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Abstract 
 
Adaptive traffic control systems such as SCOOT and SCATS are designed to respond to 
changes in traffic conditions and provide heuristically optimised traffic signal settings. 
However, these systems make gradual changes to signal settings in response to changing 
traffic conditions. In the EPSRC and TSB funded FREEFLOW project, a tool is being 
designed to rapidly identify severe traffic problems using traffic sensor data and recommend 
traffic signal plans and UTC parameters that have worked well in the past under similar 
traffic conditions for immediate implementation. This paper will present an overview of this 
tool, called the Intelligent Decision Support (IDS),that is designed to complement adaptive 
traffic control systems.  
 
The IDS is essentially a learning based system. It requires an historic database of traffic 
sensor data and traffic control intervention data for the application area as a knowledge 
base. The IDS, when deployed online, will monitor traffic sensor data to determine if the 
network is congested using traffic state estimation models. When IDS identifies congestion in 
the network, the historic database is queried for similar congestion events, where the 
similarity is based on both the severity and the spatial pattern of congestion. Traffic control 
interventions implemented during similar congestion events in the historic database are then 
evaluated for their effectiveness to mitigate congestion. The most effective traffic control 
interventions are recommended by IDS for implementation, along with an associated 
confidence indicator.  
 
The IDS is designed to work online against large historic datasets, and is based on traffic 
state estimation models developed at Imperial College London and pattern matching tools 
developed at the University of York. The IDS is tested offline using Inductive Loop Detector 
(ILD) data obtained from the ASTRID system and traffic control intervention data obtained 
from the UTC system at Transport for London (TfL) during its development. This paper 
presents the preliminary results using TfL data and outlines future research avenues in the 
development of IDS. 
 
Introduction 

The traffic management scheme in the UK involves manual monitoring and interventions to 
supplement the automated traffic control systems in place. For example, the motorway 
network in the UK is monitored and controlled by the National Traffic Control Centre 
(Highways Agency 2009) and the road network in London is monitored and controlled by the 
staff at the London Traffic Control Centre (LTCC) (Barton 2004). The network managers in 
LTCC have access to almost half of the signals in London, and they can change the signal 
timings or implement other interventions such as changes to SCOOT (Hunt et. al. 1981) 
parameters in response to traffic problems. Such intervention measures are often based on 
the operational experience of the person handling the problem at the traffic control centre. 

A large amount of near-real-time and historic traffic data are available from various sensors 
and systems at any given Local Authority (LA). The aim of the FREEFLOW project (Glover 
et. al. 2008), which is the context of the work presented in this paper, is to develop tools and 
techniques to convert traffic data into intelligence to assist network managers and also to aid 
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the travelling public. The traffic management component of the work within FREEFLOW is 
called Intelligent Decision Support (IDS), which forms the focus of this paper.  

The rest of this paper is organised as follows. The next section provides an overview of the 
IDS functionality. The next two sections will present the state estimation and pattern-
matching & intervention recommendation functionalities within the IDS. The following section 
will describe the data from London used to test the methods presented here. This will be 
followed by results and discussion, followed by conclusions. 
 
Intelligent Decision Support 

The objective of the IDS component within FREEFLOW is to (a) determine if there is a traffic 
problem using near-real-time data from traffic sensors and systems, and (b) recommend 
traffic control interventions if problems are identified. The IDS is a knowledge-based system 
that uses information about past intervention actions to suggest new interventions. The 
system is being designed to work online in a system environment where near-real-time traffic 
data are accessible, and hence needs to be computationally efficient. 

The two main components within IDS are state estimation and pattern-matching for 
intervention identification. A logical overview of the IDS system is given in Figure [1] below. 

 

Figure 1:  Logical overview of IDS 
 

IDS monitors traffic sensor data, typically flow and occupancy from Inductive Loop Detectors 
(ILD), at regular intervals (e.g. 5 minutes) for an area of interest. The state identification 
algorithm is applied to each of the ILD, each representing a traffic link, separately. The 
output of the state identification algorithm is binary: 0 if the link is uncongested and 1 if the 
link is congested. If one or more links are congested, the pattern-matching component will 
search for a suitable traffic control intervention. The search consists of identifying the time 
periods in the past when the traffic sensor data from all the ILDs in the area is most similar to 
the currently observed data. All the traffic control interventions during such similar time 
periods are identified. 

The IDS will calculate the performance of the road network within the area of interest using a 
pre-defined Performance Index (PI) n time steps (e.g. 5 minutes) after the application of 
intervention. The PI will also be calculated after n time steps when no interventions were 
applied. The IDS will recommend the intervention that resulted in the best PI in the past, 
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including the possibility of a no action as the best intervention. The subsequent sections will 
present the state estimation and pattern-matching components in detail. 

 
State estimation 

A number of attempts to automatically determine the traffic state is available in the academic 
literature. Lao et al. (2004) use Fuzzy Logic to classify the traffic state into uncongested, 
“crowded” and congested using Fuzzy Logic; however, they used driver inputs rather than 
traffic sensor data. Narayanan et al. (2003) also used Fuzzy Logic to classify traffic using 
speed and inter-vehicle distance as input variables, using fixed thresholds in their 
classification method. Threshold based methods are generally not transferrable since the 
occupancy values reported by each ILD will depend on its electromagnetic sensitivity, and 
the thresholds could be different for different ILDs. Jiang et al. (2003) used Fuzzy Clustering 
of traffic sensor data consisting of flow, occupancy and spot-speed to cluster traffic into four 
states representing increasing levels of congestion. Of the above models, only the method 
presented in Jiang et al. (2003) provide a method to automatically identify the traffic state 
using traffic sensor data. However, the study does not provide a comprehensive evaluation 
of the proposed method. Moreover, the traffic states do not correspond to known traffic 
states in traffic engineering, though this criticism can be addressed by reducing the number 
of clusters in the proposed method. However, it is not clear if the modified method will 
correctly classify traffic into congested and uncongested states. 

On the other hand, it is rather straightforward to visually classify traffic into congested and 
uncongested states using a scatter-plot of flow and occupancy values. Occupancy increases 
as the flow increases during the uncongested regime, and occupancy decreases as the flow 
increases during the congested state; see Figure [2] for illustration. However, it is not 
straightforward to develop an algorithm that can differentiate between the two traffic states. 
Direct application of a clustering algorithm, such as the k-means clustering (MacQueen 
1967) method, lead to a number of congested data points being identified as uncongested. 
To address this problem, a two-step clustering approach was developed (Han et. al. 2009). 

 

Figure 2:  An example of the flow-occupancy plot of real ILD data 

 

1. This first step is to cluster the data points into two clusters roughly representing 
congested and uncongested regimes using k-means clustering. The distance metric used is 
cosine, which uses the difference between the angles made by two different data points with 
the origin to determine cluster memberships. The use of the cosine distance metric takes 
advantage of the fact that the flow vs. occupancy curve is linear in the congested regime, 
and most of the uncongested data points should be grouped in the same cluster. However, 
due to the range of occupancy values in the congested regime, some of the congested data 
points may be classified into the first cluster of uncongested data points. 

2. The second step is to fit a linear regression model on the data points in the 
uncongested cluster identified in the first step. All the data points identified as outliers by the 
regression model are moved to the second cluster, representing the congested state. 
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Pattern-matching 

The pattern-matching function of IDS is responsible for identifying time periods in the past 
when the traffic state, as represtented by ILD readings, is as close to the current observation 
as possible. The pattern-matcher is based on the k-Nearest Neighbour (k-NN) technique 
implemented using the Advanced Uncertain Reasoning Architecture (AURA) technology 
(Hodge & Austin 2005) from the computer science discipline. Given an observation vector 
Xn, and a dataset of past observations {X}, the k-NN method identifies k nearest neighbours 
of Xn  in {X} using a distance metric, where X can be a multi-variate observation. The 
commonly used distance metrics in k-NN such as the Euclidean distance, unit map, 
Mahalanobis distance, city block distance and Minkowski distance are insensitive to the 
position of the variables {x} within X. In other words, these distance metrics provide a 
measure of the separation between two observations of X in multi-dimensional space but not 
the direction of separation. This is an important shortcoming when applied to traffic flow data 
from a number of sensors since the distance metrics do not differentiate between differences 
in the loction of congestion, but only its magnitude (Krishnan et. al. 2010). 

For example, consider two observations of traffic flow data from two different ILDs, a and b, 

},{
11

ba ff and },{
22

ba ff . The Euclidean distance between the two observations is unity if the 

flow values at the first ILD between the two observations differ by unity with no differences in 
the flow at the second ILD or vice versa. However, the two scenarios represent different 
spatial patterns in traffic. To provide a simple numeric example, the distance from (0, 100) 
and (100, 0) to (0, 0) is the same, while a flow of 100 on ILD-a and ILD-b clearly form 
different traffic patterns. 

The concept of Centre of Mass (CM) was introduced in the feature vector {X} to address this 
problem. Before the details of this refinement are presented, a brief overview of the AURA is 
given below. The AURA technology relies on binary searching for computational efficiency. 
The feature vector is converted to a binary string using a process called quantisation. The 
quantisation process involves defining the range and precision of each variable in the feature 
vector X, resulting in separate bins for different ranges of the variables. For example, for an 
integer-valued variable such as vehicle count per 5 minutes with range 0-9 and 5 bins then 
each bin would have width 2: bin 0 {0,1}, bin 1 {2,3} …bin 4 {8,9}.  For a real-valued variable 
such as average speed with range 0.0-9.999 and 5 bins then each bin would have width 2: 
bin 0 [0,1.999], bin 1 [2.0,3.999] …bin 4 [8.0,9.999]. The bins for all the variables in the 
feature vector are concatenated to create the binary string. The bins corresponding to the 
values in Xh in historic data {X} are marked 1 while the other bins are marked 0 in the binary 
string. The storage structure consisting of binary strings for all the observations in {X} is 
called Correlation Matrix Memory (CMM) (Austin et. al. 1998). 

For each new observation Xn, the input vector is represented using a set of parabolic 
kernels, with one kernel for each variable x within X. The kernel density is estimated using 
Equation [1] given below. 
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Where, max(b) is the maximum number of bins across all variables, |binxq – binxj| is the 
number of bins separating the bin mapped to by xq from the bin mapped to by xj,  and bx is 
the number of bins for variable x.   

The columns of the matrix are summed according to the value on the rows indexed by the 
query input vector (Xn) and the CMM produces a summed output vector (S), as shown in 
Equation [2].  In AURA, the summed output vector is thresholded using L-Max thresholding 
to produce a binary thresholded vector (T).  L-Max thresholding is used in the AURA k-NN as 
it retrieves the top k matches. After thresholding, T effectively lists the top k matching 
columns from the CMM thus identifying the top k matches. The output summation sums the 
inputs multiplied by the weights followed by the L-Max threshold. An illustration of this 
process is shown in Figure [3]. The AURA k-NN can perform up to four times faster than the 
traditional k-NN (Hodge & Austin 2005). 
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                                              CMMXS
T

                                                         (2) 

 

Figure 3:  Illustrating the application of kernels to CMM to identify the k-nearest neighbours 
 

Four different centres of mass (CM) metrics were tested, along with original AURA matching, 
in order to find the best method for identifying similar incidents. The equation for calculating 
the CM is as follows. 

                  




i

ii

m

rm
CM        (3) 

 

Where mi is the mass and ri is the distance of object i from the origin. 

However, the notion of distance and the mass in the context of binary input vectors are 
different for the four CM metrics. The CM’s metrics used are given below. 

 CM-I:  
0aaja binbinm   and ra is calculated using the geo-coordinates 

(Easting and Northing) of the ILDs. 
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 CM-II:    2
0

2
)max( aaaja binbinbm  and 

0aaja binbinr   

 CM-III:    2
0

2
)max( aaaja binbinbm   and ra  =  the ILD reading 

 CM-IV: ma = the ILD reading and ra is calculated using the geo-coordinates (Easting 
and Northing) of the ILDs. 

 
Data from London 

Two datasets from Transport for London (TfL) were used to test the models presented 
above. SCOOT ILD data, consisting of flow and occupancy aggregated at 15-minute 
intervals, was obtained from the ASTRID system. In addition, traffic control interventions 
were obtained from the UTC system logs. Both the above datasets were obtained for a 12-
month period from 1

st
 April 2008 to 31

st
 March 2009. While the above data was obtained for 

the whole of central London, only a sub-network around the Hyde Park Corner (HPC) was 
used for this study. Data from 32 ILDs in the study area shown in Figure [4] was used for this 
study. 

The objective of the exercise is to determine if the IDS technique can identify similar 
incidents in the historic data. Hence, five serious or severe congestion events in HPC area 
identified in the TfL’s LTIS system (Barton 2004) were used for validation of the IDS pattern-
matcher. 

 Congestion event on 20
th
 May 2008 

 Congestion event on 17
th
 June 2008 

 Equipment fault on 14
th
 May 2008 

 Spillage on 15
th
 May 2008 

 Broken down vehicle 6
th
 June 2008 

 

The congestion event on the 20
th
 May caused congestion in Park Lane leading into Hyde 

Park corner, the northern arms of HPC and the link from Knightsbridge leading into HPC.  

The congestion event on the 17
th
 of June also caused congestion in Park Lane leading into 

HPC, but the congestion extended East into Piccadilly, which caused congestion on the 
northern arms of HPC, and congestion was observed on Grosvenor Place leading into HPC, 
and also on the Southern and Eastern arms of HPC.  
 
Results 

The objective of the test is to determine how accurately the IDS method can identify time 
periods with similar congestion patterns. The duration of both the events mentioned above is 
more than one hour. Hence, given one time period within the duration of the event as input, it 
is expected that IDS should identify other time periods during the same event as time 
periods with similar congestion patterns. Moreover, IDS should identify other time periods 
when the congestion pattern was similar. In this section, the results consisting of top 5 
matches and a qualitative analysis of the results are presented. 

The ILDs are grouped together to form locations when determining the spatial accuracy of 
the match. For example, a given location on the road may have ILDs N01/381a and 
N01/381b on two separate lanes. Such ILDs are grouped together to form locations. The 
spatial accuracy of the match is determined based on the number of congested locations 
identified by the match. 

Table [1] below shows the top 5 matches retrieved by the various AURA k-NN configurations 
for the incident on 20

th
 of May 2008. Table [2] below shows the top 5 matches for the 

incident on 17
th
 of June, where the duration of the event was 63 minutes, and Tables [3-5] 

show match statistics for rest of the incidents. A “good” algorithm should identify time periods 
during the congestion build-up of the event or time periods during the duration of the 
incident. (The incident will be marked cleared only after the congestion due to the event 
dissipates). False positive (FP) values in the cells indicate the number of locations during the 
matched time period that are congested but not congested during the input time period. A 
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higher value of FP means that the identified matches are congested at different locations. 
False negative (FN) values indicate the number of sensors that are congested during the 
input time period, but not during the matched time period. Table [6] shows aggregate results 
of the methods for all the incidents. 

 

 

Figure 4:  The area of London used for this study (Source: Transport for London) 

 

 

Matches AURA CM-I CM-II CM-III CM-IV 

 FP FN FP FN FP FN FP FN FP FN 

1 1 1 0 2 1 0 0 2 1 1 

2 1 0 1 1 0 0 2 0 0 2 

3 0 0 2 1 0 0 1 1 2 1 

4 1 0 1 0 0 1 0 1 0 4 

5 0 2 0 0 2 0 1 0 0 0 

Total 3 3 4 4 3 1 4 4 3 8 

Table 1:  Results for congestion event on 20
th
 May 2008 

 

Matches AURA CM-I CM-II CM-III CM-IV 

 FP FN FP FN FP FN FP FN FP FN 
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1 0 1 0 1 0 1 0 3 0 1 

2 0 0 0 0 0 2 0 1 1 2 

3 0 3 0 3 2 3 0 2 0 3 

4 0 1 1 2 0 0 0 4 1 4 

5 0 2 0 3 1 3 0 3 1 4 

Total 0 7 1 9 3 9 0 13 3 14 

Table 2:  Results for congestion event on 17
th
 June 2008 

 

Matches AURA CM-I CM-II CM-III CM-IV 

 FP FN FP FN FP FN FP FN FP FN 

1 2 0 1 0 2 0 2 3 2 0 

2 2 0 2 1 2 1 1 2 2 1 

3 1 1 2 1 3 0 1 2 2 1 

4 1 0 2 1 2 1 2 2 2 2 

5 2 1 1 0 1 0 0 2 1 2 

Total 8 2 8 3 10 2 6 11 9 6 

Table 3:  Results for equipment failure event on 14
th
 May 2008 

 

Matches AURA CM-I CM-II CM-III CM-IV 

 FP FN FP FN FP FN FP FN FP FN 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 1 0 1 1 2 2 1 

3 1 0 0 1 1 0 0 1 0 1 

4 0 1 0 1 0 1 0 1 1 1 

5 0 1 2 1 0 1 0 1 0 1 

Total 1 2 2 4 1 3 1 5 3 4 

Table 4:  Results for spillage event on 15
th
 May 2008 

 

Matches AURA CM-I CM-II CM-III CM-IV 

 FP FN FP FN FP FN FP FN FP FN 

1 0 4 0 2 0 2 1 1 0 3 

2 0 3 0 2 0 1 1 1 0 2 

3 0 2 0 3 0 3 0 5 0 4 

4 1 1 0 2 0 3 1 1 0 2 

5 0 2 1 1 1 1 0 4 0 3 
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Total 1 12 1 10 1 10 3 12 0 14 

Table 5:  Results for broken down vehicle event on 6
th
 June 2008 

 

 

 

Matches AURA CM-I CM-II CM-III CM-IV 

 FP FN FP FN FP FN FP FN FP FN 

Total 13 26 16 30 18 25 14 45 18 46 

Table 6:  Overall performance comparison of pattern-matching techniques 

 
Discussion 

FN indicates a more serious (from FREEFLOW perspective) problem of missed links in the 
match than FP. For example, if all the sensors that are congested during the current time 
period (input vector) and a few extra locations are congested during the matched time period 
(FP), the recommended intervention is still presumably valid as it is capable of easing 
congestion on the matched links. On the other hand, if some of the sensors that are currently 
congested are not congested in the matched time period (FN), potentially a different 
intervention should be used. Hence, a lower value of FN is more important than a lower 
value of FP. 

Keeping these factors in mind, AURA and CM-II perform the best. The use of distance 
metrics make the match worse than simple AURA. This result was initially unexpected. A 
plausible explanation for this is that the relatively large number of sensors in the feature 
vector may obscure the spatial pattern of congestion. Selectively choosing the sensors for 
matching may solve this problem. . However, selecting ILDs is not simple as different ILDs 
are required to identify different congestion topologies.  We would need to know the 
congestion topology to preselect the ILDs but the task is to identify (and recognise) 
congestion which is a circular cause and consequence. Hence, it is important that all the 
sensors in the area of interest are monitored since a potential problem could occur in any 
one of the links. 
 
The use of pattern-matching in IDS 

The matched time periods with similar congestion patterns forms the input to the rest of the 
IDS algorithm. The key steps are as follows. 

1. IDS has access to a database that contains all UTC interventions. These interventions 
consist of automated interventions made by a rule-based system based on pre-
defined rules and manual interventions made by TfL staff. IDS will identify 
intervention actions taken during incidents represented by matched time periods. 

2. All the interventions thus identified may not have been effective. Hence, the 
effectiveness of the interventions will be evaluated using any PI metric. The PI 
metric can indeed vary depending on the policy objectives of a given LA. The PI 
needs to be evaluated n time periods after the intervention, since there is a lag time 
between the application of an intervention and the observation of its effect on the 
street. The mechanism to find the optimal value of n is a topic of research within 
FREEFLOW. In addition, the similarity (or closeness) of the match will be taken into 
account in addition to the PI, providing the intervention recommendation with a 
confidence factor. 

3. IDS will also suggest potential causes of the incident by correlating the matched time 
periods with similar congestion patterns and incidents and equipment faults. This will 
provide the local authority staff with a number of potential reasons behind the 
congestion event.  
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Summary 

Two key components of the traffic management module developed within FREEFLOW are 
state estimation and pattern-matching. The spatial accuracy of matches using pattern-
matching is critical to the accuracy of the proposed FREEFLOW method. This paper 
described different configurations of AURA pattern-matcher and tested them against real ILD 
data from around Hyde Park Corner in central London. The test was carried out using data 
when incidents were known to be present, and the accuracy of the pattern matcher was 
determined based on the number of congested locations identified by the matcher. It was 
recommended that the AURA technology without any modifications and AURA in conjunction 
with the CM-II distance metric developed in the FREEFLOW project should be used for 
obtaining accurate location based congestion matches. The use of the output of the pattern-
matcher within the IDS traffic management module was also described in the paper. We 
hope to present our work on the extended IDS technology applied to the London data in the 
near future. 
 
Acknowledgements 

The work reported in this paper forms part of the FREEFLOW project, which is supported by 
the UK Engineering and Physical Sciences Research Council, the UK Department for 
Transport and the UK Technology Strategy Board. The project consortium consists of 
partners including QinetiQ, Mindsheet, ACIS, Kizoom, Trakm8, City of York Council, Kent 
County Council and Transport for London. 

 
References 
 
Austin, J., Kennedy, J. and Lees, K. 1998. The Advanced Uncertain Reasoning Architecture, 
AURA, In RAM-based Neural Networks, Ser. Progress in Neural Processing. World Scientific 
Publishing, 1998, vol. 9, pp. 43–50. 
 
Barton, N. 2004. Keeping London Moving: Real Time Traffic Management Systems and 
Operations in Transport for London. Proceedings of the 32

nd
 Annual European Transport 

Conference (ETC), Strasbourg, France. 4-6 October 2004. 
 
Glover, P., Rooke, A. & Graham, A. 2008. Flow diagram, Thinking Highways, 3(3), pp. 20-
23. 
 
Han, J., Krishnan, R. and Polak, J. 2009. Traffic state identification using loop detector data. 
Presented at the International Conference on Models and Technologies for Intelligent 
Transportation Systems, Sapienza University of Rome, Italy. June 2009. 
 
Highways Agency, 2009. National Traffic Control Centre. Available from 
http://www.highways.gov.uk/knowledge/1298.aspx. Accessed on 15th November 2009. 
 
Hodge, V.J. and Austin J. 2005. A Binary Neural k-Nearest Neighbour Technique. 
Knowledge and Information Systems, 8(3), pp. 276–292. 
 

Hunt, P. B.; Robertson, D. I.; Bretherton, R. D. & Winton, R. I. 1981. SCOOT - A traffic 
responsive method of coordinating signals. TRRL Laboratory Report 1014. Transport and 
Road Research Laboratory, UK. 

 

Jiang, G., Wang, J., Zhang, X. and Gang, L. 2003. The study on the application of Fuzzy 
Clustering Analysis in the dynamic identification of road traffic state. The IEEE 6th 
International Conference on Intelligent Transportation Systems, Shanghai, October 12-15, 
2003. 

 

http://www.highways.gov.uk/knowledge/1298.aspx


UTSG 
January 2010 
Plymouth 

Krishnan, Hodge, Austin & Polak: Online 
identification of traffic control measures 

 

This paper is produced and circulated privately and its inclusion  

in the conference does not constitute publication.  11 

Krishnan, R., Hodge, J. V., Austin, J., Polak, J. W. & Lee, T.C. 2010. On Identifying Spatial 
Traffic Patterns using Advanced Pattern Matching Techniques, To be presented at the 89

th
 

Annual Meeting of the Transportation Research Board, Washington D.C., USA, 10-14 
January 2010. 
 
Lao, Y., Yun, M., Tang, S., Wang, C., Yang, X. and Chu, H. 2007. Evaluation Method for 
Accuracy of Road Traffic State Information. Proceedings of the First International 
Conference on Transportation Engineering 2007 (ICTE 2007). Chengdu, China. 22-24 July, 
2007. 
 
MacQueen, J. B. 1967. Some Methods for classification and Analysis of Multivariate 
Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and 
Probability. University of California Press. pp. 281–297. 
 
Narayanan, R., Udayakumar, R., Kumar, K. and Subbaraj, L. 2003. Quantification of 
congestion using Fuzzy Logic and Network Analysis using GIS. Proceedings of Map India 
Conference 2003. New Delhi, India. 28-31 January, 2003. 


