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In ������ production of the bioplastic polyhydroxybutyrate (PHB) is one important way in ��

which plant biotechnology can address environmental problems and emerging issues related ��

to peak oil. However, high biomass C4 plants such as maize, switch grass and sugarcane ��

develop adverse phenotypes including stunting, chlorosis and reduced biomass as PHB levels ��

in leaves increase. In this paper we explore limitations to PHB accumulation in sugarcane ��

chloroplasts using a Systems Biology approach, coupled with a metabolic model of C4 ��

photosynthesis. Decreased assimilation was evident in high PHB=producing sugarcane plants, 	�

which also showed a dramatic decrease in sucrose and starch content of leaves. A subtle 
�

decrease in the C/N ratio was found which was not associated with a decrease in total protein ���

content. An increase in amino acids used for nitrogen recapture was also observed. Based on ���

the accumulation of substrates of ATP=dependent reactions we hypothesised ATP starvation ���

in bundle sheath chloroplasts. This was supported by mRNA differential expression patterns. ���

The disruption in ATP supply in bundle sheath cells appears to be linked to the physical ���

presence of the PHB polymer which may disrupt photosynthesis by scattering ���

photosynthetically active radiation and/or physically disrupting thylakoid membranes.  ���

���
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Plant biotechnology plays an important role in addressing emerging issues related to ��

climate change (Karaba et al., 2007; Varshney et al., 2011), global food security, the ��

management of pests and diseases, and as a source of renewable feed stocks for industry ��

(Fesenko and Edwards, 2014). While the potential to use plant biotechnology to reshape ��

agriculture or grow renewable raw materials for industry is significant, redesigning plants ��

using biotechnology requires detailed understanding of the plant’s metabolic, gene regulatory ��

and cell signalling pathways (Zurbriggen et al., 2012). For example, the stimulation of 	�

demand must be tuned both spatially and temporally to avoid conflict with native metabolic 
�

processes and particularly with the energy status of the cell (Morandini, 2013). Systems ���

biology offers invaluable tools to understand emergent properties of cell biochemistry and ���

physiology (Smolke and Silver, 2011) and is used extensively in basic research (Bellasio and ���

Griffiths, 2014; Pick et al., 2011; Van Norman and Benfey, 2009; Zhu et al., 2010). However, ���

the potential for understanding the effects of introduced pathways on native metabolic ���

processes in plants has not been exploited.  ���

In this paper we apply systems biology to study the limitations to production of the ���

bioplastic PHB in sugarcane leaves. PHB is a thermoplastic biodegradable polymer highly ���

valuable for medical and food packaging applications (Philip et al., 2007). Although the main �	�

PHB source is microbial fermentation, recent studies have manipulated maize, sugarcane and �
�

switchgrass for PHB production (McQualter et al., 2014a; Petrasovits et al., 2007; Petrasovits ���

et al., 2012; Poirier and Gruys, 2001; Purnell et al., 2007; Somleva et al., 2012; Somleva et ���

al., 2013; Somleva et al., 2008). Sugarcane is ideal for PHB production. Firstly, it ���

accumulates huge biomass due to the high yield potential of NADP=ME C4 photosynthesis ���

(Sage et al., 2013), a biochemical ‘turbocharger’ which concentrates CO2 around Rubisco in ���

the bundle sheath (BS) thus suppressing photorespiration (see top half of Figure 1). Secondly, ���

established infrastructure exists for its cultivation, harvesting, transportation and processing ���

(Altpeter et al., 2014; Lakshmanan et al., 2005; Ming et al., 2006; Nel, 2010; Pan, 2012). And ���

thirdly, PHB has been targeted to leaves to valorise a by=product which is generally left on �	�

the field (Landell et al., 2013). �
�

PHB is synthesised by a three enzyme pathway and utilises acetyl=CoA as the initial ���

substrate (Figure 1 and Supporting Table S1). A β=ketothiolase (EC 2.3.1.16) condenses two ���

acetyl=CoA to form acetoacetyl=CoA. Acetoacetyl=CoA reductase (EC 1.1.1.36) then ���

catalyses the formation of 3=hydroxybutyral=CoA from acetoacetyl=CoA with the aid of ���
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NADPH. Finally, PHB synthase polymerises 3=hydroxybutyral=CoA monomers to form ��

PHB. The PHB biosynthesis pathway from ������"���
�������� was targeted to chloroplasts ��

which contain abundant acetyl=CoA, ATP and reducing power. Acetyl=CoA is produced via ��

the lower portion of the glycolytic pathway from 3=phosphoglycerate (PGA) with the net ��

evolution of two CO2, two ATP and one NADH (Supporting Table S1), PGA regeneration ��

through CO2 fixation, and the re=fixation of evolved CO2 require considerable amounts of ��

ATP and NADPH (Figure 1). Because of this contrast, comparing the overall effect of PHB ��

production with native photosynthesis is not straightforward.  	�

Our previous studies showed that low PHB=producing sugarcane plants are phenotypically 
�

normal. However a decrease in biomass, increased chlorosis (Petrasovits et al., 2012) or ���

decreased carbohydrate content occurs (McQualter et al., 2014a) as PHB accumulates beyond ���

a certain tipping point. This effect is reminiscent of carbon starvation (Basset et al., 2002; ���

Brouquisse et al., 1992; Brouquisse et al., 1991; Devaux et al., 2003; Dieuaide=Noubhani et ���

al., 1997; Gibon et al., 2009; James et al., 1996; Schluter et al., 2013; Schluter et al., 2012) ���

and could be directly due to excessive diversion of carbon and energy to support PHB ���

synthesis. Here we studied various indicators of carbon starvation including total protein ���

content and the carbon/nitrogen ratio (Gibon et al., 2009). We resolved the temporal ���

dynamics of 48 metabolites, including carbohydrates and amino acids, at seven sampling time �	�

points throughout the light/dark cycle. A metabolic model was newly designed starting from �
�

Bellasio and Griffiths (2014) to incorporate effects of PHB synthesis on native metabolism. ���

Further, the metabolic model predicted changes in ATP and NADPH demand associated with ���

the allocation of PHB synthesis to mesophyll (M) or bundle sheath (BS). The model ���

predictions were further supported by comparative transcriptomic data obtained by next ���

generation sequencing. We found that minor carbon starvation was evident, but not directly ���

due to excessive diversion of carbon and energy to support PHB synthesis. The evidence ���

suggests that the physical presence of PHB granules perturbs ATP production in BS. ���
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While the cause of chlorosis and decreased biomass in high PHB producing plants is ��

unknown, it has been speculated that the photosynthetic efficiency of these plants is ��

compromised (Somleva et al., 2013).To determine whether the stunted phenotype displayed ��

by high PHB=producing lines (McQualter et al., 2014b) might be linked to changes in net ��

assimilation (	) we compared a range of four month old, glasshouse grown PHB=producing ��

lines across the threshold at which carbohydrate becomes significantly depleted. These 	�

included sugarcane WT cultivar Q117 and transgenic PHB=producing lines with increasing 
�

PHB production levels in leaves [individually reported in Figure 2 caption (Petrasovits et al., ���

2012)]. 	 in lines TA4 and 4F1 (	=18.7±1.5 and 19.1±1.8 �molQm
=2

Qs
=1

 respectively) was ���

comparable to WT (16.7±2.9 �molQm
=2

Qs
=1

, Figure 2). For the highest PHB=producing lines ���

8C8 and 7C3 however, 	 was much lower than WT (12.4±1.3 and 6.1±1.7 �molQm
 =2

Qs
=1

 ���

respectively, Figure 2). ���

���$���%����������$����������

Diversion of carbon into a non=reusable PHB sink could potentially lead a situation known ���

as carbon starvation. Symptoms of carbon starvation include reduced C/N, increased ���

proteolysis and changes in amino acid composition. We measured carbon and nitrogen �	�

content in the leaves of our PHB producing plants. Leaf material for this and subsequent �
�

analyses came from plants grown in a plant growth chamber with controlled lighting and ���

temperature. Total carbon content was unaffected by the introduction of the PHB metabolic ���

sink at PHB levels of around 1=1.5% leaf DW, with no chlorosis or stunting (Figure 3A), ���

however a slight increase in total N was observed (Figure 3B) which subtly decreased the ���

C/N ratio in PHB lines (Figure 3C). Protein content was not significantly different between ���

WT and the transgenic lines (Figure 3D). Overall these results suggest mild carbon ���

starvation. To disentangle possible contrasting trends, we then resolved individual C and N ���

metabolites over seven sampling points in a diurnal cycle (Figure 4 and S1). ���

�
����
��������$�����
�����

��
���������������&��	�
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Starch and sucrose accumulation rates were estimated as the difference between their ��

abundance at onset of light and end of light, divided by hours of light. For starch the rate of ��

accumulation was 42, 6 and 10 mgQ100
=1

Qg
=1

leaf DWQhr
=1

 respectively for WT, 7B4 and 7C3. ��

For sucrose the rate of accumulation was 161, 67 and 62 mgQ100
=1

Qg
=1

leaf DWQhr
=1

 for WT, ��

7B4 and 7C3 respectively. The precursor of sucrose, uridine diphosphoglucose (UDPG) did ��

not vary appreciably between WT and PHB=producing lines, suggesting that sucrose ��

synthesis may have been regulated at another stage, perhaps at the level of sugar phosphates ��

synthesis. While in WT sugar phosphates increased during the light and decreased in the dark 	�

(Geiger and Servaites, 1994; Weise et al., 2011), in PHB=producing lines G6P and F6P 
�

accumulated in the dark. Accumulation of G6P and F6P was accompanied by a dramatic ���

three=fold higher accumulation of Ribose=5P and Ribulose=5P during the light (Figure 4) in ���

PHB=producing lines compared to WT. This suggests that perhaps the regeneration of ADP=���

glucose and RuBP, reactions requiring ATP, were down=regulated. We hypothesised that ���

PHB synthesis in BS reduced ATP availability therein. Metabolic modelling (Bellasio and ���

Griffiths, 2014) has previously clarified that this situation would create a bottleneck in carbon ���

assimilation and bring about a reduction in NADPH demand in BS (see Discussion). This ���

hypothesis is consistent with observed increases in low energy metabolites ADP and AMP in ���

PHB=producing lines (Figure 4). Further, in the PHB=producing lines, malate, the key carrier �	�

of reducing power to BS was more abundant (Figure 4), suggesting lower NADPH demand in �
�

BS. In this situation, to operate a functional C4 cycle, CO2 delivery to BS would be shifted ���

from the malate/pyruvate shuttle to the aspartate/alanine shuttle (Bellasio and Griffiths, ���

2014). Consistently, in the PHB=producing lines we observed an increase in aspartate and ���

alanine and a substantial decrease in pyruvate (Figure 4).  ���

Glutamine and glycine increased and aspartate and glutamate decreased dramatically ���

during the first four hours of the light cycle in WT sugarcane (Figure 4). Aspartate showed a ���

similar diurnal profile in WT and line 7B4 while in the highest PHB=producing line 7C3, ���

aspartate was more abundant at the onset of first light. Glutamate in WT decreased to a ���

minimum value over the first four hours of light then recovered and maintained at its original �	�

peak value for the duration of the dark period. Both 7B4 and 7C3 showed the same initial �
�

decrease in glutamate over the first four hours of light. However, during the remainder of the ���

light period, glutamate stayed at this minimum value until end of light. The profile of ���

glutamine was essentially the inverse of glutamate. The diurnal fluctuation in glycine levels ���

was subdued in PHB=producing lines compared to WT. All other amino acids were either ���

equivalent or elevated in PHB=producing lines compared to WT (Figure 4). ���
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The combined abundance of citrate and isocitrate, metabolites of the tricarboxylic acid ��

(TCA) cycle, was lower in PHB=producing lines than in WT (Figure 4). Aconitate content ��

was elevated in PHB=producing lines, compared to WT, particularly so in the highest PHB=��

producing line 7C3. The organic acid α=ketoglutarate, which also acts as a carbon scaffold ��

for amino acid synthesis by combining with ammonia to form glutamate (Magalhaes et al., ��

1974), was less abundant in PHB=producing lines than WT. Differences between scarce ��

amounts of succinate and fumarate were difficult to determine while glyoxylate was similarly ��

abundant in WT and PHB=producing lines. 	�

��'	���������������(���

����
�

Of a total of 31345 genes compared, 177 were differentially expressed including 172 ���

native genes and 5 transgenes (>2 fold difference, q< 0.05, Table S2). Of these, 91 were ���

down=regulated and 86 (including 5 transgenes) were up=regulated in expression in the ���

transgenic line. A subset of the differentially expressed genes from central carbon ���

metabolism is shown in Table 1. ���

We explored links between transcript abundance and changes in metabolite abundance. ���

The results suggest a major shift in carbon metabolism synthesis to degradation: i) starch ���

synthase III=1a, involved in synthesis of amylopectin is down=regulated (Table 1). ii) beta=���

amylase, involved in starch degradation is up=regulated (Table 1). iii) Sucrose synthase and �	�

beta fructofuranosidase (invertase), are up=regulated (Table 1). These are cytosolic proteins �
�

involved in degrading sucrose to UDP=glucose and fructose. Further, a soluble acid invertase ���

localized to the vacuole (Rae et al., 2011) is down=regulated (Table 1) supporting the idea of ���

a change in the sucrose accumulation dynamics. iv) Chloroplastic phosphoglucomutase, ���

which was up=regulated (Table 1), is a major controller of carbon exiting the reductive ���

pentose phosphate cycle providing G1P for starch synthesis, regulated by sugar=phosphates ���

and PGA, however, the reaction is reversible and here it could be involved in starch ���

degradation. v) A Chloroplastic fructokinase=like protein, was strongly up=regulated (Table ���

1). These are potential plastidial thioredoxin z (TRX z) targets involved in sugar signalling ���

and redox regulation of transcription of the chloroplast and shown to be involved in control �	�

of plant carbon metabolism (Arsova et al., 2010; Gilkerson et al., 2012). �
�

Phosphoenolpyruvate carboxylase kinase 1 (PPCK1, Figure 1), which activates C4 PEPC by ���

reversible phosphorylation, was down=regulated (Table 1). C4 PEPC (Shenton et al., 2006) ���

plays a key role in maintaining the C:N balance by providing of C skeletons for amino acid ���
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biosynthesis as well as supplying malate for decarboxylation and NADPH generation in the ��

BS. Studies in Arabidopsis and rice show that PPCK genes are supressed by Pi and induced ��

by Pi starvation, carbon availability and increasing intracellular pH (Chen et al., 2009; ��

Fukayama et al., 2006).  ��

An NADP=malic enzyme (NADP=ME) transcript similar to ZmCyt3=NADP=ME,  which ��

responds to high pH in leaf and stem and abscisic acid in roots (Alvarez et al., 2013), was ��

down=regulated in the PHB producing line. The remaining four members of the NADP=ME ��

family, similar to ZmC4=NADP=ME, ZmnonC4=NADP=ME, Zmcyt1=NADP=ME and 	�

Zmcyt2=NADP=ME, (Alvarez et al., 2013) where unaffected.  
�

A major shift of nitrogen metabolism from assimilation to recapturing was apparent: i) ���

while the expression of the glutamate synthase (Fd=GOGAT) involved in nitrogen ���

assimilation (Watanabe et al., 1996) did not change (not shown), the expression of NADH=���

GOGAT, involved in the utilization of remobilized nitrogen (Hayakawa et al., 1994), ���

increased three fold (Table 1). ii) The up=regulation (Table 1) of chloroplastic glutamine ���

synthetase (GS), which reacts glutamate and ammonia to glutamine, may act as a scavenger ���

of the nascent ammonia resulting from increased amino acid catabolism (Sakakibara et al., ���

1992). iii) The gene for asparagine synthetase ASN1 is up=regulated (Table 1). Asparagine is ���

a favoured compound for nitrogen storage and transport (Sieciechowicz et al., 1988). The �	�

expression of ASN1 is under the metabolic control of the C/N ratio (Hanson et al., 2008; Lam �
�

et al., 1994), and ASN1 was induced by stresses and repressed in the presence of sucrose or ���

glucose (Baena=Gonzalez et al., 2007). This suggests that when C/N ratios decrease (Figure ���

3), N is directed into asparagine (Figure 4), which acts as a shunt for storage and/or long=���

distance transport of nitrogen (Lea and Miflin, 1980; Lea et al., 1990). iv) A nitrate/nitrite ���

transporter (NRT2.5) was down=regulated (Table 1). This transporter may play a role in the ���

transport of stored nitrate from the vacuole into the cytoplasm, and was found to be important ���

when nitrate uptake is reduced during senescence, either sugar=regulated or related to leaf ���

development (Okamoto et al., 2003; Orsel et al., 2004; Rossato et al., 2001). v) A nitrilase ���

gene, similar to maize nitrilase 1, which is involved in auxin biosynthesis and/or cyanide �	�

detoxification (Kriechbaumer et al., 2007; Park et al., 2003) was down=regulated (Table 1). �
�

vi) One isoform of phenylalanine ammonia=lyase (PAL) was up=regulated (Table 1). PAL is ���

the first and committed step in the phenyl propanoid pathway and is therefore involved in the ���

biosynthesis of the polyphenol compounds such as flavonoids, phenylpropanoids, and lignin. ���

It responds to stress events (Di Ferdinando et al., 2012; Fini et al., 2011), may be responsible ���
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for ammonia release, and may be partially responsible for the up=regulation of ammonia ��

scavenging GS. ��

)���$�����������������

To explore the possible reasons underpinning insufficient ATP supply in BS, we included ��

the main reactions of C4 photosynthesis together with PHB production (Figure 1) in a ��

comprehensive metabolic model (Table 2, an Excel version is available in Supporting ��

information). Firstly we asked whether PHB synthesis constitutes a substantial ATP and ��

NADPH sink. In the young sugarcane plants used for the diurnal study, the leaf material 	�

accounted for around 90% of the entire plant biomass and 0.9 g/100 g and 1.08 g/100 g of 
�

assimilate was directed to PHB production for 7B4 and 7C3 respectively. Figure 5A and 5B ���

show the total ATP and NADPH demand for assimilation at increasing levels of carbon ���

diversion to PHB (��* is the ratio of PGA used for PHB synthesis over that reduced by the ���

RPP cycle). Although PHB synthesis results in net NADPH and ATP production, CO2 is lost ���

in pyruvate decarboxylation (Figure 1), and the recapture of lost CO2 is metabolically costly. ���

These two processes largely compensate and on a net assimilation basis PHB synthesis ���

results in a negligible 0.5 and 0.9% increase for ATP and NADPH demand respectively when ���

��* increases from 0 to 0.1 (Figure 5A and 5B).  ���

We further interrogated the model to see whether metabolic impairment can be due to the �	�

compartmentalisation of PHB synthesis, which mainly occurs in BS chloroplasts (McQualter �
�

et al., 2014b; Petrasovits et al., 2012). Figure 5C shows that the relative ATP demand in BS ���

increased at increasing ��* but only when PHB synthesis was compartmentalised to M. When ���

PHB synthesis was all compartmentalised to BS (+*,-/+*=1) ATP demand in BS decreased ���

for increasing ��* reflecting the ATP advantage of pyruvate decarboxylation in BS. Figure ���

5D shows that the relative NADPH demand in BS decreases with PHB synthesis because of ���

the reducing power made available with pyruvate oxidative decarboxylation, thus confirming ���

that PHB synthesis does not constitute an additional burden on native metabolism.  ���

Finally we asked whether the decreased NADPH demand in BS could bring about ���

increased pressure on the transamination machinery and on the aspartate/alanine CO2 shuttle. �	�

Indeed, model output predicted an increased transamination rate (Figure 5E) and an increased �
�

engagement of aspartate/malate decarboxylation (Figure 5F) at increasing ��* when����

+*,-/+*>0.2. Note that, because we hypothesised that ATP supply is limiting in BS, the ���
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model output shown in Figure 5 refers to the condition in which the ATP demand in BS is ��

minimum (Bellasio and Griffiths, 2014). Other cases are shown in Supporting Figure S2. ��

���������

��

In this study we applied a systems biology approach to study the limitations to PHB ��

accumulation in sugarcane leaves following the observed chlorosis and reduced biomass in ��

high PHB=producing transgenic sugarcane lines. Firstly we investigated C and N ��

accumulation in leaves and we could measure a decrease in C/N but no decrease in total ��

protein content. If these were the only results, we could have concluded that only mild carbon 	�

starvation occurred. However, when we augmented the resolution by analysing the daily 
�

fluctuations of 48 metabolites, we observed a dramatic decrease in sucrose and starch ���

accumulation dynamics, and an increase in those amino acids used for N recapture and long ���

distance transport. Further, from observing the dynamic accumulation of substrates of ATP ���

dependent reactions (e.g. RuP, R5P, F6P, AMP) we hypothesised that ATP starvation is ���

occurring in BS. Overall this hypothesis was confirmed by analysing mRNA differential ���

expression, which highlighted three patterns: i) a shift in the CCM to adjust for reduced ATP ���

availability in BS and consequent reduced NADPH demand; ii) a shift from carbohydrate ���

synthesis to degradation; iii) a shift from N assimilation to N ���

mobilisation/recapture/transport. Modelling highlighted that it is unlikely that carbon �	�

starvation was triggered directly by the additional burden of PHB. Further it showed that �
�

compartmentalisation of PHB to BS was not responsible for a change in ATP/NADPH ���

source/sink equilibrium.  ���

Decreased photosynthetic assimilation rate was observed in high but not low PHB= ���

producers (Figure 1). Perhaps not synthesis but accumulation of PHB is responsible for ���

degrading photosynthetic capacity, mediated by the physical presence of polymer granules in ���

the chloroplast (Nawrath et al., 1994; Somleva et al., 2013). PHB granules change cell ���

refractivity, and influence light=scattering properties in bacteria (Srienc et al., 1984). Further, ���

because of space limitations, growing PHB granules compete for space with the ���

photosynthetic machinery and inevitably disrupt thylakoid spatial organisation (Bohmert et �	�

al., 2000; Nawrath et al., 1994; Petrasovits et al., 2007; Petrasovits et al., 2012; Saruul et al., �
�

2002; Somleva et al., 2008) (Figure 6). This could reduce the ATP availability in BS below ���

the minimum threshold limit, under which RuBP regeneration is impaired (Bellasio and ���

Griffiths, 2014). In fact, there is a finite window of plasticity of C4 metabolism: some of the ���

ATP demand (i.e. conversion of PGA to triose phosphates) can be shifted to M, but ATP ���
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requirements for RuBP regeneration and the photorespiratory carbon oxidation (PCO) cycle ��

are supplied exclusively by ATP produced in BS (Figure 1). If photophosphorylation is ��

impaired because light reaching BS chloroplasts is not sufficient, the photosynthetic ��

machinery jams, resulting in a decreased NADPH demand in BS and limited malate ��

decarboxylation. This could lead to accumulation of malate and depletion of pyruvate as ��

observed in PHB sugarcane lines. The feedback on malate could also be at the electron ��

transport level: less light in BS would require less NDH=dependent cyclic electron flow in BS ��

and this could feedback through thioredoxin to NADP=dependent malic enzyme deactivation 	�

(Bellasio and Griffiths, 2014; Drincovich and Andreo, 1994). In the same manner, other 
�

enzymes which depend on thioredoxin for activation could be affected. For example, starch is ���

synthesised by ADP=glucose pyrophosphorylase (AGPase) which is activated by thioredoxin, ���

and some beta=amylases may also be redox=regulated (Baier and Dietz, 2005; Geigenberger ���

et al., 2005; Michalska et al., 2009; Thormahlen et al., 2013; Valerio et al., 2011). Hence, the ���

diminished starch production in PHB=producing sugarcane plants could be evidence of redox ���

regulation associated with polymer shading. Additionally, reduced light availability in BS ���

could be responsible for the substantial decrease in sucrose in PHB=producing sugarcane ���

lines. Low light intensities during the growth of rice resulted in an accumulation of fructose ���

2,6=bisphosphate (F26BP) (Reddy and Das, 1987) which modulates the key enzymes of �	�

sucrose biosynthesis thus regulating carbon flow under conditions of limited photosynthesis �
�

(Nielsen et al., 2004). ���

�����"���������#.,���������������
�������������

Strategies to increase PHB production in plants have relied initially on determining the ���

most suitable sub=cellular compartment for expression of the PHB pathway (Nawrath et al., ���

1994; Petrasovits et al., 2007), with sufficient enzyme activity to maximise use of available ���

substrate (Bohmert=Tatarev et al., 2011; Petrasovits et al., 2012; Somleva et al., 2008). ���

Access to substrate in M was found to be problematic in C4 grasses (McQualter et al., 2014b; ���

Petrasovits et al., 2013) and remedied by the use of an acetoacetyl=CoA synthase in place of a ���

β=ketothiolase (McQualter et al., 2014a). Increasing 	 by adjusting flux through the RPP �	�

cycle (Somleva et al., 2013) significantly corrected adverse phenotypes  and increased PHB �
�

production in switchgrass plants.  Enhanced 	 coupled with an inducible system for PHB ���

pathway gene expression (Kourtz et al., 2007) could provide further improvements. In C4 ���

plants there may need to be some trade=offs in PHB synthesis: excluding PHB production ���
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from BS [for example, using the PEPC promoter (Matsuoka et al., 1994)] excludes using ��

20% of the photosynthetically active volume of the leaf (Hattersley, 1984) for PHB ��

accumulation, but this might be compensated for by a resultant increase in BS ATP and hence ��

	. Manipulating energy supply has not yet been considered as a strategy for enhancing PHB ��

production, but here we show that this may be a major consideration in C4 plants. ��

Alternatively, peroxisomal PHB production, where shading or disruption of chloroplasts ��

should not be problematic, has shown promise and could be explored further (Tilbrook et al., ��

2011; Tilbrook et al., 2014). Other sub=cellular compartments do not appear to be suitable 	�

(Petrasovits et al., 2007; Poirier et al., 1992). 
�

/�

��
������0����������������

In recent years a substantial effort has been directed towards engineering C4 systems in C3 ���

plants such as rice (Kajala et al., 2011; von Caemmerer et al., 2012). Morandini (2013) stated ���

the importance of an integrated approach in understanding the constraints to genetic ���

manipulation and Driever and Kromdijk (2013) recently reviewed several potential issues ���

arising from manipulation of a C3 system, with particular regard to the interaction between ���

reducing power requirements, redox signalling and the native C3 metabolism. Our work in ���

sugarcane highlights additional engineering challenges unique to the complex C4 anatomical=���

biochemical machinery, including physical constraints such as volume and light availability, �	�

substrate availability and the need for a functional electron transport chain to supply cofactors �
�

NADPH and ATP. For C4 photosynthesis to work, sufficient ATP has to be made available in ���

BS: this requires space for the light harvesting machinery and sufficient light to reach BS to ���

drive photophosphorylation. Thus, for C4 rice, the physiology of transport between M and BS ���

needs to be considered. The equations for the flow between M and BS that we presented here ���

may be a valuable tool in this endeavour. ���

��
������

���

In this study we investigated why increased chlorosis and decreased carbohydrate content ���

and biomass occurred in transgenic PHB=producing sugarcane as PHB accumulates above a ���

certain level in leaf tissue. Using a systems biology approach together with a metabolic �	�

model of C4 photosynthesis, we were able to identify mild carbon starvation in our high PHB �
�

producers. Modelling highlighted that ATP starvation in BS was the cause, rather than carbon ���

starvation triggered directly by the additional burden of PHB biosynthesis. ATP starvation in ���
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BS is thought to be directly due to the presence of PHB granules in BS chloroplasts, which ��

either scatter photosynthetically active radiation due to their refractive properties, or ��

physically disrupt thylakoid membranes. The findings of this study highlight the importance ��

of C4 metabolic models in helping to decipher the complex data generated from this kind of ��

study.  ��

���������
�
�
��� ���
��

#����
���

PHB=producing sugarcane lines TA4, 4F1, 8C8, 7B4 and 7C3, derivatives of cultivar 	�

Q117, have been described previously (Petrasovits et al., 2007) and contain genes encoding 
�

PHB biosynthesis enzymes [β=ketothiolase (PHAA), acetoacetyl=reductase (PHAB) and PHB ���

synthase (PHAC)] under the control of the Cabm5 promoter (Sullivan et al., 1989) and ���

targeted to plastids. Plants were propagated from single eye stem cuttings in vermiculite ���

fertilized with osmocote (Scotts, Bella Vista, NSW, Australia) and grown under ambient and ���

supplemental lighting in a temperature controlled glasshouse (28˚C) at the University of ���

North Texas, Denton, Texas.  ���

1�
��(�
��������
�������
����

Gas exchange measurements were performed on glasshouse grown PHB=producing ���

sugarcane lines TA4, 4F1, 8C8, 7C3 and WT Q117. Measurements were taken during winter �	�

with supplemental lighting, commenced at 0800 hours and lasted till midday. The youngest �
�

fully expanded three leaves, sampled from at least three different tillers per each genotype, ���

were measured using a portable infrared=gas analyser (IRGA, LI6400 XT: Licor, Lincoln, ���

Nebraska, USA) equipped with a 6 cm
3
 leaf chamber and a 6400=02B Red Blue light. Leaves ���

were acclimated for 2 min at a photosynthetic photon flux density and measured 3 times at 1 ���

minute intervals (PPFD) of 1500 µmolQm
=2

Qs
=1

, CO2 concentration of 400 µmolQmol
=1

, ���

temperature of 27ºC, air flow adjusted to maintain vapour pressure deficit 1.0–1.2 kPa.  ���

*�������
��������

Thirty single=eye stem cuttings each of WT Q117, 7B4 and 7C3 were planted into trays ���

containing well watered vermiculite (Ausperl, Sydney, NSW, Australia) mixed with �	�
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osmocote. The cuttings were germinated and maintained in an E36=HO plant growth cabinet ��

(Percival Scientific, Inc. Perry, IA, USA). PPFD was set at 1250 �molQm
=2

Qs
=1

 on a 12 hour ��

light (28˚C), 12 dark (24˚C) cycle. At the six leaf stage, the bottom three leaves were ��

removed from three randomly selected replicates of each line and snap frozen in liquid N2. ��

The tissue was ground to a fine powder in liquid N2 and stored at =80°C prior to processing. ��

The first sampling period commenced at the end of a 12 hour period of dark and was repeated ��

every four hours to yield a total of seven sampling points representing a diurnal cycle of 12 ��

hour light and 12 hour dark. 	�

2��������������
�
�
�

To obtain sufficient sample for analysis of total carbon and nitrogen content, some of the ���

ground leaf material from each of the seven diurnal time points was pooled for two replicates. ���

Elemental analysis was performed using a CHN elemental analyser by the Analytical ���

Services Unit at the School of Agriculture and Food Sciences, the University of Queensland. ���

-����
%#.,����

Approximately 100 mg of frozen ground leaf material per sample was used for the ���

analysis. Starch was determined by a two=step enzymatic hydrolysis and HPLC determination ���

of resulting glucose according to (Sluiter and Sluiter, 2005). PHB content was determined ���

from 10=20 mg of dried leaf material by measuring its acid hydrolysis product, crotonic acid �	�

by HPLC (Petrasovits �����., 2007). �
�

)���$�������(������������

Metabolites were extracted for subsequent liquid chromatography using a modification ���

from (Glassop et al., 2007). Briefly, 100 mg frozen leaf powder was added to 700 µl ���

extraction solution. The extraction solution consisted of 70 ml methanol, 200 µl of 10 mM ���

13
C5

15
N=valine (aq); 200 µl of 1 mM 

13
C6=sorbitol (in MeOH); 200 µl of 5 mM 1,2=

13
C2=���

myristic acid (in CHCl3), 4 ml of 0.2 mgQml
=1

 adonitol + 0.2 mgQml
=1

 norleucine (aq), 6 ml of ���

2 mgQml
=1

 nonadecanoate=methyl ester (in CHCl3). Samples were immediately incubated at ���

70°C for 10 min with frequent inversion. 580 µl deionised water and 500 µl CHCl3 were then ���

added and the sample was vortexed for 1 min. Polar and non=polar phases were separated by �	�

centrifugation at 15,000 g for 10 min at 4°C. The polar phase was re=extracted with CHCl3.  �
�
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�����������$�������$�����
����

Reference standards and tributylamine (puriss plus grade) were purchased from Sigma ��

Aldrich (Sigma Aldrich, NSW, Australia). HPLC Grade acetonitrile and acetic acid (AR ��

Grade) was purchased from RCI Labscan (Bangkok, Thailand) and Labscan (Gliwice, ��

Poland) respectively. Deionised water was generated via an Elga Purelab Classic water ��

purification unit (Veolia Water Solutions and Technologies, Saint Maurice Cedex, France). ��

Liquid chromatography tandem mass spectrometry (LC=MS/MS) data were acquired as ��

described in Dietmair et al, 2012 with the following modifications: the analytical column was 	�

equipped with a pre=column Security Guard Gemini=NX C18 4 mm × 2 mm (Phenomenex, 
�

Aschaffenburg, Germany); the following additional analytes were quantified: cyclic AMP, ���

glyoxylate, glycolate, creatine phosphate and UDP N=acetylglucosamine. The samples were ���

run with sample= and analyte=relevant calibration standards and pooled quality=control ���

samples (Sangster et al, 2006; Hodson et al, 2009) to control for reproducibility of data ���

acquisition and to ensure data integrity. Azidothymidine (AZT) was used as an internal ���

standard at a final concentration of 10 �M. Analyte stock solutions were prepared in purified ���

water (Veolia) and aliquots of each solution were mixed to achieve a final calibrant solution ���

at 200 \M. This calibrant solution was serially diluted and the dilutions used as calibration ���

standards from 200 to 0.006 \M, constituting 9≤x≤20 calibration points for all analytes to �	�

account for differential responses in the mass spectrometer. Data were processed and �
�

analysed in Analyst 1.5.2 and MultiQuant 2.1.1 (ABSciex, Canada). ���

	���������������
�
����

Amino acids were quantified with a high=throughput derivatisation=reverse phase HPLC ���

described previously (Chacko et al., 2014; Dietmair et al., 2012; Dietmair et al., 2010). In ���

brief, 0.5 \L of sample containing 250 µM of sarcosine and 2=aminobutanoic acid, as internal ���

standards, was added into 2.5 \L of borate buffer (Agilent PN: 5061=3339), mixed and ���

incubated for 20 s at 4
o
C. Amino acids were derivatised in two steps by a high=performance ���

autosampler. 1 \L of OPA reagent (Agilent PN: 5061=3335) was reacted for 20 s at 4
o
C, then ���

0.4 \L of FMOC reagent (Agilent PN: 5061=3337) was added, mixed and incubated for 20s �	�

at 4
o
C. 45.6 \L of Buffer A (40 mM Na2HPO4, 0.02% NaN3, pH 7.8) was added added to �
�

lower the pH of the reaction, then injected in an Agilent Zorbax Extend C=18 column (3.5 ���

\m, 4.6×150 mm, Agilent PN: 763953=902) with a guard column (SecurityGuard Gemini ���

C18, Phenomenex PN: AJO=7597) kept at 37
o
C . Gradient elution was performed using an ���
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Agilent 1200=SL HPLC system, at a flow rate of 2 mLQmin
=1

.  The gradient was 2=45% Buffer ��

B (45% acetonitrile, 45% methanol and 10% water) from 0=18min, 50=60% B from 18.1=20 ��

min, 100% B from 20.1=24 min, and 2% B from 24.1=27 min. A fluorescence detector was ��

used to detect OPA=derivatised amino acids from 1 to 18 min at 340ex and 450em nm and ��

FMOC=derivatised amino acids from 18 to 27 min at 266ex and 305em nm). The samples ��

were run with sample= and analyte=relevant calibration standards and pooled QC samples ��

(Sangster et al, 2006; Hodson et al, 2009) to control for reproducibility of data acquisition ��

and to ensure data integrity. 	�

-����
�������
�
�
�

Sucrose was quantified by ion=exclusion chromatography using an Agilent 1200 HPLC ���

system and a Phenomenex Rezex RHM=monosaccharide H
+
 column (8% cross=linked ���

sulfonated styrene=divinylbenzene, 7.8×300 mm, PN: 00H=0132=K0) equipped with guard ���

column (SecurityGuard Carbo=H, Phenomenex PN: AJO=4490) according to (Dietmair et al., ���

2010). Briefly, 30 \L of sample was injected using an autosampler (Agilent HiP=ALS, ���

G1367B), column was thermostatted at 70
o
C (Agilent TCC, G1316A). Sucrose was eluted ���

isocratically at 0.4 mLQmin
=1

 for 21 min at 15
o
C with high purity water (18.2 MΩQcm) to ���

avoid high temperature acid hydrolysis. Sucrose was quantified using a refractive index ���

detector (Agilent RID, G1362A) set on positive polarity and optical unit temperature of 40
o
C. �	�

The samples were run with sample= and analyte=relevant calibration standards and pooled �
�

quality=control samples (Sangster et al, 2006; Hodson et al, 2009) to control for ���

reproducibility of data acquisition and to ensure data integrity. ���

��'	���������������(���

�������

To provide material for mRNA differential expression analysis, WT Q117 and 7B4 were ���

grown according to the parameters used in the diurnal study. RNA was isolated from 100 mg ���

of frozen leaf tissue sampled from five random plants 3 hours into the light period with the ���

Agilent RNA kit following the manufacturer’s instructions. 400 \L of extract were purified ���

on multiple columns to avoid column saturation and DNA contamination. The RNA was ���

quantified on an Agilent Technologies 2100 Bioanalyzer following the manufacturer’s �	�

instructions. The electropherograms showed that the RNA was not degraded or contaminated �
�

with genomic DNA. An Illumina sequencing library for Q117 and 7b4 was prepared from 1 ���

Page 17 of 39

Plant Biotechnology Journal Proof

Plant Biotechnology Journal Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Page �� of �� 

 

\g of purified mRNA pooled from all replicates following the low=throughput protocol of the ��

Illumina TruSeq sample preparation kit. Library insert sizes were 170 bp. The libraries were ��

indexed and pooled and sequenced by Geneworks (Thebarton, Australia) with the Illumina ��

GAIIx Genome Analyzer using a single lane of paired=end 2×90 b reads (Illumina sequencing ��

reagents v5). The data were demultiplexed and analysed using Illumina's CASAVA 1.7 ��

software. Differential expression between WT and 7B4 was determined following the Tophat ��

and Cufflinks pipeline (Trapnell et al., 2012) mapping the reads to the -���
���$���������

genome including the chloroplast and mitochondrial genomes. The alignment routine is 	�

detailed in Supporting information Note 2.  
�

#��������(������������

About 20 mg of lyophilised ground sugarcane leaf powder material was extracted with 50 ���

mM HEPES=Na pH 7.3; 1mM Dithiothreitol; 0.1% Triton X=100 and 5 mM sodium ascorbate ���

(Brouquisse et al., 1998). Protein content was measured according to the method of Bradford ���

using bovine serum albumin (Promega, South Sydney, NSW, Australia) as a standard. ���

*����#����

��������	����
�
����

HPLC data were processed using ChemStation (Rev B.03.02 Agilent Technologies, USA), ���

LC=MS/MS data using MultiQuant 2.1.1 (AB Sciex, Canada). One=way ANOVA was ���

performed using GraphPad Prism version 6.02 for Windows (GraphPad Software, USA). K=�	�

means cluster analysis was performed in R (v3.0.2) (R Core Team, 2013). �
�

)���$������������������

To explore the effects of PHB synthesis on ATP and NADPH demand and on the ���

engagement of BS and M functions, a metabolic model was developed based on that of ���

(Bellasio and Griffiths, 2014). The model available in Supporting information is implemented ���

in Excel: because all equations appear in cells, any modification is straightforward. Although ���

some equations used here are specific for PHB synthesis, the case in which ��*=0 ���

corresponds to C4 photosynthesis as such. This version of the metabolic model does not ���

necessitate parameterization with gas exchange data and is therefore useful to generate ���

hypothetic scenarios. Based on the assumption that PHB synthesis does not disrupt the C4 �	�
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carbon concentrating mechanism (CCM), Rubisco oxygenation versus carboxylation rate was ��

treated as a model input, expressed as: ��

 ��

 ��

 ��

Carbon diversion to PHB was expressed as rate of PGA (or PYR) decarboxylation (+*) ��

and was incorporated in the fundamental equation of steady state assimilation, which can be ��

expressed as: 	�

 
�

 ���

 ���

Where 	, the rate of net CO2 flux entering stomata, integrates the rate of all CO2 utilising ���

and evolving processes: Rubisco carboxylation utilising CO2 at the rate of +�, glycolate ���

recycling evolving 0.5CO2 per Rubisco oxygenation event (+3), respiration evolving CO2 at ���

the rate of �/�1.4 and PHB synthesis evolving CO2 at the rate +*.  ���

All net CO2 entering the leaf is either converted to carbohydrates or to PHB and the ���

stoichiometric ratio between the two is 2/3, because out of 3 carbon of PGA only 2 are stored ���

in PHB and 1 carbon decarboxylated. This can be expressed as: �	�

 �
�

� = 2�� + 3�	 3 

 ���

Where �- is the rate of carbohydrate (sucrose and sucrose) synthesis expressed on a triose ���

basis. ���

PHB synthesis competes for PGA with the RPP cycle. The ratio of PGA allocated to PHB ���

synthesis versus the PGA entering the RPP cycle was expressed as:  ���

 ���


�� =
2��	

3�	
 

4 

 ���



 =
��

��
 

1 

� = �� −
1

2
�� − ������ − �� 

2 

Page 19 of 39

Plant Biotechnology Journal Proof

Plant Biotechnology Journal Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Page �� of �� 

 

Which reflects the stoichiometry mentioned above. Eqn 1 to 4 can form system of 4 ��

equations and 4 unknowns, which can be used to calculate +3, +�, +* and �-, inputting 	, ��

�/�1.4, �� and ��*. 	, �/�1.4 and �� were set to C4 realistic values of 9\mol m
=2

Qs
=1

, 9 \molQm
=

��

2
Qs

=1
, and 0.05 (Bellasio et al., 2014) while ��* was varied to explore different scenarios. ��

The effect of allocation of PHB production to BS or M was simulated through the ��

parameter #.,,-/#.,) which splits the total production of PHB in the two cellular ��

compartments. Then, based on the ATP and NADPH demand of key assimilatory processes ��

(Table S1), the rates of all other reactions reported in Table 2 was resolved. Further 	�

assumptions were #2#��)	5=0.05+# (PEPCK engagement in sugarcane is minimal) 
�

#�,-)	5=0.35#�434 and �-,-)	5=�-434, ratio of C4 over=cycling [1/(1=Φ)=1.25)] (Bellasio ���

and Griffiths, 2014). ���

!�"
�#���$���
��
���
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%�&��
�: Sugarcane genes from central carbon metabolism which showed significant (p 

value and q value both < 0.05) differential expression between WT and PHB=producer.  
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0�
 MFS transporter, NNP family, nitrate/nitrite transporter Sb03g032310 15.9371 1.11527 =3.84 

�1�1�1��
 Beta=fructofuranosidase =soluble acid invertase vacuolar Sb04g000620 85.6464 7.18532 =3.58 

�1�1��1�
 Phosphoenolpyruvate carboxylase kinase 1 Sb04g036570 48.7546 4.86261 =3.33 

�1�1�1��
 Starch synthase III=1a  Sb07g005400 2.58404 0.34752 =2.89 

�1�1�1��
 NADP=ME  cytoplasmic Sb03g034280 45.7206 8.69798 =2.39 

�1�1�1�
 Nitrilase / nitrile aminohydrolase Sb04g026940 121.798 25.2263 =2.27 

�1�1�1�
 Phosphoglucomutase chloroplastic Sb03g028080 24.7318 138.489 2.49 

�1�1�1�
 Asparagine synthetase [glutamine=hydrolyzing] chloroplastic Sb05g000440 40.1626 260.054 2.69 

�1�1�1��0


�1�1�1��

glutamate synthase (NADPH/NADH) chloroplastic Sb09g027910 0.510637 3.33429 2.71 

�1�1�1��
 Phenylalanine ammonia=lyase Sb06g022750 9.97267 67.2266 2.75 


0�
 fructokinase=like chloroplastic Sb01g015030 2.16637 14.8773 2.78 

�11�1�1��
 sucrose synthase SUS1 Sb01g033060 15.2643 120.981 2.99 

�1�1�1��
 Beta=fructofuranosidase 1 Sb06g023760 1.00096 11.3446 3.50 

�1�1�1�
 Beta amylase 5  cytosolic Sb02g035600 0.822546 14.6832 4.16 

*FPKM – fragments per kilobase of transcript per million mapped fragments 
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%�&��
�1 Equations for the reaction rates of C4 assimilation and PHB production. 

Equations for fluxes between BS and M are reported in Supporting information Table S4. 

�������� �	
���� 
������������� ���� ������������� ������

PGA reduction tot ����� 2�� +
3

2
�� −

1

3
������ − ��  �� BS and M 

2 VC is the PGA produced by the carboxylating activity of Rubisco; VO is the PGA 
produced by the oxygenating activity of Rubisco; 0.5 VO is the PGA regenerated 
by the photorespiratory cycle; 1/3 is the stoichiometric conversion between 
respiration (expressed per CO2), which in this model is supplied by PGA, and PR 
(expressed per triose) and finally, PYR decarboxylation reduces the rate of PGA 
reduction. 

RuP 
phosphorylation 

RuPphosp �� + ��  �� BS 
At steady state the rate of RuBP produced through phosphorylation equals the 
rate of RuBP consumed through Rubisco carboxylating activity (VC), together with 
oxygenating activity (VO). 

DHAP entering 
RPP 

DHAPRPP 
5

3
RuP��� � �� BS 

Since carbohydrates are considered the final products of photosynthesis and are 
synthsized using DHAP as a precursor, the RPP supplies solely RuP 
regeneration. 5/3 converts the stoichiometry of RuP (C5) to the stoichiometry of 
DHAP (C3). 

Carbohydrate 
synthesis tot 

�	���  ����� − !"��#$$  �� BS and M 
The total carbohydrate synthesis corresponds to the total PGA reduced minus the 
triose required for RuBP regeneration (DHAPRPP). 

NADPH demand 
tot 

NADPHTOT ����� +
1

2
�� −

1

2
��  �� BS and M 

PGA reduction consumes 1 NADPH per triose. In the photorespiratory glycolate 
regeneration (per glycolate) in total 0.5 NADPH is consumed per glycolate (at a 
rate equivalent to VO, Supplementary Table S3), while PHB synthesis produces 
0.5 NADPH per pyruvate decarboxylation event (40.5VD). 

ATP demand tot 
ATPBS + 
ATPM 

����� + RuP��� � + �� +
1

2
�	��� + �%��&

+ 2��!& − �� 
��� BS and M 

The total ATP demand is brought about by PGA reduction (corresponding to PR), 
RuBP regeneration (corresponding to RuPphosp), glycolate recycling 
(corresponding to VO), carbohydrate synthesis (corresponding to CS), PEP 
regeneration (1 ATP per PEPCK catalytic event or 2 ATP per PPDK catalytic 
event) and by PYR decarboxylation which actually produces 1 ATP per VD. 

ATP demand in 
BS 

ATPBS ��'( + �� + 2	��+
1

2
	�	'( + �%��& − ��'(  ��� BS 

The ATP demand in BS is brought about by PGA reduction, RuBP regeneration, 
glycolate recycling, carbohydrate synthesis and PEPCK. 

ATP demand in M ATPM 2	��!& +
1

2
	�	) + ��) − ��)  ��� M 

The ATP demand in M is brought about by PGA reduction, carbohydrate 
synthesis and PPDK. 

NADPH demand 
in BS 

*�!�"'( ��'( +
1

2
�� −

1

2
��'(  ��� BS 

The NADPH demand in BS is brought about by PGA reduction and glycolate 
recycling. 

NADPH demand 
in M 

*�!�") *�!�"��� − *�!�"'(  � �  NADPH demand in M and BS are complementary  

PGA reduction M PRM PRTOT � PRBS ��� M PGA reduction is a process shared by BS and M.  

Pyruvate 
phosphate 
dikinase 

PPDK VP�PEPCK ��� M 
The PEP regenerated by PEPCK in BS diffuses to M and reduces the 
requirement of PEP regenerated by PPDK in M. 

PEP regeneration 
tot 

4 �$ ��� BS and M 

PEP regeneration rate equals PEP consumption rate VP at steady state. PEP can 
be regenerated either by PPDK (mainly in M, but active also in BS) or by PEPCK 
in BS. PPDK activity was assumed to be zero in BS. VP was calculated by 
assuming a realistic rate of C4 overcycling (see note to Eqn 18). 

PEPC rate �$ 
� + �)

1 − +
 ��� M 

Under the assumption that PHB synthesis does not disrupt the CCM, VP was 
estimated from the rate of overcycling 1/(14Φ), where Φ is BS leakiness, assumed 
0.2. 

Transamination , �$ −-!") ��� BS and M T has the function of balancing NADPH supply and demand. 

NADPH supply to 
BS 

� -!") ��� BS 
The NADPH supply to BS corresponds to the NADPH used to reduce OAA to 
MAL in M, and not to the rate of MAL decarboxylation in BS, which depends on T, 
PEPCK and MDHBS. 

MDH activity in M MDHM ��'( +
1

2
�� −

1

2
��'(  ��� M 

MDH activity supplies the NADPH demand in BS. Eqn 21 was derived by 
combining Eqn 13 and 20. 
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2�$����


2�$���
�: Schematic of C4 assimilation and PHB production in sugarcane: Rubisco 

carboxylation, the RPP pathway, carbohydrate synthesis, respiration, glyoxylate recycling, 

PHB biosynthesis with their ATP and NADPH requirements. Pyr – pyruvate; PEP – 

phosphoenolpyruvate; PPDK – Pyruvate, phosphate dikinase; MDH – malate dehydrogenase; 

PEPCK – phosphoenolpyruvate carboxykinase; OAA – oxaloacetic acid; Mal – malate; ME – 

NADPH dependent malic enzyme; Asp – aspartate; Ala – alanine; 4 – transamination; Carb – 

carbohydrates; PHB – polyhydroxybutyrate; DHAP – Dihydroxyacetone phosphate; PGA – 

3=phosphoglycerate; PGla – 2=phosphoglycolate; RuBP – ribulose=1,5=bisphosphate; RuP = 

ribulose 5=phosphate. Enzyme reaction rates (in bold) are mathematically expressed in Table 

2. 

2�$���
�. Assimilation rate in transgenic PHB=producing and WT Q117 sugarcane. 

Sugarcane lines are shown in rank order of PHB production from lowest to highest (left to 

right). Typical PHB content in these plants are (on dry weight): Q117, 0 g/100g; TA4, 

0.45±0.02 g/100g; 4F1, 1.21±0.24 g/100g; 8C8, 1.3±0.11 g/100g; 7C3, 3.11±0.31 g/100g. 

Error bars show standard deviation. *Significantly different from WT (P<0.05). TA4, 8C8, 

7C3, n=3; WT, n=5; 4F1, n=6). 

2�$���
�. Carbon/nitrogen balance and protein content in WT and PHB=producing 

sugarcane leaves. (a) Total carbon. (b) Total nitrogen. (c) Carbon/nitrogen ratio. (d) Protein 

content. Mean±SD is shown. For carbon and nitrogen, n=2; for protein, n=21. 

2�$���
�: Metabolite abundance in the leaves of WT and PHB=producing sugarcane 7B4 

and 7C3 across a 12 hour light/12 hour dark diurnal cycle. Samples were collected every four 

hours commencing at first light, n=3. Grey shading shows dark period. Abbreviations and 

statistic clustering are reported in supporting information Note1 and Figure S1 respectively. 

2�$���
�: Changes in metabolic processes in response to increasing allocation of carbon to 

PHB synthesis at the expense of carbohydrate synthesis (��*) and with respect to PHB 

partitioning between M and BS cells (+*,-/+*). (a) Total ATP demand relative to gross 

assimilation. (b) Total NADPH demand relative to gross assimilation. (c) ATP demand in BS 

relative to ATP demand in M. (d) NADPH demand in BS relative to NADPH demand in M. 

(e) Transamination rate. (f) Aspartate decarboxylation rate relative to Malate decarboxylation 

rate. +*–PHB synthesis expressed as rate of PGA decarboxylation; +*,-–PHB synthesis in 

BS; ��*–relative distribution of PGA (PHB/carbohydrates). 
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2�$���
�: TEM of polyhydroxybutyrate granules inside the BS chloroplasts of a sugarcane 

leaf from a low PHB producer. The image shows chloroplast structure containing intact grana 

and starch granules contrasting with areas of disrupted grana where PHB granules are 

present. This image was generated as part of the Petrasovits et al. (2012) study but not 

published at the time. BS – bundle sheath cell; M – mesophyll cell; PHB – 

polyhydroxybutyrate. 
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