor, ESANN’96: FEuropean Symposium on Artificial Neural Networks,
pages 61-72. D-Facto Publishers, Brussels, 1996. Invited paper.

[39] T. Gadd. 'Fisching for Werds’. Phonetic Retrieval of written text in In-
formation Retrieval Systems. Program, 22(3):222-237, 1988.

[40] T. Gadd. PHONIX: The Algorithm. Program, 24(4):363-366, 1990.

[41] W. Gale, K. Church, and D. Yarowsky. Discrimination Decisions for
100,000-dimensional spaces. In A. Zampolli, N. Calzolari, and M. Palmer,
editors, Current Issues in Computational Linguistics: FEssays in Honour
of Don Walker, pages 429-450. Giardini Editori e Stampatori and Kluwer
Academic Publishers, Pisa and Dordrecht, 1994.

[42] T. D. Gedeon, R. A. Bustos, B. J. Briedis, G. Greenleaf, and A. Mowbray.
Word-Concept Clusters in a Legal Document Collection. In B. Reusch, ed-
itor, Computational Intelligence - Theory and Applications, Lecture Notes

in Computer Science, 1226. Springer, 1997.

[43] M. Goldszmidt and M. Sahami. A Probabilistic Approach to Full-Text
Document Clustering. Technical Report ITAD-433-MS-98-044, SRI Inter-
national, 1998.

[44] L. D. Higgins and F. J. Smith. Disc Access Algorithms. Comp. Journal,
14(3):249-253, Aug. 1971.

[45] T. Hofmann. Learning and Representing Topic. A Hierarchical Mixture
Model for Word Occurrences in Document Databases . In Conference for
Automated Learning and Discovery, Workshop on Learning from Text and
the Web, CMU 1998 (accepted for presentation), 1998.

[46] T. Honkela. Self-Organizing Maps in Natural Language Processing. PhD
thesis, Helsinki University of Technology, Neural Networks Research Cen-
tre, PO Box 2200, FIN-02015, FINLAND, Dec. 1997.

[47] T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. Newsgroup Exploration
with WEBSOM Method and Browsing Interface. Technical Report Tech
Report: A32, Helsinki University of Technology, Faculty of Information
Technology, Espoo, Finland, 1996.

[48] T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. WEBSOM-self-

organizing maps of document collections. In Proceedings of WSOM’97,

208



[49]

[50]

[51]

[55]

[56]

[57]

[58]

Workshop on Self-Organizing Maps, Espoo, Finland, June 4-6, pages 310
315. Helsinki University of Technology, Neural Networks Research Centre,
Espoo, Finland, 1997.

T. Honkela, V. Pulkki, and T. Kohonen. Contextual Relations of Words
in Grimm Tales, Analyzed by Self-Organizing Map. In F. Fogelman-Soulie
and P. Gallinari, editors, Proceedings of the International Conference on
Artificial Neural Networks (ICANN-95), volume 2, pages 3-7. EC2 et Cie,
Paris, 1995.

S. Huffman and M. Damashek. Acquaintance: A Novel Vector-Space N-
Gram Technique for Document Categorization. In D. K. Harman, editor,
Proceedings of TREC-3, 3rd Text Retrieval Conference, pages 305-310,
Gaithersburg, US, 1994. National Institute of Standards and Technology,
Gaithersburg, US.

J. J. Hull and S. N. Srihari. Experiments in Text Recognition with Binary-
Grams and Viterbi Algorithms. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 4(5):520-530, Sept. 1982.

T. Joachims. Text Categorization with Support Vector Machines: Learn-
ing with Many Relevant Features. In FEuropean Conference on Machine
Learning (ECML), 1998.

J. Justeson and S. Katz. Technical terminology: some linguistic properties
and an algorithm for identification in text. Natural Language Engineering,
3(2):259-289, 1996.

S. Kaski. Dimensionality reduction by random mapping: Fast similarity
computation for clustering. In Proceedings of IJCNN’98, International
Joint Conference on Neural Network, volume 1, pages 413-418, IEEE
Service Center, Piscataway, NJ, 1998.

S. Kaski. Fast Winner Search for SOM-Based Monitoring and Retrieval of
High-Dimensional Data. In Proceedings of IJCNN’98, International Joint
Conference on Neural Network, Edinburgh, UK, Sept. 1999.

J. Kennedy. The Design of a Scalable and Applications Independent Plat-
form for Binary Neural Networks. PhD thesis, Department of Computer
Science, University of York, Heslington, York, UK. YO10 5DD, Dec. 1997.

D. E. Knuth. The Art of Computer Programming, volume 3. Addison-
Wesley, Reading, MA, 1968.

T. Kohonen. Self-Organizing Maps, volume 2. Springer-Verlag, Heidel-
berg, 1997.

209



[59]

[62]

[65]

[66]

[67]

[68]

[70]

T. Kohonen. Self-organization of very large document collections: State
of the art. In L. Niklasson, M. Bodén, and T. Ziemke, editors, Proceed-
ings of ICANNYS8, the 8th International Conference on Artificial Neural
Networks, volume 1, pages 65-74. Springer, London, 1998.

T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen. Som_pak, the

self-organizing map program package.

D. Koller and M. Sahami. Hierarchically Classifying Documents Using
Very Few Words. In ICML-97: Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning, pages 170-178, San Francisco,
CA, 1997. Morgan Kaufmann.

M. Kubat, I. Bratko, and R. Michalski. A Review of Machine Learning
Methods. In R. Michalski, I. Bratko, and M. Kubat, editors, Machine
Learning and Data Mining: Methods and Applications, pages 3—69. John
Wiley & Sons, Ltd, London, 1998.

K. Kukich. Techniques for Automatically Correcting Words in Text. ACM
Computing Surveys, 24(4):377-439, 1992.

K. Lagus, T. Honkela, S. Kaski, and T. Kohonen. Self-Organizing Maps
of Document Collections: A New Approach to Interactive Exploration.
In E. Simoudis, J. Han, and U. Fayyad, editors, Proceedings of the Sec-
ond International Conference on Knowledge Discovery and Data Mining,
pages 238-243. AAAT Press, Menlo Park, California, 1996.

K. Lagus and S. Kaski. Keyword selection method for characterizing
text document maps. In Proceedings of ICANN’99, Ninth International
Conference on Artificial Neural Networks, Edinburgh, UK, Sept. 1999.

F. Lemke. Knowledge Extraction from Data Using Self-Organizing Mod-
eling Techniques. In eSEAM’97, MacSciTech Organization, 1997.

X. Li, S. Szpakowicz, and S. Matwin. A WordNet-based Algorithm
for Word Sense Disambiguation. In Proceedings of IJCAI-95, Montréal,
Canada, 1995.

W. Lowe. Semantic Representation and Priming in a Self-organizing Lexi-
con. In Proceedings of the 4th Neural Computation Psychology Workshop,
pages 227-239. Springer Verlag, 1997.

S. A. Macskassy, A. Banerjee, B. D. Davison, and H. Hirsh. Human Per-
formance on Clustering Web Pages: A Preliminary Study. In The Fourth
International Conference on Knowledge Discovery and Data Mining, 1998.

U. Manber and S. Wu. GLIMPSE: A Tool to Search Through Entire File
Systems. In 199/ Winter USENIX Technical Conference, 1994.

210



[71]

[72]

[75]

[76]
[77]

[78]

[79]

[80]

[81]

[82]

[84]

[85]

D. Merkl. Exploration of Text Collections with Hierarchical Feature Maps.
In Int’l ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval,, pages 186-195, Philadelphia. PA, July 1997.

D. Merkl. Lessons Learned in Text Document Classification. In Proceed-
ings of WSOM’97, Workshop on Self-Organizing Maps, Espoo, Finland,
pages 316321, Helsinki University of Technology, Neural Networks Re-

search centre, Espoo, Finland., June 1997.

R. Miikkulainen. Script-Based Inference and Memory Retrieval in Sub-
symbolic Story Processing. Applied Intelligence, 5:137-163, 1995.

R. Miller. Response time in man-computer conversational transactions.
In Proceedings of Spring Joint Computer Conference, 33, pages 267277,
Montvale, NJ, 1968. AFIPS Press.

D. Opitz and R. Maclin. Popular Ensemble Methods: An Empirical Study.
Journal of Artificial Intelligence Research, 11:169-198, 1999.

Outpost9. Web page http://www.outpost9.com/files/wordlists.html.
G. Palm. On Associative Memory. Biological Cybernetics, 36:19-31, 1980.

F. Pereira, N. Tishby, and L. Lee. Distributional Clustering of English
Words. In Proceedings of ACL-93, Columbus, Ohio, 1993.

J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81-
106, 1986.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman,
1993.

K. Ramamohanorao, J. W. Lloyd, and J. Thom. Partial Match Retrieval
using Hahsing and Descriptors. ACM Transactions on Database Systems,
8(84):552-576, 1983.

Reuters-21578. The Reuters-21578, Distribution 1.0 test collection
is available from David D. Lewis’ professional home page, currently:

http://www.research.att.com/~lewis.

E. M. Riseman and A. R. Hanson. A Contextual PostProcessing Sys-
tem for Error Correction Using Binary N-Grams. IEEE Transactions on
Computers, 23:480-493, May 1974.

H. Ritter and T. Kohonen. Self-Organizing Semantic Maps. Biological
Cybernetics, 61:241-254, 1989.

C. S. Roberts. Partial Match Retrieval via the Method of Superimposed
Codes. Proceedings of IEEE, 67(12):1624-1642, 1979.

211



[86] H. J. Rogers and P. Willett. Searching for historical word forms in text
databases using spelling-correction methods: Reverse error and phonetic
coding methods. Journal of Documentation, 47(4):333-353, Dec. 1991.

[87] D. E. Rose. Appropriate Uses of Hybrid Systems. In D. Touretzky, J. El-
man, T. Sejnowski, and G. Hinton, editors, Connectionist Models: Pro-
ceedings of the 1990 Summer School, pages 277-286. Morgan Kaufmann,
Inc, 1990.

[88] D. E. Rose. A Symbolic and Connectionist Approach to legal Information
Retrieval. Lawrence Earlbaum, Hillsdale, 1994.

[89] D. G. Roussinov and H. Chen. A Scalable Self-organizing Map Algorithm
for Textual Classification: A Neural Network Approach to Thesaurus

Generation. Communication and Cognition — Artificial Intelligence, 15(1-
2):81-112, 1998.

[90] R. Sacks-Davis and R. A. K. A Two Level Superimposed Coding Scheme
for Partial Match Retrieval. Information Systems, 8(4):273-280, 1983.

[91] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A Bayesian Ap-
proach to Filtering Junk E-Mail. In Learning for Text Categorization:
Papers from the 1998 Workshop. AAAT Technical Report, No. WS-98-05,
1998.

[92] G. Salton. Interactive Information Retrieval. Technical Report TR69-40,
Cornell University, Computer Science Department, Aug. 1969.

[93] G. Salton, J. Allan, and C. Buckley. Term-Weighting Approaches in Auto-
matic Text Retrieval. Information Processing & Management, 24(5):513—
523, 1988.

[94] G. Salton, J. Allan, and C. Buckley. Automatic Structuring and Retrieval
of Large Text Files. Communications of the ACM, pages 97-108, Feb.
1994.

[95] B. Schneiderman. Designing the User Interface: Strategies for Effective
Computer Interaction. Addison-Wesley, Reading, Massachusetts, 2nd edi-
tion, 1992.

[96] H. Schiitze and J. O. Pederson. Information Retrieval Based on Word
Senses. In Fourth Annual Symposium on Document Analysis and Infor-
mation Retrieval, pages 161-175, Las Vegas, NV, 1995.

[97] S. Scott and S. Matwin. Use of Lexical Knowledge in Text Classification.
Technical Report TR-98-03, University of Ottawa, 150 Louis Pasteur, Ot-
towa, Ontario, KIN 6N5, Canada, 1998.

[98] R. Sedgewick. Algorithms in C++. Addison-Wesley, Reading, MA, 1992.

212



[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

v. s. ¢c. SMART. ftp://ftp.cs.cornell.edu/pub/smart.

A. F. Smeaton, R. O’Donnell, and F. Kelledy. Indexing Structures De-
rived from Syntax in TREC-3: System Description. In D. K. Harman,
editor, NIST Special Publication 500-226: Overview of the Third Text RE-
trieval Conference (TREC-3) , pages 277-286, Gaithersburg, Maryland,
Nov. 1994. Department of Commerce, National Institute of Standards and

Technology.

H.-H. Song and S.-W. Lee. A Self-Organizing Neural Tree for Large-Set
Pattern Classification. IEEFE Transactions on Neural Networks, 9(3):369—
380, 1998.

K. Sparck-Jones. Summary Performance Comparisons TREC-2 Through
TREC-7. In Proceedings of the Seventh Text Retrieval Conference (TREC
7) : Appendiz B. NIST Special Publication 500-242, 1999.

K. Sparck-Jones. Summary Performance Comparisons TREC-2 Through
TREC-8. In Proceedings of the Eighth Text Retrieval Conference (TREC
8) : Appendiz B. NIST Special Publication, 1999.

J. Stetina, S. Kurohashi, and M. Nagao. General Word Sense Disam-
biguation Method Based on a Full Sentential Context. In Coling-ACL ’98
Workshop “Usage of WordNet in Natural Language Processing Systems”,
Université de Montréal, Montréal, Canada, Aug. 1998.

M. Turner and J. Austin. Matching Performance of Binary Correlation
Matrix Memories. Neural Networks, 10(9):1637-1648, 1997.

J. R. Ullman. A Binary n-Gram Technique for Automatic Correction of
Substitution, Deletion, Insertion and Reversal Errors in Words. Computer
Journal, 20(2):141-147, May 1977.

C. J. Van Rijsbergen. Information Retrieval. Butterworths, London &
Boston, 1979.

R. Weiss, B. Vélez, M. A. Sheldon, C. Namprempre, P. Szilagyi, A. Duda,
and D. A. Gifford. HyPursuit: A Hierarchical Network Search Engine
that Exploits Content-Link Hypertext Clustering. In Proceedings of the
Seventh ACM Conference on Hypertext, Washington, DC, Mar. 1996.

S. Wermter, G. Arevian, and P. C. Recurrent Neural Network Learning for
Text Routing. In Proceedings of the International Conference on Artificial
Neural Networks., Edinburgh, UK, Sept. 1999.

S. Wermter, P. C., and G. Arevian. Hybrid Neural Plausibility Networks
for News Agents. In Proceedings of the National Conference on Artificial
Intelligence, Orlando, FL, July 1999.

213



[111] E. D. Wiener, J. Pedersen, and A. S. Weigend. A neural network approach
to topic spotting. In Proceedings of Fourth Annual Symposium on Doc-
ument Analysis and Information Retrieval (SDAIR’95), Las Vegas, NV,
April 24-26, pages 317-332, 1995.

[112] D. J. Willshaw, O. P. Buneman, and H. C. Longet-Higgins. Non-
Holographic Associative Memory. Nature, 222:960-962, 1969.

[113] . World FactBook. http://www.odci.gov/cia/publications/factbook/country-

frame.html.

[114] S. Wu and U. Manber. AGREP - A Fast Approximate Pattern Matching
Tool. In Usenix Winter 1992 Technical Conference, pages 153—162, San
Francisco, CA, Jan. 1992.

[115] S. Wu and U. Manber. Fast Text Searching With Errors. Communications
of the ACM, 35, Oct. 1992.

[116] Y. Yang, J. Carbonell, R. Brown, T. Pierce, B. Archibald, and X. Liu.
Learning approaches for detecting and tracking news events. IEEE Intel-
ligent Systems, 14(4):32-43, 1999.

[117] Y. Yang and X. Liu. A re-examination of text categorization methods. In
Proceedings of ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), 1999.

[118] D. Yarowsky. Unsupervised Word Sense Disambiguation Rivaling Super-
vised Methods. In Proceedings of the 33rd Annual Meeting of the Asso-
ciation for Computational Linguistics. Cambridge, MA,, pages 189-196,
1995.

[119] P. Zhou and J. Austin. A Binary Correlation Matrix Memory k-NN Clas-
sifier. In International Conference on Artificial Neural Networks, Sweden,
1998.

[120] G. K. Zipf. Human Behaviour and the Principle of Least Effort: an In-
troduction to Human Ecology. Addison-Wesley, Cambridge, MA, 1949.

[121] J. Zobel and P. Dart. Phonetic String Matching: Lessons from Informa-
tion Retrieval. In Proceedings of the 19th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
Zurich, Switz, 1996.

214



