
This is a repository copy of M21TCP: Overcoming TCP Incast Congestion in Data Centres.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/89460/

Version: Accepted Version

Proceedings Paper:
Mhamdi, L and Adesanmi, A (2015) M21TCP: Overcoming TCP Incast Congestion in Data
Centres. In: Cloud Networking (CloudNet), 2015 IEEE 4th International Conference on.
IEEE International Conference on Cloud Networking (CloudNet), 05-07 Oct 2015, Niagara
Falls, Canada. IEEE , pp. 20-25. ISBN 978-1-4673-9501-4

https://doi.org/10.1109/CloudNet.2015.7335274

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

M21TCP: Overcoming TCP Incast

Congestion in Data Centres
Akintomide Adesanmi Lotfi Mhamdi

School of Electronic & Electrical Engineering

University of Leeds, UK

E-mail: L.Mhamdi@leeds.ac.uk

Abstract—Modern data centres host a myriad of cloud services
and applications with stringent delay and throughput require-
ments. The vast majority of these applications are of type parti-
tion/aggregate, where many servers simultaneously communicate
with one client to produce a result. Unfortunately, the standard
TCP/IP protocol, originally proposed for the Internet one-to-one
transport, falls short in this environment. This is due to the TCP
throughput collapse in such environment, known as TCP Incast
congestion problem.

This paper revisits the Incast congestion problem and identifies
its root cause: severe packet drops that result from the switch
buffers overflow. We propose a method of controlling congestion,
named ‘Many-To-one’ (M21TCP). The intuition is that a switch
can inform all parallel senders of the maximum rate at which they
can send packets that will not cause buffers overflow. M21TCP
has been tested and evaluated against known previous proposals
such as DCTCP, RED and ECN. Results show that M21TCP
outperforms previous solutions and completely eliminates Incast
for the maximum number of servers.

Index Terms—Congestion, TCP, Incast.

I. INTRODUCTION

The venture of large internet service providers such as

Amazon, Google, Yahoo and Microsoft into cloud comput-

ing, and the consolidation of enterprise IT into data centre

hubs, has led to the ubiquitous presence of data centres.

These data centres are used for web search, cluster based

storage, e-commerce and retail, social networking, map-reduce

and other applications that involve large scale computations.

Unfortunately a new breed of challenges, specific to the

communication networks that support them, accompanies data

centre networks (DCNs) [1].

TCP has stood the test of time, consistently adjusting to

new environments and technologies over a 40 year history [2].

Therefore, building data centre networks using TCP/IP is both

intuitive and desirable because of the low cost, ease of use, and

the opportunity it poses to leverage existing technologies [3].

However, TCP was originally designed to operate in Wide

Area Networks (WAN) and has been difficult to adapt to

the unique workloads, scale and environment of data centres

with their high throughput and low latency requirements [4].

DCNs commonly employ barrier synchronised many-to-one

traffic patterns [5] that are limited by the slowest sending

node [6]. One example is the Partition/Aggregate workflow

pattern where a single query operates on data that spans

across thousands of servers. Applications with this pattern

have soft real time constraints including deadlines on results

that translate into latency targets for individual tasks in the

workflow. They employ divide and conquer algorithms where

parent nodes in the algorithm tree return incomplete responses

if children nodes miss their targets. This behaviour is undesir-

able because incomplete responses affect the quality of query

results and diminish revenue [1].

One of the major barriers to the smooth communication in

DCNs is a problem termed Incast [7]. Incast is a catastrophic

throughput collapse that occurs when the number of servers

sending data increases beyond the ability of a switch to buffer

packets. It arises as a result of a combination of limited

switch buffer sizes, the data centre application communication

patterns previously described and the TCP loss recovery

mechanism [3].

Simply put, Incast occurs when multiple servers are commu-

nicating through a switch and the small buffer is overwhelmed

by a concurrent flood of highly bursty traffic from servers that

are effectively communicating in parallel. This leads to packet

loss and, consequently, one or more TCP timeouts. Timeouts

impose hundreds of milliseconds delay, which almost guaran-

tee that a sender misses its deadline. These timeouts and the

resulting delay can reduce throughput by 90% or more [2].

Substantial work has been carried to address and solve

the Incast problem. These proposals can be mainly divided

into two categories. The first is an extension of traditional

TCP [8] [2]. These approaches inherit the TCP properties

and fall short in overcoming the Incast problem. The second

category uses rate control and Active Queue Management

(AQM) mechanisms. This includes DCTCP [1], D2CTCP [7],

D3 [9] and pFabric [10]. While these techniques improve

the data centre transport capabilities in some aspects, they

fail in others, especially with respect to performance and

implementation cost.

Motivated by the shortcomings of previous proposals and

to completely solve the Incast problem, this paper proposes

M21TCP. In particular, it offers the following contributions:

• We introduce M21TCP, a novel approach to solving the

Incast problem, where the router allocates a Maximum

Congestion Window (MCW) to every flow, for every

Round Trip Time (RTT). The protocol leverages the

idea of router based flow and rate control proposals

such as pFabric [10] and D3 [9]. It aggressively and

explicitly targets the root cause of Incast congestion:

buffer overflow. The switch allocates a MCW to each flow

using a 32 bit TCP option. This MCW is calculated such

!
Fig. 1. Partition Aggregate workflow.

that if all senders send packets concurrently, the buffer

still does not overflow. M21TCP is compatible with any

congestion control algorithm as it simply sets a maximum

that the congestion window must not supersede.

• We study the effectiveness of M21TCP against other

alternatives including regular TCP variants and AQM

schemes, in mitigating Incast. Random Early Detec-

tion (RED), TCP with Explicit Congestion Notification

(ECN), and Data Centre TCP (DCTCP) are explored.

While basic ECN relays the presence of congestion,

DCTCP relays the extent of congestion and used this

knowledge to size windows effectively [1]. We find that

for sufficiently large concurrent senders, RED, ECN and

DCTCP are not completely effective at solving the Incast

problem. M21TCP on the other hand is shown to prevent

Incast congestion for the maximum number of senders.

The remainder of this article is structured as follows.

Section II introduces the background of the Incast problem

and characterises the data centre traffic workload. It discusses

relevant existing congestion control algorithms for data cen-

tres. Section III introduces the M21TCP congestion control

algorithm and discuss its properties. Section IV presents the

performance study of our algorithm with a comparison to

existing schemes. Finally, Section V concludes the paper.

II. DATA CENTRE COMMUNICATION AND INCAST

CONGESTION

In this section, we explore the workflow and application

patterns that lead to Incast congestion in data centres, de-

scribing the constraints that challenge the use of TCP in

this environment. Some previous work has explored Incast

in cluster based storage systems which involve parallel file

reads on data striped across many servers [3] [2]. Other

works have explored the Incast problem in Partition/Aggregate

workflows [1] [9].

A. Workload characterisation

Researchers who study the Incast problem usually use

either of two workloads. The fixed fragment workload (FFW)

assumes that the fragment sent by each server remains constant

as the number of servers increases, while the fixed block

workload (FBW) assumes that the total block size is fixed

Client
Switch

Servers

SRU1

SRU2

SRU3

SRU4

Data

Block

1

2

3

4

!

Fig. 2. The classical Incast scenario showing multiple servers communicating
with a single client through a bottleneck link.

and partitioned amongst an increasing number of servers.

Both workloads are equally valid based on the application.

Subsequent Sections use either FFW or FBW or both to

explore the Incast and its problems.

The general configuration consists of one client connected to

multiple servers through the same switch as shown in Figure 2.

The client runs an aggregator application that requests a data

block from n servers by sending a request packet to each server

for one SRU (Server Request Unit) worth of data. The servers

respond with the SRU and clients do not request a new block

of data until all the individual SRUs that make up the previous

block have been received. This leads to a synchronised read

pattern of data requests: Barrier Synchronised workflow.

This workload requires a persistent TCP connection, and

in simulations, data is repeatedly requested over a 5 second

period in order to obtain a more accurate representation of

the system. While some researchers [11] make assumptions

for non-persistence in the hope that further work be done to

improve their solutions for the typical data centre workflows,

we will see that this simplification must not be made since

persistent connections play a huge role in causing Incast. This

is because transfers start with the TCP connection already open

as opposed to going through slow start [12].

In order to get more insights to the problem, we simulate

the Incast behaviour in the network simulator, NS-3 [13]

and analyse the main reasons for its onset: timeouts. We

also explore the network and flow characteristics that affect

Incast, and detail their effectiveness as possible solutions to

Incast. The default network parameters used are typical of

data centre communications and were obtained from system

administrators and switch specifications and are detailed in [3]

and [4]. Therefore, if each server sends 56KB of data as

shown in Figure 3, the total block size is n × SRU . The

total block used in these experiments is 1MB. The client

requests 1MB/n Bytes from n different servers, and each

server responds with the required amount of data. As usual,

the client waits until it receives all the data requested before

making another query. This process is repeated for 5 seconds

in simulations to obtain a more accurate idea of the average

system behaviour.

B. TCP incast congestion

Parallels can be drawn between cluster based storage

systems and partition aggregate workflow pattern. One key

similarity is the many to one communication pattern where

effectively parallel concurrent senders communicate with a

Parameter Default

SRU size 256KB

Maximum Segment Size 576 bytes

Link Bandwidth 1 Gbps

Link delay 25us

TCP Variant NewReno

Device Transmit Buffer Size 128KB

Retransmission Time Out (RTO) 200ms

Switch Buffer Size 64KB

Limited Transmit disabled

Switch Queue Droptail

Fig. 3. Default Network Parameters.

Fig. 4. The total throughput of multiple barrier synchronised connections vs.
the number of senders, under a fixed block workload.

client through a bottleneck link. Another is the limitation of

the applications by the slowest sending node.

This communication pattern leads to a phenomenon identi-

fied and described [14] as Incast. When Incast occurs, a client

may observe a TCP throughput drop of one or two orders of

magnitude below its link capacity when packets overfill the

buffers on the client port of the switch, causing many losses.

In partition aggregate patterns, if Incast occurs as a result

of severe packet loss at the switch, it could take RTO min =
200ms for TCP to recover. This causes the delayed flow to

miss the aggregator deadline (usually 10s of milliseconds).

In cluster based storage, the delay for reading data increases.

There has been no widespread accepted solution to Incast. In-

dividual application solutions such as [11] are tedious because

they require that each application be built and set up according

to their specific needs, and the capabilities of the network.

Figure 4 shows the result of simulating Incast with the

default parameters in Figure 3. This plot is consistent with

previously obtained Incast patterns [3] [4] [1] [15]. The many

to one communication has a high throughput close to the

bandwidth of the bottleneck link -1Gbps - but falls well below

400Mbps at 16 servers.

A closer examination of traces indicates that TCP timeouts

are primarily responsible for the Incast phenomenon observed.

When one or more servers experiences a timeout as a result of

severe packet loss at the queue, the other servers may complete

Fig. 5. Congestion window of a single sending server with 7 other sending
servers communicating with the client concurrently.

their transfers but do not receive the next request until that

timeout(s) expires, and all the servers complete their transfers.

This leads to a situation where the bottleneck link is idle or

underutilised for extended periods of time.

Another reason for the Incast problem is that some TCP

connections in data centres are persistent. This means that

when a request is completed, the congestion window will

continue from where it stopped during the previous connec-

tion. Flows that finish later will thus have larger congestion

windows, which would be received concurrently on the start of

the next request. If a flow loses its whole window - (which can

easily happen since the window of each flow becomes smaller

as the number of senders increases), timeout can occur. This

phenomenon is known as Block Head Time Out [16].

Figure 5 shows the congestion window when the total num-

ber of concurrent sending servers is increased to 8. Figure 5

shows three 200ms periods when the congestion window does

not change, indicating one of two things:

1) The server times out, or

2) One of the servers parallel to it times out. This server

completes transmission but cannot start transmitting the

next SRU block because it has not received a request

from the client which is waiting for the timed out

server(s) to complete its (their) transmission.

In steady state, when a new request is received, the conges-

tion window continues increasing from where it left off from

during the previous transmission until a packet is eventually

lost due to buffer overflow at the switch. The TCP connection

is persistent and does not go into slow start at the beginning

of every request; this is central to the Incast problem [10]

as flows have no opportunity to slowly probe the network for

congestion.

When packet loss is not extreme, the sending server receives

triple duplicate ACKS, decreases its congestion window and

goes into fast recovery mode. The congestion window spikes

up again in fast recovery because the congestion window is

increased by one MSS (Maximum Segment Size) for every

additional duplicate ACK, until it receives a full ACK. When

this happens, the congestion window is decreased to one MSS.

The process continues until packet loss is severe. In this case,

severe packet loss occurs at 0.37 seconds and a timeout occurs.

Since the root cause of the timeouts that lead to Incast is

buffer overflow, it follows that increasing the buffer size of

the switch delays the onset of Incast. While it is true that

increasing the buffer size mitigates Incast, this characteristic as

a potential solution is impractical as switches with large buffer

sizes are very costly and not suitable for the considerations of

system designers. In addition, switch manufacturers may need

to move to faster, more expensive memory in anticipation for

higher link capacities in the data centre environment of the

future. Therefore, increasing buffer sizes, as a solution, is not

cost ineffective.

III. THE MANY-TO-ONE SCHEME

A. Design Rationale

The goal is to develop a method of mitigating Incast con-

gestion that is more effective in DCNs than existing solutions.

Previous Sections examined proposed solutions that involved

reducing the impact of timeouts, using ECN and implementing

clever congestion control (DCTCP) algorithms. However, all

these methods have their shortcomings. Following previous

discussions, the following goals for data centre congestion

control are identified as:

• Maximum application throughput

• Low latency

• High link utilisation

Furthermore, in the technologies detailed in [17] [10],

routers are involved in the control of flows at the packet

level. In D3, routers explicitly assign sending rates to end

hosts based on their deadlines while in [10], routers prioritise

packets based on information set in their headers. The Many

To One transport layer modifications for Incast avoidance

combine the router rate allocation concept of D3 and the

realisation that lower MTUs mitigate Incast.

The central theme to the M21TCP concept is that the switch

can determine the number of flows passing through it and send

a message through the packets back to the sender informing

them of either the number of flows parallel to each sender or

the maximum number of packets that they can each send at a

go that will not overflow the switch’s buffers. The senders use

this information to set a maximum transmission rate parameter

(congestion window for TCP) that must not be exceeded.

B. The Many to one TCP M21TCP

The Many-to-One TCP (M21TCP) ensures that TCP senders

do not exceed a sending rate limit that could cause a buffer

overflow. The routers encode a maximum congestion window

each sender must not exceed in each packets header.

Like ECN, a packet with the encoded information traverses

the routers along that path to the receiver. The encoded

information is then transmitted by the receivers to the senders

through ACK packets. If the encoded value is the Maximum

congestion window, each router along the path encodes a new

value if and only if the value it hopes to set is less than the

value already encoded in the packet. If the packet is encoded

with the number of senders, routers set a value if and only if

the value it hopes to set is more than the value already encoded

in the header.

C. The M21TCP Algorithm

The M21TCP algorithm has three main components:

1) Router/switch operation: A router that supports

M21TCP operation allocates a MCW to each flow based

on the number of flows currently traversing the interface.

This MCW is encoded in a TCP option field and is

valid for the next RTT. In order to properly perform this

function, the router must track the following parameters:

• N : The number of flows traversing the interface.

Routers use flow initiation and termination packets

(TCP SYN/FIN) to increment and decrement N
respectively..

• max cwnd: The MCW for each flow, which will

allow maximum utilization of the link while pre-

venting queue build-up and loss due to buffer over-

flow. In an advanced system, extensive mathematical

analyses should be done to obtain a formula for this

parameter. For these purposes however, a simple

effective setting is derived by assuming a worst

case scenario where there is bursty traffic from all

concurrent senders. The MCW is derived from N
using Equation 1.

Max Wind =
B − (MHS ×N)

N
(1)

B is the buffer size. The constant, MHS, is the Min-

imum Header Size, which represents the combined

minimum IP and TCP header size; it usually has a

value of 42. When M21TCP is used in a situation

where the length of IP and TCP headers are not the

minimum value, it is the responsibility of the sender

to reduce the congestion window by the number of

bytes used by the IP and TCP options.

In pFabric [10], routers capture packet metadata, while

in D3, routers encode rates (in a similar manner to

M21TCP) in packet headers. Regular routers are capable

of capturing and modifying TCP SYN packets, which

are used to negotiate the TCP maximum segment size

during the TCP handshake [18]. Therefore it must follow

that routers like those proposed for D3 and pFabric

are easily capable of M21TCP’s operation while regular

routers can be adapted without extensive modifications.

When multiple switches operate between end hosts,

routers may set the MCW option in a TCP packet if and

only if the maximum congestion window value, which

that specific router hopes to set is less than that which

is already set in the packet. Thus a packet obtained by

the receiver contains the least MCW value calculated by

any of the routers on the path the packet traversed.

2) Receiver operation: The M21TCP receiver is not unlike

an ECN receiver. It conveys the MCW received in a

packet back to the sender by encoding it in the ACK

packet. In the case of delayed ACKS, the MCW value

in the latest received packet is used in the ACK.

3) Sender operation: The first difference between the

normal TCP sender and the M21TCP sender is that

the M21TCP sender always sends packets with a TCP

Fig. 6. The total Goodput vs number of senders of DROPTAIL, ECNTCP,
DCTCP, M21TCP in the incast scenario under FFW.

MCW option field: a proprietary 32 bit TCP option. The

sender uses the MCW value received to limit its con-

gestion window. The operation does not change TCPs

congestion control algorithm itself. It simply limits the

congestion window by setting a maximum congestion

window assignment. Equation 2 is a simple example of

how this works

cwnd = min{cwnd+ 1,maxcwnd} (2)

It is worth mentioning that, as described in Section III-A, the

implementation cost of M21TCP is just similar to other router

based flow and rate control proposals, such as pFabric [10]

and D3 [9]. In what follows, we shall show the superior

performance of M21TCP in overcoming the Incast problem.

IV. EXPERIMENTAL RESULTS

The performance of M21TCP is evaluated and compared to

that of RED, ECN with RED, and DCTCP in the classical

Incast scenario using the NS-3 simulator. RED is simulated

with min th = 15 and max th =25, K is set to 20 and g to

0.16, as suggested as suggested by [1].

A. Throughput and latency under fixed fragment workload

We start by evaluating the performance of M21TCP against

ECN with RED (ECNTCP) and DCTCP under a fixed frag-

ment workload. The fixed fragment SRU size is 256KB, which

means that the total block size is n×SRU when the number

of severs is n. The two metrics of interest are the throughput

and latency of the flows.

Figure 6 shows the goodput of each solution while Figure 7

shows the average completion time or latency of a request

under a fixed fragment workload. We observe that M21TCP

achieves and maintains a high throughput close to the max-

imum with increasing sending servers. We also observe that

the latency of M21TCP increases gradually with increasing

number of senders simply because the block size is greater.

We further observe that RED performs worse than Droptail,

while ECN and DCTCP delay the onset of Incast substantially

but do not completely eliminate it.

ECN and DCTCP show great improvements on Droptail.

They both also achieve roughly the same amount of throughput

Fig. 7. Latency of DROPTAIL, ECNTCP, DCTCP, M21TCP vs. number of
senders in the Incast scenario under FFW workload.

before Incast occurs (circa 940Mbps). Since TCP aggres-

sively drops the window size on receipt of ECN ECHO,

researchers [1] claim that it leads to low link utilisation

because of a mismatch between the input rate and the link

capacity. The high throughput in Figure 6 shows that this is not

the case under fixed fragment DCN workloads. ECN actually

causes short flows to complete quickly [19].

Nevertheless, algorithms like RED with ECN that function

based on the queue length, find it difficult to deal with

situations where there is low statistical multiplexing and the

queue length oscillates rapidly [1]. This causes queue build-

up with little room to absorb microbursts. This is why Incast

still occurs at 32 servers with ECN.

As depicted in Figure 6, DCTCP performs slightly better

than ECN: Incast occurs at around 48 servers. In [1], DCTCP

is found to be ineffective under conditions where the number

of senders is large enough such that each of the senders

sending around 2 packets exceeds the static buffer size. Thus,

even at its best, DCTCP still imposes limits on the number

of senders at which Incast will not occur. In this experiment,

48 senders are enough to cause Incast. The system suffers

timeouts when the number of senders is such that each sending

around 3 packets (48× 57× 3 > 64KB) is enough to exceed

the static buffer size. These results match the results obtained

in [1].

Expectedly, M21TCP performs much better than other solu-

tions under a fixed fragment workload. There is a slight drop

in goodput at 64 senders, but the decline is slight. At lower

sender numbers, servers running M21TCP maintain a goodput

greater or equal to other solutions. M21TCP prevents queue

oscillations and build up, leading to a consistent, predictable

solution which guarantees that the switchs transmission buffer

will not overflow and therefore there will be no timeout (the

main cause of Incast).

B. Throughput and latency under fixed block workload

RED with ECN and DCTCP are compared with droptail

under a fixed block workload. Figure 8 shows the application

level goodput when the block size is fixed at 1MB and each

sender is required to transmit 1MB/n Bytes. Figure 9 shows

the average request latency. Beyond 32 senders, partition

Fig. 8. The total Goodput vs number of senders of DROPTAIL, ECNTCP,
DCTCP, M21TCP in the incast scenario under FBW.

Fig. 9. Latency of DROPTAIL, ECNTCP, DCTCP, M21TCP vs. number of
senders in the Incast scenario under FFW workload.

aggregate requests that have deadlines of 10ms will miss their

deadlines with DCTCP. However ECN maintains a completion

time around 10ms until a little more than 48 senders transmit

in parallel. Similarly, the throughput of DCTCP under FBS

drops at 48 senders, while the throughput of RED with ECN

drops at 64 senders: Unexpectedly, ECN performs better than

DCTCP under fixed block workloads.

While DCTCP provides significant performance improve-

ments in delaying Incast, this suggests that sometimes it per-

forms worse than currently deployed TCP congestion control

schemes. This is because as the number of flows grows, the

bottleneck queue gradually oscillates with increasing ampli-

tude, thereby not meeting design goals. DCTCPs failure to

inform the sending servers of changing congestion windows

fast enough is what causes queue oscillations. Figure 8 shows

that M21TCP maintains a high goodput and even trends

upward as the number of servers increases beyond 64. Figure 9

shows that latency sensitive applications that run M21TCP

should expect to meet 10ms deadlines even at a high number

of sending servers. The results again validate expectations that

M21TCP not only achieves higher throughput and lower delay

than DCTCP and ECNTCP, but completely prevents Incast

congestion at the switch.

V. CONCLUSION

Incast occurs when many parallel senders communicate

with one client through a bottleneck link. It is a catastrophic

throughput loss that disrupts the high throughput, low latency

applications in DCNs. In this paper, the Incast problem was

investigated and analysed. In particular, a new congestion

mechanism, M21TCP, was proposed and tested against normal

TCP with Droptail, ECNTCP, and DCTCP. M21TCP is a con-

gestion control scheme that informs senders of the Maximum

Congestion Window that they must not exceed, to prevent the

switch buffer from overflowing. It proved to prevent Incast

for the maximum number of senders investigated (64) and

outperformed all previously proposed solutions. In general,

many to one modifications on the transport layer level offer

an opportunity for DCNs to be emancipated from previous

limits on the number of concurrent servers involved in barrier

synchronised flows like MapReduce.

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in ACM

SIGCOMM, 2010, pp. 63–74.
[2] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,

G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-
grained tcp retransmissions for datacenter communication,” SIGCOMM

Comput. Commun. Rev., vol. 39, no. 4, pp. 303–314, Aug. 2009.
[3] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.

Ganger, G. A. Gibson, and S. Seshan, “Measurement and analysis of
tcp throughput collapse in cluster-based storage systems,” in USENIX

Conference, ser. FAST’08, 2008, pp. 1–14.
[4] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Under-

standing tcp incast throughput collapse in datacenter networks,” in ACM

WREN, 2009, pp. 73–82.
[5] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,

“The nature of data center traffic: measurements & analysis,” in ACM

SIGCOMM, ser. IMC’09, 2009, pp. 202–208.
[6] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, “Fail-stutter fault

tolerance,” in HOTOS’01, 2001, pp. 33–.
[7] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter

tcp (d2tcp),” in ACM SIGCOMM, 2012, pp. 115–126.
[8] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.

Ganger, G. A. Gibson, and S. Seshan, “Measurement and analysis of
tcp throughput collapse in cluster-based storage systems,” in USENIX

Conference, ser. FAST’08, 2008, pp. 12:1–12:14.
[9] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never

than late: meeting deadlines in datacenter networks,” in ACM SIGCOMM

conference, ser. SIGCOMM’11, 2011, pp. 50–61.
[10] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,

and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
ACM SIGCOMM, ser. SIGCOMM ’13, 2013, pp. 435–446.

[11] M. Podlesny and C. Williamson, “An application-level solution for the
tcp-incast problem in data center networks,” in IWQoS’11, pp. 1–3.

[12] M. Alizadeh and T. Edsall, “On the data path performance of leaf-spine
datacenter fabrics,” in IEEE HOTI, 2013, pp. 71–74.

[13] (2011) The ns-3 consortium. ns-3, 2011. [Online]. Available:
http://www.nsnam.org/9

[14] D. Nagle, D. Serenyi, and A. Matthews, “The panasas activescale storage
cluster: Delivering scalable high bandwidth storage,” in ACM/IEEE SC

’04, 2004, pp. 53–.
[15] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “Ictcp: Incast congestion control

for tcp in data-center networks,” IEEE/ACM Trans. Netw., vol. 21, no. 2,
pp. 345–358, Apr. 2013.

[16] J. Zhang, F. Ren, L. Tang, and C. Lin, “Modeling and solving tcp incast
problem in data center networks,” in IEEE TPDS, vol. PP, no. 99, 2014.

[17] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61.

[18] P. Zhang, H. Wang, and S. Cheng, “Shrinking mtu to mitigate tcp incast
throughput collapse in data center networks,” in ICCMC’11, pp. 126–
129.

[19] F. Kelly, G. Raina, and T. Voice, “Stability and fairness of explicit
congestion control with small buffers,” SIGCOMM Comput. Commun.

Rev., vol. 38, no. 3, pp. 51–62, Jul. 2008.

