

This is a repository copy of Fenton-Like Oxidation of 4–Chlorophenol: Homogeneous or Heterogeneous?.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/89223/

Version: Supplemental Material

Article:

Kuan, C-C, Chang, S-Y and Schroeder, SLM orcid.org/0000-0002-4232-5378 (2015) Fenton-Like Oxidation of 4–Chlorophenol: Homogeneous or Heterogeneous? Industrial & Engineering Chemistry Research, 54 (33). pp. 8122-8129. ISSN 0888-5885

https://doi.org/10.1021/acs.iecr.5b02378

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supporting Information

Fenton-Like Oxidation of 4–Chlorophenol: Homogeneous or Heterogeneous?

Chung-Chi Kuan,¹ Sin-Yuen Chang,¹ Sven L. M. Schroeder^{1,2†*}

¹School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom.

²School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom.

[†] Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Fermi Ave, Didcot, Oxfordshire OX11 0QX, United Kingdom.

[†] School of Chemical and Process Engineering, Faculty of Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom.

*Email: s.l.m.schroeder@leeds.ac.uk

Figure S1. Powder XRD patterns of the calcined and uncalcined CuFe₂O₄ powder measured using a Siemens D500 Kristalloflex Diffractometer. The step size was 0.02°.

Figure S2. Blank test using 0.48 mM 4-CP only showing negligible 4-CP loss due to volatilisation at 60°C. More datapoints in between but only show the initial and final one because the intermediate ones are similar for clarity,

Figure S3. Blank test using 16 mM H_2O_2 without the presence of FeO_x/TiO₂ compared to reaction in the presence of FeO_x/TiO₂ catalyst (16 mM H_2O_2 , 1g L⁻¹ FeO_x/TiO₂ with1wt% Fe calcined at 300°C).

Figure S4. 4-CP degradation using $\text{FeO}_x/\text{TiO}_2$ catalysts. (a) The solid phase catalyst $\text{FeO}_x/\text{TiO}_2$ (1 wt% Fe) and the solution phase catalyst 9.0×10^{-4} mM [Fe₂(SO₄)₃]. (b) FeO_x/TiO₂ (10 wt% Fe) catalyst. (c) FeO_x/TiO₂ (1 wt% Fe) catalyst in a solution buffered at pH 7.4. All initial reactant solutions contained 16 mM H₂O₂ and 0.48 mM 4-CP.

Figure S5. The glass reactor system.