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Abstract — Despite the vast wealth of traffic data available, currently there is only 

limited integration, analysis and utilisation of data in the transport domain. Yet, 

accurate congestion and incident detection is vital for traffic network operators to allow 

them to mitigate the cost of traffic incidents. Recurrent (cyclical) traffic congestion tends 

to be managed using timetabled control measures or through the use of adaptive traffic 

control systems such as SCOOT and SCATS. However, for non-recurrent congestion 

with rapid onset, such as the congestion caused by a traffic incident or traffic equipment 

failure, traffic network operators have to quickly detect the problem and then determine 

the likely cause before selecting the most appropriate action to both manage the traffic 

network and mitigate the congestion.  This is a complex task requiring specialist 

knowledge where assistance from automated tools will help facilitate the operator tasks. 

Automated detection is becoming an increasingly viable option due to the increased use 

of traffic sensors in the road network.  Therefore, the aim of the FREEFLOW project is 

to provide an Intelligent Decision Support (IDS) tool which is designed to complement 

existing fixed-time traffic control systems and adaptive systems SCOOT and SCATS.  

IDS will use traffic sensor data to rapidly identify traffic problems, recommend 

appropriate interventions that worked in the past for similar problems and assist the 

traffic network operators to pinpoint the cause of the problem.  Recommendations will 

be displayed to the network operator who will use this knowledge to select the most 

appropriate course of action. This paper describes and analyses the components of the 

IDS tool used for identifying incidents and faulty equipment.  

 
Index Terms — Intelligent Decision Support, Traffic Management, Traffic State 

Estimation Modelling, Pattern Match, Incident Detection, Equipment Failure Detection 

I INTRODUCTION 

In the UK, traffic network management generally involves manual monitoring and 
intervention implementation to supplement the timetabled or automated traffic control 
systems in place. For example, the UK motorway network is monitored and controlled by the 
National Traffic Control Centre (Highways Agency 2009) and the road network in local 
authorities such as London is monitored and controlled by the respective authority’s staff such 
as the London Traffic Control Centre (Barton 2004). The network operators respond to traffic 
problems, determine the likely cause of the problem and then select the most appropriate 
action to take to both manage the traffic network and mitigate the congestion. Such 
intervention measures are often based on the operational experience of the person handling 
the problem. 

A large amount of near-real-time and historic traffic data are available from various sensors 
and systems at any given Local Authority (LA). The aim of the FREEFLOW project (Glover 
et. al. 2008) is to develop tools and techniques to convert traffic data into intelligence to assist 
network managers, operators and also to aid the travelling public. The traffic management 
component of the work within FREEFLOW is called Intelligent Decision Support (IDS), 
which forms the focus of this paper. The full IDS tool will detect traffic problems, identify the 
likely cause and recommend suitable intervention most likely to mitigate congestion of that 
traffic problem.  Previous papers analysed incident detection and intervention 



recommendation (Krishnan et. al. 2010b). In this paper, we analyse incident detection and 
cause identification. 

The rest of this paper is organised as follows. Section II provides an overview of the IDS 
functionality. Section II.A will present the state estimation, II.B will present the pattern-
matching and II.C will present the spatial matching. The data and analyses are discussed in 
sections III and IV including the cause-suggestion functionality within the IDS. This is 
followed by discussion and conclusions in sections V and VI respectively. 

II INTELLIGENT DECISION SUPPORT 

The objective of the IDS described here is to (a) determine if there is a traffic problem using 
near-real-time data from traffic sensors and systems, and, if there is a problem, (b) identify 
the cause. The IDS is a knowledge-based system that uses information about past traffic 
incidents to identify the current incident and suggest the most likely cause. The IDS requires 
an historic database of traffic sensor data and traffic incident data for the application area. The 
IDS is designed to work online using near-real-time traffic data and large historic datasets. 
Hence, IDS needs to be computationally efficient.  

The IDS will monitor traffic sensor data to determine if the network is congested using traffic 
state estimation models developed at Imperial College London. The sensor data (typically 
flow and occupancy from Inductive Loop Detectors), is monitored at regular intervals (e.g. 5 
minutes) over a geographical area of interest. The state identification algorithm is applied 
separately to each ILD (and thus each network link). The output of the state identification 
algorithm is binary: 0 if the link is uncongested and 1 if the link is congested. If one or more 
links are congested, the historic database is queried for similar congestion events using neural 
network based pattern matching tools developed at the University of York. The search 
consists of identifying the historical time periods when the traffic sensor data from the set of 
Inductive Loop Detectors (ILDs) is most similar to the currently observed data. Similarity is 
based on two components: magnitude and spatial similarity. Once the closest matches have 
been found, traffic incidents and equipment failures that occurred during similar congestion 
events in the historic database are then searched. The most similar historical case(s) will be 
displayed to the network operator along with an associated confidence indicator. A logical 
overview of the IDS system is given in Figure 1. 
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Figure 1:  Logical overview of IDS 



In this paper, the IDS is tested offline using Inductive Loop Detector (ILD) data obtained 
from the ASTRID system and incident and equipment failure log data obtained from the LTIS 
system at Transport for London (TfL). The paper presents the preliminary results using TfL 
data and outlines future research avenues for development. 

A State estimation 
A number of attempts to automatically determine the traffic state are available in the 

academic literature. Lao et al. (2004) use Fuzzy Logic to classify the traffic state into 
uncongested, “crowded” and congested using Fuzzy Logic; however, they used driver inputs 
rather than traffic sensor data. Narayanan et al. (2003) also used Fuzzy Logic to classify 
traffic using speed and inter-vehicle distance as input variables, using fixed thresholds in their 
classification method. Threshold based methods are generally not transferrable since the 
occupancy values reported by each ILD will depend on its electromagnetic sensitivity, and the 
thresholds could be different for different ILDs. Jiang et al. (2003) used Fuzzy Clustering of 
traffic sensor data consisting of flow, occupancy and spot-speed to cluster traffic into four 
states representing increasing levels of congestion. Of the above models, only the method 
presented in Jiang et al. (2003) provide a method to automatically identify the traffic state 
using traffic sensor data. However, the study does not provide a comprehensive evaluation of 
the proposed method. Moreover, the traffic states do not correspond to known traffic states in 
traffic engineering, though this criticism can be addressed by reducing the number of clusters 
in the proposed method. However, it is not clear if the modified method will correctly classify 
traffic into congested and uncongested states. 

On the other hand, it is rather straightforward to visually classify traffic into congested and 
uncongested states using a scatter-plot of flow and occupancy values. Occupancy increases as 
the flow increases during the uncongested regime, and occupancy decreases as the flow 
increases during the congested state; see Figure 2 for illustration. However, it is not 
straightforward to develop an algorithm that can differentiate between the two traffic states. 
Direct application of a clustering algorithm, such as the k-means clustering (MacQueen 1967) 
method, leads to a number of congested data points being identified as uncongested. To 
address this problem, a two-step clustering approach was developed (Han et. al. 2009). 

Step 1 clusters the data points into two clusters roughly representing congested and 
uncongested regimes using k-means clustering. The distance metric used is cosine, which 
uses the difference between the angles made by two different data points with the origin to 
determine cluster memberships. The use of the cosine distance metric takes advantage of the 
fact that the flow vs. occupancy curve is linear in the congested regime, and most of the 
uncongested data points should be grouped in the same cluster. However, due to the range of 
occupancy values in the congested regime, some of the congested data points may be 
classified into the first cluster of uncongested data points. 

 
Figure 2:  An example of the flow-occupancy plot of real ILD data 

 



Step 2 fits a linear regression model on the data points in the uncongested cluster identified 
in the first step. All the data points identified as outliers by the regression model are moved to 
the second cluster, representing the congested state. 

B Pattern Matching  
The IDS pattern-matching module identifies time periods when the traffic state is most 

similar to the current observation.  As with previous versions of the pattern matcher (Krishnan 
et. al. 2010b), we consider both magnitude and spatial similarity.  The state is initially 
represented by a time-series of ILD readings and then incorporates spatial matching. The first 
stage of the pattern-matcher is a k-Nearest Neighbour (k-NN) technique implemented using 
the Advanced Uncertain Reasoning Architecture (AURA) technology (Hodge & Austin 2005) 
from the computer science discipline. Given the current vector Xq, and a historical dataset of 
vectors {X}, k-NN identifies the k nearest neighbours of Xq in {X} using a distance metric. 
The commonly used distance metrics in k-NN are the Euclidean distance, unit map, 
Mahalanobis distance, city block distance and Minkowski distance. However, such metrics 
are insensitive to the position of the variables {x} within the vector Xq; they calculate the 
magnitude of similarity but not the location of similarity and hence the location of congestion 
within the set of ILDs (Krishnan et. al. 2010). The concept of Centre of Mass (CM) is thus 
introduced in the second stage of pattern matching to address this problem.  

The first step in pattern matching is to produce representations of the historical data and 
generate a fast-access data repository.  For example, for two ILDs where ILD1 has a vehicle 
count reading of 1 and occupancy reading of 5.0 and ILD2 has vehicle count reading of 8 and 
occupancy readings of 45.0 then the historical vector Xh is:  

Xh = {1, 5.0, 8, 45.0}  
The AURA technology relies on binary searching for computational efficiency. The data 

vector Xh is converted to a binary string (Ih) using a process called quantisation (Hodge & 
Austin 2005). The quantisation process involves defining the range and precision of each 
variable in the data vector Xh, resulting in separate bins for different ranges of the variables 
within Ih. For example, for an integer-valued variable such as vehicle count per 5 minutes 
with range 0-9 and 5 bins then each bin would have width 2: bin 0 {0,1}, bin 1 {2,3} …bin 4 
{8,9}.  For a real-valued variable such as occupancy with range [0.0-100.0] and 5 bins then 
each bin would have width 20: bin 0 [0.0, 20.0), bin 1 [20.0, 40.0) …bin 4 [80.0, 100.0].  
Thus the set of bin mappings for Xh are: 

Bins(Xh) = {0, 0, 4, 2} 

In the pattern matcher, each bin index maps to a binary representation so for five bins, bin 0 
= 00001, bin 1 = 00010, bin 2 = 00100 etc. Thus, the bins corresponding to the values in Xh in 
are marked 1 while the other bins are marked 0. The binary representations for all the 
variables in the data vector are concatenated to create the binary string Ih which is a learning 
vector to allow the particular data vector to be stored and retrieved. 
 Ih =00001 00001 10000 00100  

The storage structure consisting of binary strings for all the observations in the data set {X} 
is called a Correlation Matrix Memory (CMM) (Austin et. al. 1998). CMMs are the building 
blocks for AURA systems. AURA uses binary input and binary output vectors to train data 
into the CMM. Training is a one-pass process with one training step for each binary input 
string, i.e., each vector in the data set so training is rapid.  Each binary string Ih is associated 
with a unique identifier vector Oh which has a single bit set to index a unique column in the 
CMM as given in Equation 1.  This column thus indexes the binary string Ih. 

operator ORlogical  theiswhereh   all ∨∨ ×= T
hh OICMM  (1) 

During retrieval, the CMM is searched to find the best matches.  For each new query 
observation Xq, the retrieval vector Rq is created using a set of parabolic kernels, with one 
kernel for each variable x in Xq. The kernels may vary across variables according to the 



number of bins assigned to that variable.  In this paper all variables use an equivalent kernel. 
The kernel density is estimated using Equation 2.   
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Where, max(b) is the maximum number of bins across all variables, |bin(xn
q) – bin(xn

h)| is 
the number of bins separating the bin mapped to by the variable value for the query vector 
(xn

q) from the bin mapped to by the variable value for the stored historical vector (xn
h), and 

b(xn) is the total number of bins for variable xn.   
 

 
Figure 3:  Illustrating the application of kernels to CMM to find the k-nearest neighbours using 

time-series vectors. 

 
The columns of the matrix are summed according to the kernel weight on the rows indexed 

by the query retrieval vector Rq. The CMM produces a summed output vector Sq, as shown in 
Equation 3 and figure 3.   

                                            ∑ •= CMMRS q
T
q               (3) 

In AURA, the summed output vector Sq is thresholded using L-Max thresholding to produce 
a binary thresholded vector Tq.  L-Max thresholding is used in the AURA k-NN as it retrieves 
the top L matches (Hodge & Austin 2005). After thresholding, Tq effectively lists the top L  
matching columns from the CMM thus identifying the top L matches. The AURA k-NN can 
perform up to four times faster than the traditional k-NN (Hodge & Austin 2005) thus 
allowing large data sets to be searched for the k nearest neighbours. 

C Spatial Similarity 
By incorporating the centres of mass (CM), the similarity between data vectors is calculated 

not only based on the distance but also based on the similarity of the spatial distribution of 
data values. Four different CM metrics were tested, along with original AURA matching, to 
find the best method for identifying similar incidents. The equation for calculating the CM is 
given in Equation 4. 
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Where mi is the mass and ri is the distance of object i from the origin. 
However, the notion of distance and the mass in the context of binary input vectors are 

different for the four CM metrics. The CMM does not store the original data values but stores 
a quantised (binary) representation of each data vector.  As the kernels used in the AURA k-
NN utilise the quantisation bins to assign similarity, the proposed CM calculations also utilise 
the bins in an analogous manner for consistency and simplicity. The CM metrics used are 
given below where mn is the mass for variable xn, rn is the distance for variable xn and 

0)( binxbin q
n −

 
is the number of bins between bin0 and the bin representing the value for 

variable xn of the query vector.
  

•  CM-I:  0)( binxbinm q
nn −=  and ra is calculated using the geo-coordinates 

(Easting and Northing) of the ILDs. 
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•  CM-III: ( ) ( )20
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q
nn xbinxbinbm α−−=  and rn  =  the ILD reading 

•  CM-IV: mn = the ILD reading and rn is calculated using the geo-coordinates 
(Easting and Northing) of the ILDs. 

III TRAFFIC SENSOR DATA FROM LONDON 

 
Figure 4:  The area of London used for this study (Source: TfL) 

 
Two datasets from Transport for London (TfL) were used to analyse IDS for recall and 

precision. SCOOT ILD data, consisting of flow and occupancy aggregated at 15-minute 



intervals, was obtained from the ASTRID system. In addition, traffic incidents and equipment 
failures were obtained from the LTIS system as TfL. Both datasets covered a 12-month period 
from 1st Apr. 2008 to 31st Mar. 2009. The analyses use the area around Hyde Park Corner 
(HPC) comprising data from 32 ILDs in the area shown in Figure [4]. 

The objective of the analyses is to determine if the IDS can identify similar incidents and 
equipment failures in the historic data. Hence, three serious events in HPC area identified in 
the TfL’s LTIS system (Barton 2004) were used for validation of the IDS pattern-matcher. 

•  Equipment fault on 14th May 2008 

•  Spillage on 15th May 2008 

•  Broken down vehicle 6th June 2008 

IV RESULTS 

The objective of the test is to determine how accurately the IDS method can identify time 
periods with similar congestion patterns. Given one time period within the duration of the 
event as input, it is expected that IDS should identify other time periods during the same 
event as time periods with similar congestion patterns. Moreover, IDS should identify other 
time periods when the congestion pattern was similar. In this section, the results consisting of 
top 5 matches and a qualitative analysis of the results are presented. 

The ILDs are grouped together to form locations when determining the spatial accuracy of 
the match. For example, a given location on the road may have ILDs N01/381a and N01/381b 
on two separate lanes. Such ILDs are grouped together to form locations. The spatial accuracy 
of the match is determined based on the number of congested locations identified by the 
match. 

Tables [1-3] show match statistics for the three incidents when the top 5 matches are 
retrieved by the various pattern match configurations. A “good” algorithm should identify 
time periods during the congestion build-up of the event or time periods during the duration 
of the incident. (The incident will be marked cleared only after the congestion due to the 
event dissipates). False positive (FP) values in the cells indicate the number of locations 
during the matched time period that are congested but not congested during the input time 
period. A higher value of FP means that the identified matches are congested at different 
locations. False negative (FN) values indicate the number of sensors that are congested during 
the input time period, but not during the matched time period. Table 4 shows aggregate results 
of the methods for all the incidents. 
 
Matches AURA CM-I CM-II CM-III CM-IV 
 FP FN FP FN FP FN FP FN FP FN 
1 2 0 1 0 2 0 2 3 2 0 
2 2 0 2 1 2 1 1 2 2 1 
3 1 1 2 1 3 0 1 2 2 1 
4 1 0 2 1 2 1 2 2 2 2 
5 2 1 1 0 1 0 0 2 1 2 
Total 8 2 8 3 10 2 6 11 9 6 

Table 1:  Results for equipment failure event on 14th May 2008 

 
Matches AURA CM-I CM-II CM-III CM-IV 
 FP FN FP FN FP FN FP FN FP FN 
1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 1 0 1 1 2 2 1 
3 1 0 0 1 1 0 0 1 0 1 
4 0 1 0 1 0 1 0 1 1 1 
5 0 1 2 1 0 1 0 1 0 1 



Total 1 2 2 4 1 3 1 5 3 4 
Table 2:  Results for spillage event on 15

th
 May 2008 

 
Matches AURA CM-I CM-II CM-III CM-IV 
 FP FN FP FN FP FN FP FN FP FN 
1 0 4 0 2 0 2 1 1 0 3 
2 0 3 0 2 0 1 1 1 0 2 
3 0 2 0 3 0 3 0 5 0 4 
4 1 1 0 2 0 3 1 1 0 2 
5 0 2 1 1 1 1 0 4 0 3 
Total 1 12 1 10 1 10 3 12 0 14 

Table 3:  Results for broken down vehicle event on 6
th

 June 2008 

 
Matches AURA CM-I CM-II CM-III CM-IV 
 FP FN FP FN FP FN FP FN FP FN 
Total 10 16 11 17 12 15 10 28 12 24 

Table 4:  Overall performance comparison of pattern-matching techniques 

V DISCUSSION 

FN indicates a more serious (from FREEFLOW perspective) problem of missed links in the 
match than FP. For example, if all the sensors that are congested during the current time 
period (input vector) and a few extra locations are congested during the matched time period 
(FP), the recommended intervention is still presumably valid as it is capable of easing 
congestion on the matched links. On the other hand, if some of the sensors that are currently 
congested are not congested in the matched time period (FN), potentially a different 
intervention should be used. Hence, a lower value of FN is more important than a lower value 
of FP. 

Keeping these factors in mind, AURA, CM-I and CM-II perform the best. The use of spatial 
distance metrics actually makes the FP rate slightly worse than simple AURA but CM-II has 
the lowest FN rate which is the most important measure. The result with respect to FP rate 
was somewhat unexpected. An explanation may be that the relatively large number of sensors 
in the feature vector may obscure the spatial pattern of congestion. Selectively choosing the 
sensors for matching may solve this problem. However, preselecting ILDs is not simple as 
different ILDs are required to identify different congestion topologies.  We would need to 
know the congestion topology to preselect the ILDs but the task is to identify (and recognise) 
congestion which is a circular cause and consequence. Hence, it is important that all the 
sensors in the area of interest are monitored since a potential problem could occur in any one 
of the links. 

A The Use of Pattern-Matching In IDS 
The matched time periods with similar congestion patterns form the input to the rest of the 

IDS algorithm. IDS may suggest potential causes of the incident by correlating the matched 
time periods with similar congestion patterns and incidents and equipment faults. This 
information may be displayed to the local authority staff and will provide a number of 
potential reasons behind the congestion event.  

VI CONCLUSION 

Two key components of the traffic management module developed within FREEFLOW are 
state estimation and pattern-matching. The spatial accuracy of matches using pattern-
matching is critical to the accuracy of the proposed method. This paper describes different 
configurations of the AURA pattern-matcher and tested them against real ILD data from 
around Hyde Park Corner in central London. The test was carried out using data when 



incidents were known to be present, and the accuracy of the pattern matcher was determined 
based on the number of congested locations identified by the matcher. It was recommended 
that the AURA k-NN and AURA k-NN in conjunction with both the CM-I and CM-II 
distance metric developed in the FREEFLOW project should be used for obtaining accurate 
location based congestion matches. The use of the output of the pattern-matcher to index 
historical cases and generate information for display to the network operator within the IDS 
traffic management module was also described in the paper.  
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