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Population-driven urban road evolution dynamic model 

Fangxia Zhao· Jianjun Wu· Huijun Sun · Ziyou Gao· Ronghui Liu 
 

Abstract: In this paper, we propose a road evolution model by considering the 

interaction between population distribution and urban road network. In the model, 

new roads need to be constructed when new zones are built, and existing zones 

with higher population density have higher probability to connect with new roads. 

The relative neighborhood graph and a Fermat-Weber location problem are 

introduced as the connection mechanism to capture the characteristics of road 

evolution. The simulation experiment is conducted to demonstrate the effects of 

population on road evolution. Moreover, the topological attributes for the urban 

road network is evaluated using degree distribution, betweenness centrality, 

coverage, circuitness and treeness in the experiment. Simulation results show that 

the distribution of population in the city has a significant influence on the shape of 

road network, leading to a growing heterogeneous topology.  

Keywords Road evolution ∙ Population distribution ∙ Relative neighborhood ∙ 

Fermat-Webber location problem 

1. Introduction 

With the increase of population, traffic demand is growing in cities. Continuous 

growth of traffic demand leads to serious traffic congestion and has become one 

of the most challenging and important issues for the decision makers. To alleviate 

traffic congestion, governments worldwide have been making huge investments in 

transportation infrastructure. But where best to invest the infrastructure, known as 
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the network design problem (NDP), has long been a great interest to decision-

makers, as well as been recognized to be one of the most difficult and challenging 

mathematical problem to solve. For the detailed reviews of NDP, the readers are 

referred to Boyce (1984), Magnanti and Wong (1984), Friesz (1985), Migdalas 

(1995), Yang and Bell (1998), Chen et al. (2011) and Zanjirani et al. (2013). 

Construction of urban road network leads to changes of network topology. The 

question on which urban road network topology is more suitable to satisfy the 

traffic demand has only recently become an important problem. In fact, the 

evolution of urban road network has many features. Firstly, it is a complex 

evolution in time and space. The evolution of urban road network presents a 

gradual formation process of urban road system. An in-depth study of road 

network evolution can not only reveal the processes of urban formation and 

evolution, but also provide the theoretical foundation for analyzing the traffic 

problems. As such, the evolution of urban road network has attracted research 

attention in recent years. A comprehensive review of urban road evolution models 

can be found in Xie and Levinson (2011). The general modeling approaches can 

be classified as, optimization (Schweitzer et al. 1997), dynamics (Courtat and 

Gloaguen 2011), data mining (Levinson 2008) and simulation (Alberti and 

Waddell 2000; Yamins et al. 2003; Xie and Levinson 2007, 2009; Figueiredo and 

Machado 2007).  

Over last few years, some mechanisms have been considered to develop urban 

road evolution models. These include land use (Levinson and Yerra 2006; 

Levinson et al. 2007), population density (Barthélemy and Flammini 2009), 

social-economics (Yang and Huang 1998; Levinson and Yerra 2006), 

environment (Handy et al. 2005). Among which, population distribution is the 

most frequently considered mechanism and is shown to have the most significant 

effect on the evolution of urban road network. For example, Barthélemy and 

Flammini (2009) proposed a model that described the impact of economical 

mechanisms on the evolution of the population distribution and the topology of 

the road network. To reflect how the distribution of population and employment 

responds to the accessibility patterns, Levinson et al. (2007) proposed a co-

evolution model of land use and transportation network. Levinson (2008) further 

developed a spatial co-development model of rail networks and population 

distribution in London during the 19th and 20th centuries, and found that there is 
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a positive feedback effect between population density and network density. It 

shows that the distribution of population plays a significant role in the 

transportation network evolution. It is natural to assume that an urban road 

network would evolve to better serve the changing distribution of population. The 

structure of an urban road network influences the accessibility and governs the 

attractiveness of different zones of the network (Barthélemy and Flammini 2009). 

In turn, the changes in the attractiveness of different zones can lead to changes in 

population distribution. In this paper, we explicitly model the dynamic interactive 

process between road network evolution and population distribution.  

In the urban road network evolution, the accessibility of zones (or zones) is an 

important factor to consider. Minimal spanning tree (MST) (Karger et al. 1995) is 

generally used as a mechanism to describe the accessibility of a network. 

However, the accessibility of road network based on MST is very poor, in that 

MST has no cyclical paths (Toussaint, 1980). To improve network accessibility 

and to avoid too many cyclical paths in the network, a relative neighbor graph 

(RNG) (Toussaint 1980; Jaromczyk and Toussaint 1992) was applied as the 

mechanism in the building of new roads. In fact, MST is a subgraph of RNG, 

which means that RNG has higher accessibility and smaller number of circles in 

the network than MST (Supowit 1983). In addition, the construction cost of road 

based on MST is always not the minimal (Hwang and Richards, 1992). To 

minimize the road construction cost, Minimum Steiner tree (Hwang and Richards 

1992; Chlebik and Chlebikova 2002) has been proposed to develop the urban road. 

Minimum Steiner tree is a graph that connects the known points by lines of 

minimum total length in such a way that any two points may be interconnected by 

line segments either directly or via the new added points (Hwang and Richards 

1992). However, the limitation in the application of Steiner minimum tree to the 

study of urban road evolution and population distribution is that the weight of 

each zone is assumed to be equal (Hwang and Richards 1992; Chlebik and 

Chlebikova 2002). In reality, the population of each zone is not same. Therefore, 

the impact of different zone on the urban road topology is not same, which 

implies that the weight of each zone should not be the same. The Fermat-Webber 

location problem is to find a point in the Euclidean space that minimizes the sum 

of the costs from this point to the given destination points, where different given 

points are associated with different costs per unit distance. Therefore, based on the 

http://en.wikipedia.org/wiki/Line_segment
http://en.wikipedia.org/wiki/Point_%28geometry%29
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above discussion, RNG and the Fermat-Webber location problem (Weiszfeld 

1937; Vardi and Zhang 2001) are introduced to develop the urban road with 

consideration of population distribution in this paper.  

This paper attempts to model the evolutionary growth process of road networks 

with explicit consideration of the interaction between population distribution and 

road network growth. The remainder of this paper is structured as follows. In 

Section 2, we present the population-driven urban road network evolution 

dynamic model. Section 3 provides measures to evaluate the topological attributes 

for the network. The simulation results are analyzed in Section 4. Section 5 

concludes the paper and proposes the future research directions. 

2. The dynamical model  

In this section, we present a population-driven urban road evolution dynamical 

model. For clarity, we list in Section 2.1 below all the notations used in this paper. 

The definitions of some of the variables are given in the subsequent sections when 

they are first used. Also presented in Section 2.1 are the assumptions used in our 

model. 

2. 1 Notation and Assumption 

Consider a connected road network ( , )G V A . V denotes the set of distinct zones 

whereas A  denotes the adjacent matrix of urban road network. The following 

notations are adopted throughout this paper: 

A : the adjacent matrix of urban road network, { }ijA a , where 1ija   if 

there is a link between zone i  and zone j   and 0ija   otherwise ; 

( )B y : the numbers of lattice that all links pass through, where y  denotes the 

side length of lattice that can cover the network; 

ijC : the construction cost between zones i  and j ; 

iC : the construction cost between zone i  and optimal point of the Fermat-

Weber location problem; 

  ( , )d p q: the Euclidean distance between zones p  and q ; 

( ) :D u  the degree distribution of network, where u  denotes the node degree; 
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( )g e : the betweeness centrality of edge e; 

( )g p : the betweeness centrality of zone p ; 

iH : the population of i -th community; 

pqL : the Euclidean distance between zones p  and q ; 

:n  the numbers of distinct zone in m ; 

p : a zone in m ; 

ip : the i -th distinct zone in m , 1,2..,i n ; 

0p : the solution of the Fermat-Webber location problem; 

q : a zone in m ; 

r : a zone in m ; 

m : an m-dimension Euclidean space; 

m
 : an m-dimension non-negative Euclidean space; 

iu : the degree of community i ; 

U : the average degree of network; 

V : the set of distinct communities, 1 2{ , ,... }nV p p p ; 

iw : the weight of i th ( 1,...., )i n  point in m ; 

circuit : the circuitness of network; 

tree : the treeness of network; 

Assumption (1): The total network population increases with time due to net 

migration from other cities and natural growth (Zhao et al. 2015). 

Assumption (2): The human dynamics process can be classified into two 

mechanisms: accessibility-seeking and space-seeking. Accessibility-seeking refers 

to the behavior that humans prefer to move to the zones which have more people, 

while space-seeking represents that humans randomly explore other zones (Zhao 

et al. 2015). 

Assumption (3): Not all regions of an urban network can be developed as zone. 
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Land use can be divided into three classes: built area (BA), non-built-up area 

(NBA) and reserved area (RA). BA has been explored for people to live in. NBA 

has not been explored, but can be explored in the future. RA is reserved for 

special purposes (such as park, roads, place of interest and so on) and cannot be 

explored for zone use (Zhao et al. 2015).  

Assumption (4): A city is represented as a lattice which contains many cells. 

Each cell is randomly assigned as BA, NBA, or RA, based on a given probability. 

A zone is represented by a cell where people is currently living in (i.e., the cell is 

a BA). 

Assumption (5): New zones are built randomly based on the current condition. 

Some population will be assigned into new zones according to the zones’ 

capacities. When the population of a cell exceeds its capacity, new zones will be 

built to house the remaining population. 

Fig. 1 illustrates the initialization of urban road network and population 

distribution, based on the above assumptions, where black points and color points 

represent undeveloped areas (such as parks, rivers and lakes, etc.) and zones (dark 

color means that the zones have a high population density), respectively.  

 
Fig. 1 Result of urban spatial evolution. The X-Y axes correspond to the spatial 

coordination of various zones on the lattice lattice, while the color represents the population 

size of these zones 

2.2 Relevant Concepts 

This section introduces the relevant concepts and their definitions used in this 

paper. 

(1) Relative neighborhood graph (RNG) 
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RNG was first proposed by Toussaint (1980) in the studies of computational 

geometry. RNG of a finite set V  in the Euclidean space m  is defined as an 

undirected graph with a set of distinct points V  and  set of edges 

( )RNG V which are exactly those pairs ( , )p q  of points for which 

 \{ , }( , ) max ( , ), ( , )z V p qd p q d p z d q z  (Barthélemy and Flammini 2008; 

Toussaint 1980). The MST is a subgraph of RNG. This implies that the network 

constructed according to RNG will have higher accessibility than that constructed 

according to MST. For further reading on RNG, the readers are referred to 

Supowit (1983), and Jaromczyk and Toussaint (1992).  

Given a set V  of n  distinct points on the Euclidean space, i.e., 

1{ ,..., }nV p p , how to find ( )RNG V . The following is the procedure of RNG 

algorithm: 

Step 1. Calculate the Euclidean distance of all pairs ( , ) i jd p p , 

, 1,..., ,i j n i j  . 

Step 2. For each pair of the distinct points1,..., , ,k n k i k j    ( , )i jp p , 

compute max maxkd    ( , ), ( , )k i k jd p p d p p . 

Step 3. If max ( , )k
i jd d p p , then the points ip  and jp  are connected by an 

edge, otherwise, they cannot be connected.  

Step 4. Return to Step 2 until all points are searched. 

(2) The Fermat-Weber location problem 

The Fermat-Weber location problem is one of the most famous problems in 

location theory. It is used to find a point in m  that minimizes the sum of 

weighted Euclidean distances from this point to n  given points in m . If all 

weights are equal, the Fermat-Weber location problem reduces to Euclidean 

minimum Steiner tree problem (Hwang and Richards 1992; Chlebik and 

Chlebikova 2002). Specifically, considering an m-dimensional Euclidean space, 

we let 1{ ,...., }nV p p  denote n  distinct points in m . The Fermat-Weber 

location problem is to determine an optimal point  * *
0 1,..., mp x x in the 

Euclidean space to satisfy the following condition (Weiszfeld 1937; Vardi and 

Zhang, 2001): 
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0 2
1

( ) min ( ) min
n

i i
i

f p f x w x p


                            (1) 

where ( 1,...., )iw i n  denotes the positive weight of i -th ( 1,...., )i n  point in 

m . 

Weissfeld (1937) proved that if 0p  is the optimal solution of Eq. (1), the 

optimal point 0p  is one of n  distinct points or a new added point which 

satisfies the following conditions: 

  0
1 0 2

1 0 2

1 n
i

in
ii i

i i

w
p p

w p p
p p













                           (2) 

Then, the following heuristic algorithm for solving the Fermat-Weber location 

problem was proposed (Weissfeld 1937): 

1
0 0 0

0
1 0 2

1 0 2

: ( ),

1
( )

k k k

n
k i

in k
ii i

k
i i

T p p T p

w
T p p

w p p
p p







 









                       (3) 

where T  denotes a mapping. For an arbitrarily initial point 1
0p  which is 

different to ip , the point 1
0
kp   is closest to the point 0p  when k  approaches 

infinite.  

2. 3 Urban road network evolution 

(1) Model 1: road network evolution without consideration of population 

  Generally, when new zones are generated, we need to build new roads to 

connect them to the existing road network. If the population distribution is not 

taken into account, the road construction cost will depend only on the road length. 

We assume therefore the construction cost to link zone i  with zone j  is 

ij ijC L , where ijL  denotes the Euclidean distance between zones i  and j , 

and   is a parameter corresponding to the unit cost by road length. Without loss 

of generality, the parameter   is assumed to be 1. To facilitate the presentation 

of the main process of road network evolution, we introduce the concepts of the 

lune of two points and the “relative neighbor” of a point. The lune of pointsp  

and q  is defined as the set of points that satisfy 

{ : ( , ) ( , ), ( , ) ( , )}mz d p z d p q d q z d p q   .  If there exists no such point r  in 
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the lune of the points p  and q ( q r ), point q  is called as the “relative 

neighbor” of pointp .  

With the above definitions, the modeling process of road network evolution 

without consideration of population distribution can be described as follows: 

Step1. Initialization. Set the total number of iterations K  and the initial 

iteration counter 1k  . We implement the above procedure of RNG algorithm 

using initial road network in Fig. 1.  Fig. 2a and 2b display the initial network 

with one center and two centers respectively by using RNG. 

 

(a) RNG with one center. 

 

(b) RNG with two centers. 

Fig. 2 Initial road network. The X-Y axes correspond to the spatial coordinates of the 

network zones on the lattice lattice 
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Step2. Generating zones and building roads. New zones are randomly generated 

at each iteration according to the given probability. Besides, each new zone is 

connected to the existing road network, according to the following rules: 

(i)   If a newly generated zone has only one relative neighbor, two different 

costs are calculated. One is the cost between the new zone and its 

relative neighbor, denoted as 1C . The other is the cost between the new 

zone and the nearest link which is denoted by 2C .  

(ii)    If the newly added zones ip  and jp  have different relative neighbors, 

calculate two costs for each new zone. If 1 2C C for either or both 

zones ip  and jp , the new zones ip  and jp  are connected to their 

nearest link. Otherwise, they are connected to their own relative 

neighbor.  

(iii)    If the newly added zones ip  and jp  have the same relative neighbor 

q , calculate two costs 1 2 and C C  for each new zone.  If 1 2C C  for 

either or both new zones, the new zone ip  and jp   is connected to 

their nearest link. If 1 2C C  for both new zones ip  and jp , we 

implement the Eq. (3)for the Fermat-Webber location problem, the 

optimal point 0p  that satisfies the following condition can be founded  

0
1

( ) min ( ) min
n

i
i

f p f x x p


                   (4) 

Then, we connect the new zones ip , jp  and their relative neighbor q  to the 

point 0p . 

Step 3: If k K , stop. Otherwise, set 1k k   and return to step 2. 

The flowchart of the road network evolution without consideration of 

population distribution is illustrated in Fig. 3.  
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Fig.3 Flowchart of the road network evolution without consideration of population 

(2) Model 2: population-driven road network evolution 

In reality, population distribution has an important influence on the road 

network evolution. For example, the densely populated zones tend to have more 

convenient traffic conditions, thus the accessibility of these zones are higher. In 

this paper, we assume that the more populated zone is more likely to be connected 

to the new zone than less populated zone. Take a simple example shown in Fig. 4, 

points p  and q  are two existing zones, and point r is a new zone. Assume prL  

and qrL  are the same and equal to L . Assume the population of zone p  is 

higher than that of q , i.e., p qH H . Then, we choose zone p  to be connected 

to the new zone r . 
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Fig. 4 Diagrammatic sketch of new road 

In the model of road evolution without population distribution, the construction 

cost linking two zones i  and j  is related only to the Euclidean distance 

between the two, i.e. ij ijC L . With the consideration of population distribution, 

the following linear function is defined as the cost between zones i  and j . 

1 2( ),ij ij i jC L H H    1
1 2

2

 0, 0, i j

ij

H H

L

 



               (5) 

where 1  and 2  are two positive parameters, iH  and jH  represents the 

population size in the zone i  and j , respectively. According to Eq. 5, it is 

clearly that ijC  is an increasing function of the road length, whilst it decreases 

with population sizes.  

A special case to Eq. (5) is where there is only one zone on the link. There, 

Eq.5 can be formulated as 1 2i i iC L H   , where iC  and iL  represent the 

cost and Euclidean distance between the zone i  and the point 0p , respectively. 

It can be seen that the population-driven road network evolution model, with just 

one zone on the link, reduces to the road network evolution model without 

accounting for the population distribution when 2  approaches zero.  

In the case of road evolution with consideration of population distribution, the 

optimal point 0p  satisfies as the following condition:  

0 2
1

( ) min ( ) min
n

i i
i

f p f x C x p


                     (6) 

where 
2ix p  denotes the Euclidean distance between points x  and ip . 

According to the following heuristic algorithm, the optimal point 0p  can be 

found (Weissfeld 1937):  

1
0 0

1 0 2

1 0 2

1
(p )

m
k k i

in k
ii i

k
i i

C
p T p

C p p
p p







 







              (7) 

Substitute 1 2i i iC L H   and 0 2

k
i iL p p   into (7): 
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1 2
1 1 01 2

0 0

1 2
1 0 2

( )

n n
i i

i k
i i ik k

n
i

k
i i

H p
p

p p
p T p

H
n

p p

 

 
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




 




 


                 (8) 

As above-mentioned, the point 0 0
kp p  when k . Then, Eq. (8) can be 

formulated as: 

1 2
1 1 0 2

0 0 0

1 2
1 0 2

( ) ,

n n
i i

i
i i i m

n
i

i i

H p
p

p p
p T p p

H
n

p p

 

 

 







  




 


             (9) 

  Now Eq. (9) is a fixed point problem. Since the set m  is a compact set and 

0( )T p  is a continuous function with respect to point 0p , according to Brouwer’s 

fixed-point theory  there exists at least one solution to the fixed point problem (9) 

(Facchinei and Pang, 2003). Then, we can obtain the solution 0p  by solving the 

fixed point problem Eq. (9). Note that the uniqueness of the solution cannot be 

guaranteed because the Jacobain Matrix 
0 0( )PJ T p  of the mapping T is not 

always definite for any point 0p  in n
 . Therefore, we cannot expect the 

mapping T  appearing in the fixed-point problem (9) to be strictly monotone. It 

is clearly that the evolution process in Model 1 can also be used in Model 2. The 

only difference is that the RNG and relative neighbors in Model 1 are based on 

Euclidean distance, while in Model 2, they are based on cost of Eq. (5). 

3. Measures of network evolution 

In this section, we introduce some commonly used measures of network evolution. 

3. 1 Degree distribution  

The degree of a zone in the network is defined as the number of links or edges 

that the zone has. In terms of the adjacency matrix A  of a network, the degree of 

node i  is just the ith  row of A  (Dorogovtsev et al. 2001), i.e. 

  i i j
j

u a                               (10) 

Then, the degree distribution ( )D u  of a network is defined as the fraction of 

nodes in the network with degree u . For example, for a network of n  nodes, if 

un  nodes have degree u , we can get ( ) un
D u

n
 . A network’s degree distribution 

http://en.wikipedia.org/wiki/Degree_(graph_theory)
http://en.wikipedia.org/wiki/Edge_(graph_theory)#Graph
http://mathinsight.org/adjacency_matrix_definition
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is sometimes described in cumulative form, as the fraction of nodes with degree 

greater than or equal to u : 

'

'( ) ( )u
u u

D U u D u




                         (11) 

The average degree of the entire network is the simple arithmetic mean of all 

the node degree: 

1

1 n

i
i

U u
n 

                              (12) 

3. 2 Betweenness centrality 

Betweenness centrality is a common measure in the research of complex network. 

It is defined as the number of shortest paths from all nodes to all others that pass 

through the specific node or edge. Betweenness centrality is a more useful 

measure of the load placed on the given node or edge, hence the node’s or the 

edge’s importance to the network, than accessibility (Barthélemy 2003). 

To justify the existence of such a hierarchy in the proposed model, edge 

betweenness centrality is used as a simple proxy for the traffic on the urban road 

network. For a generic graph, the edge betweenness centrality ( )g e  is defined as 

the fraction of shortest paths between any pairs of nodes in the network that go 

through the edge e (Barthélemy 2003; Freeman 1977). In reality, there could be 

multiple shortest paths between any two points. In this paper, we allow multiple 

shortest paths as and define the edge betweenness centrality as follows: 

, ,

( )
( ) qr

q r q r qr

e
g e




                           (13) 

where qr  is the number of shortest paths going from  node q  to node r . 

( )qr e  is the number of shortest paths going from the zone q  to zone r   and 

passing through the edge e. Therefore, central edges are those that are most 

frequently visited if shortest paths are chosen to move from and to arbitrary node. 

Analogously, the node betweenness ( )g p  can be defined as the fraction of 

shortest paths between all other nodes which go through the nodep . 

Mathematically, it can be formulated as: 

, ,

( )1
( )

( 1)
qr

q r q r qr

p
g p

n n





                       (14) 
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where qr  is the number of shortest paths going from zone q  to zone r  and 

( )qr p  is the number of shortest paths going from zone q  to zone r   and 

passing through zone p , n  is the total number of zones  in the network. By its 

definition in Eq. (14), ( )g p  is normalized and reaches the highest value of 1 

when every shortest path involves node p . 

3. 3 Circuitness and Treeness 

The basic structures of a planar transportation network can be classified into 

two groups: circuit networks and branching networks (Haggett and Chorley 1969; 

Ding and Lou 1998). Circuit networks are regional networks structured with 

closed circuits, where a circuit is defined as a closed path (with no less than three 

links) with the same vertex as start and end. Branching networks are characterized 

by tree structures with multiple connected links without any circuits. Specifically, 

a graph without cycles is called as a forest and a connected forest is called as a 

tree. There are some typical connection patterns emerging in circuit and branching 

urban road network. A circuit block is defined in this study as a block that 

contains at least one circuit and contains neither bridges nor articulation points. If 

a circuit block contains only one circuit, it is defined as a ring; if it contains more 

than one circuit, it is defined as a web (Xie and Levinson 2007). For example, ring 

and web are typical circuit networks, whilst star and hub-and-spoke are typical 

branching networks (Xie and Levinson 2007).  

 The circuitness and treeness for a general network are defined as (Xie and 

Levsion 2009): 

   c i r c u i t r i n g                                     (15a) 

Total length of links on rings

Total length of linksring                    (15b) 

Total length of links on webs

Total length of linksweb                    (15c) 

1tree circuit                                      (15d) 

Clearly, these ratios vary from 0 to 1 and they indicate the extent to which the 

entire network is connected as circuits or trees. A higher treeness (tree ) means 

that a branching structure while a higher circuitness ratio (circuit ) implies a circuit 

network. These measures provide a consistent and easily computable way to 
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examine the topology for an entire network. Xie and Levinson (2007) presented 

an algorithm to determine whether a link is on the tree or on a circle for a given 

connected network, and we adopt the same algorithm here in this paper. 

3. 4 Coverage 

Coverage (also known as c) is a basic index used to measure the structure of the 

road networks, and it can be used to represent the uniformity degree of road 

network.  

To define the coverage of urban road network, we consider a lattice of equal 

length y  on two sides which covers the entire network. Next, this lattice is 

divided into four equal parts each with length 
2

y
 on both sides. Similarly, this 

lattice may be divided further. Then, the coverage can be defined as (Ding and 

Lou 1998): 

1

1

ln( ( )) ln( ( ))
( )

ln( ) ln( )
i i

i
i i

B y B y
Coverage y

y y








                   (16) 

where iy  is the length of lattice after i th subdivision, and ( )iB y  denote the 

number of lattices that the network links pass through at the i th subdivision. This 

measure reflects the covering form of an urban road network. A greater coverage 

measure indicates that more lattices are passed by network links, and the covering 

form of the network is higher.  

4. Results and analysis 

The purpose of presenting the simulated experiments in this section is two folds: 1) 

to demonstrate the effectiveness of the proposed models with and without 

population distribution; and 2) to illustrate the advantage of Model 2 with a 

population-driven urban road network evaluation over Model 1 without 

population-driven. The test city is divided into 60*60 zones, where the number of 

BA, NBA and RA zones are 100, 2780 and 720, respectively. Thus, 20% 

(=60*60/720) of the city are RA. Initial population in the city is 50000 

( (0) 50000iH  ) and the population growth include natural growth and migrate in 

(Zhao et al. 2015).  The total number of iterations is set to be 20K   in our 

experiment. The simulation results presented below are the averages of the total 

12 iterations. 
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4. 1 The evolution of population-driven road network 

  Fig. 5 depicts the resulting topological structures of urban road network with 

and without the effect of population distribution. Fig.5 (a) shows the road network 

without considering population distribution. In this case, the construction cost for 

urban road network only takes into account the Euclidean distance. Fig. 5 (b)-(d) 

display the road network evolution results under population-driven, where both 

population distribution and Euclidean distance are considered in the cost. It can be 

seen from Fig.5 (b)-(d) that the topologies of urban road networks change with 

increasing values of the parameter 2 . With small 2  value, the result (in Fig.5 

(b)) is similar to that without population-driven and there is no clear center. This 

implies that the population-driven road network will reduce to the road network 

without accounting for population when the parameter 2  approaches 0. As the 

2  value increases, we begin to see a small center in Fig. 5 (c), while a major 

center is emerged with a higher 2  value in Fig. 5 (d). According to Eq. (5), as 

the parameter 2  increases, more will connect to zones with high population. 

         
(a) Without population-driven          (b) With population-driven for 2 0.0001   
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(c) With population-driven for 2 0.001       (d) With population-driven for 2 0.01   

Fig. 5 The topology of road network with and without consideration of population. The 

topology for the center 20x20 lattices is enlarged for each case and presented at the top of 

each case 

As shown in Fig.5 (c)-(d), the maximum nodal degree of road network is very 

large, especially in Fig. 5. (d). However, in reality, the maximum nodal degree of 

node on the road is no more than 4 (sometimes 6). Fig. 6 presents the resulting 

topological structures of urban road network with the effect of population 

distribution under degree constraint (maximum nodal is six). According to Fig. 6, 

we can see that the topological structures of urban road network are more realistic 

than the ones in Fig. 5 (c)-(d). 

 

(a) With population-driven for 2 0.001       (b) With population-driven for 2 0.01   

Fig. 6 The topology of road network with population distribution under degree constraint  
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4. 2 Degree distribution 

Fig.7 shows the degree distribution of road network with and without the 

population-driven. In Fig. 7 (a), we can see that, without population-driven, there 

are just four classes of node degrees (with node degree 1, 2, 3, and 4), and the 

percentage of the node degree 1 is the highest whilst that of node degree 4 is the 

lowest. On the other hand, Fig. 7 (b) - (d) clearly depict the sensitivity of node 

degrees to the parameter 2 , in that Figure, the node degree increases with the 

parameter 2  when the population distribution is considered. A common feature 

is that nodes with one link have the maximum percentage. This is because that 

more and more centers with the different degrees (zones with different degrees) 

are generated with consideration of population, but the number of leaf nodes is 

always than that of the root nodes.  

 

(a) Without population-driven      (b) With population-driven 2 0.0001   

 

(c) With population-driven 2 0.001    (d) With population-driven 2 0.01   

Fig. 7 Node degree distributions without and with consideration of population 

The average degree of a network is considered as a very important measure of 

network topology (Zhou et al. 2005). Fig.8 shows the evolution of average degree 



 

20 
 

over the dynamical iterations. It can be seen that the average degrees with and 

without population-driven are both monotonically decreasing with iterations, 

while the average degree of population-driven road network is consistently lower 

than that without accounting for population. This is because the number of leaf 

nodes increases with iteration times. When population is considered, higher 

degree of the zones will be generated. 

 

Fig. 8 Average degree distribution without population-driven, and with population driven 

with 2 0.001   

4. 3 Betweenness centrality 

Fig. 9 shows the node betweenness centrality and edge betweenness centrality 

with and without population-driven. According to Fig. 9 both the node and edge 

betweenness with population-driven are initially higher than their counterparts 

without population-driven at lower node (and edge) values. As the nodes (and 

edges) increase, the betweenness values with population-driven decrease more 

sharply with node (and edge) numbers than those without population. This is 

because that when the population distribution is considered, more zones may be 

linked to the same zone and the center (one zone with high degree) will be 

generated. Therefore, some roads will be used frequently, while the rest of the 

roads will be rarely used, leading to small betweenness centrality when population 

is not considered.  
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(a) Node betweenness centrality     (b) Edge betweenness centrality 

Fig. 9 Node betweenness centrality (a) and edge betweenness centrality (b). 

Next, we examine the hierarchy in the road network evolution. The edge 

betweeness centrality is adopted as representing the traffic volume on the road 

network. We calculate the betweeness centrality for all links of the road network 

generated by Model. For a simple representation of the hierarchy, all of edges are 

arbitrarily divided into five classes and are marked with different thicknesses 

representing the betweenness centrality. It is clear in Fig. 10 that the lines further 

from the center are thinner, indicating smaller centrality values. This result 

implies that the links nearer to the network center need to be built with larger 

capacity, whilst links further away from the center need relatively smaller 

capacity.  

 
Fig. 10 The hierarchy of road network 

4. 4 Circuitness and treeness 

The size of the circuitness or treeness reflects the closeness of the urban road 

network to a circle or tree structure. Fig. 11 reports the evolution results of the 

circuitness and treeness with and without consideration of population.  
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(a) Without population-driven      (b) With population-driven2 0.0001   

 

(c) With population-driven 2 0.001    (d) With population-driven 2 0.01   

Fig. 11 The circuitness or treeness with and without consideration of population 

 

Fig. 11(a) shows that without consideration of population distribution and after 

initial oscillation, treeness is consistently greater than that of circuitness, and it 

increases steadily with iteration whilst circuitness decreases with iteration.  

Fig.11 (b) - (d) display the results with population-driven under the different 2  

values. At low 2  value (Fig. 11(b)), the results are similar to those in Fig. 11(a). 

As the 2  increases, the network evolves towards a circle structure. At high 2  

value (Fig. 11(d)), the network is of a clear circle structure. These results imply 

that the lowers cost between zones leads to the topology of network approaches 

the circle structure.  

4. 5 Coverage 

Coverage measures the uniformity of a road network. Fig. 12 shows the 

evolution of the network coverage under model with population. It can be seen 

that the coverage of urban road network increases with iterations, starting with the 

coverage of 0.6 at iteration 1 and reaching 1.3 by iteration 20. The result implies 

that the uniformity of road network increases as population grows. 
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Fig. 12 Coverage of the road network 

5. Conclusions 

  This paper proposed an urban dynamic evolution model considering the 

population distribution and the road network topology. In the model, the road 

network evolution is described as an iterative process of adding new zones for the 

growing population and building new roads to connect the new zones. The urban 

network is represented as a relative neighborhood graph and the new road-

building is formulated as a Fermat-Weber location problem. A simulation 

experiment is presented to illustrate the key features of proposed model. More 

specifically, measures on degree distribution, betweenness centrality, coverage, 

circuitness and treeness, are used to examine the impact of population distribution 

on the evolution of network topology. Experimental results demonstrate that the 

accessibility and uniformity of road network with the consideration of population 

distribution is better.  

   This paper opens up many future research directions. In the current paper, we 

have not considered the travelers’ route choice responses to new roads, nor have 

we considered the investment constraints on road building. These effects could be 

incorporated into the proposed framework in future studies. Second, in reality, the 

population growth is uncertain and the capacities of urban road network are 

stochastic. Extending the proposed framework to capture these uncertainties is an 

important future research direction. Finally, how to incorporate the other social-

economic mechanisms, such as land use and environment, into the proposed 

framework is another direction worthy investigation. 
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