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Ionization rate coefficients in warm dense plasmas

V. Aslanyan and G. J. Tallents
York Plasma Institute, University of York, York, Heslington, YO10 5DD, United Kingdom

(Dated: February 2, 2015)

This Letter recasts the atomic processes in a warm, dense plasma using Fermi-Dirac statistics
and compares them to the rates of the usual Maxwell-Boltzmann approach of many collisional-
radiative models. Population calculations show insignificant differences to calculations assuming
non-degenerate free electrons of plasmas at solid density close to local thermodynamic equilibrium,
but show departures in average ionization in the presence of strong photoionization. For example,
we show that electron degeneracy affects the evolution of plasmas created by ultraviolet free electron
laser interaction with solid targets.

PACS numbers: 52.25.Jm, 05.30.Fk, 52.50.Jm

Calculations of the degree of ionization of high den-
sity, low temperature plasmas are important in inertial
fusion[1], free electron laser ablation of solids[2] and the
modelling of energy flow in astrophysical bodies such as
brown dwarf stars[3]. Inertial fusion seeks to isentropi-
cally compress deuterium and tritium fuel to achieve fu-
sion using a shell ablator so that plasma material is both
dense (≫ solid density) and at a relatively low temper-
ature (< 1 keV). Ionization calculations have been un-
dertaken for short wavelength (< 50 nm) free electron
laser interactions with solid targets where solid density
(> 1 g cm−3) plasmas with “warm” to hot temperatures
(kBT < 1 eV − 1 keV) have been demonstrated[4, 5].
Published models of plasma ionization[6–9] usually em-
ploy collisional excitation/ionization and photoionization
rates calculated assuming a Maxwell-Boltzmann distri-
bution (or a transient distribution which tends to one
asymptotically) of free electrons. Collisional rates aver-
age cross sections over a Maxwell-Boltzmann distribution
of electron energies, while collisional ionization and pho-
toionization rates are calculated assuming that ionized
electrons can occupy any free electron state. Such ap-
proaches are approximate and valid only at low electron
density and high temperature as they neglect degeneracy
effects due to the Pauli exclusion principle which states
that a maximum of one fermion (here an electron) can
occupy a quantum state[10]. A plasma ionization calcu-
lation where the degeneracy of free electrons is considered
has shown significant degeneracy effects can be expected
for experiments using extreme ultraviolet free electron
laser irradiation of solid aluminum targets[11].

In this Letter, we consider the effects of free electron
degeneracy on the rates of photoionization, collisional
excitation/ionization and three-body recombination in
high density, low temperature plasmas. We show that
it is necessary to allow for electron degeneracy effects
to stop divergent (infinitely large) calculated rates for
collisional-radiative processes as electron temperatures
drop towards zero. Our work shows how well-known
plasma collisional rates such as those due to Lotz[12] and
Van Regermorter[13] (as well as more advanced correc-

tions) can be extended, in principle, to high density, low
temperature ionization balance calculations. In particu-
lar, we deduce a novel accurate method to allow for three-
body effects in degenerate plasmas during collisional ion-
ization and three-body recombination. Significantly, we
confirm that electron degeneracy can affect the evolution
of plasmas as they are heated, particularly in extreme
ultraviolet free electron laser interactions with solid tar-
gets.
The free electrons in a degenerate plasma may be mod-

elled as a Fermi gas, interacting with the spatially con-
fined bound electrons through collisional processes only.
The Fermi distribution[14] for the occupation probability
of a quantum state is given by F (ǫ, Te) = [1 + exp((ǫ −
µ)/kBTe)]

−1, where µ is the chemical potential. This
distribution is most familiar in its asymptotic form for
Te = 0, where it becomes a step function of energy. Mul-
tiplying by the density of states leads to the energy dis-
tribution

fFD(ǫ, Te) =
G

ne

√
ǫF (ǫ, Te), (1)

where ne is the electron density and G = 4π(2me/h
2)3/2,

where the constants have their usual meanings. The
chemical potential is calculated for a Fermi gas as a nor-
malization factor through the relation

∫∞

0
fFD(ǫ, Te)dǫ =

1. At Te = 0, the chemical potential takes the value of
the Fermi energy µ(0) = EF = (3ne/π)

2/3h/8m; beyond
this, µ decreases monotonically with Te. It can be shown
that µ remains positive and hence the plasma is degen-
erate when the electron density is high (ne & 1022 cm−3)
and temperature is low (kBTe < 20 eV). When the value
of µ becomes large and negative, Equation (1) reduces
to the usual Maxwell-Boltzmann distribution. Using the
Fermi-Dirac distribution requires that we take account of
the probability that the electrons involved in photoion-
ization and in collisions can occupy a free electron state
after the collision, via so-called blocking factors given by
F̃ (ǫ, Te) = 1 − F (ǫ, Te). We show that the additional
computation in assuming a Fermi-Dirac distribution is
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FIG. 1. (color online). (a) Ratio of the photoionization cross section of atoms in a dense plasma with Pauli blocking factors
from the value of a free atom. Here ∆E = Eγ − Ei and electron densities are as indicated. (b) Comparison of the three-
body recombination rate of singly ionized carbon, with electron densities as indicated, of Maxwell-Boltzmann (dashed line) to
Fermi-Dirac (solid line) statistics.

needed for high density, low temperature ionization rate
calculations.

The photoionization coefficient is normally indepen-
dent of plasma conditions, with the exception of modifi-
cations of the ionization potential. However, Pauli block-
ing factors, dependent on both free electron density and
temperature, can lower the rate of photoionization[15]:
for a photon energy Eγ and ionization potential Ei, pho-
toionized electrons must emerge with an energy of Eγ−Ei

into an unoccupied quantum state. We model the energy
distribution of the photons in a laser beam by a delta
function, leading to a departure from the photoioniza-
tion cross section σγ

0
of an atom in free space, given by

σγ
FD = σγ

0
F̃ (Eγ − Ei, Te); this change in cross section is

plotted as a function of temperature for differing photon
energies in Figure 1a. Likewise, the integrals used to cal-
culate the rates of free-free absorption and emission are
modified by a similar factor; after carrying out the inte-
grals, there is no longer a simple relation between inverse
rates, unlike in the Maxwell-Boltzmann case where their
ratio is given the black body spectrum through detailed
balance. We have for the free-free absorption coefficient
in units of cm−1

κfree−free
FD = 3.224× 10−37

Z
∑

i=1

neNii
2

E3
γ

exp(E′
γ)

E
3/2
F

×
[

kBTe ln

(

exp(E′
γ − µ′) + 1

exp(2E′
γ − µ′) + 1

)

+ Eγ

]

, (2)

where EF is the Fermi energy, energies are measured in
eV and the primed quantities denote division by kBTe.
Degeneracy effects may lead to an increase in the free-free
absorption coefficient compared with the usual Maxwell-
Boltzmann expression, if the absorbed photon energy is
large compared with the chemical potential and hence

the absorbing electron may freely transition to a higher
energy state.

In order to calculate the collisional rates for atomic
processes involving one or more of both incoming and
outgoing electrons, we use the standard approach[16, 17]
of integrations over the incoming and outgoing parti-
cle energies (here ǫ0 and ǫ1) and appropriate quantum-
mechanical cross sections; micro-reversibility relations
can be used to obtain the cross section of an inverse pro-
cess. The definite integrals in these definitions of colli-
sional rates are not analytic in the case of the Fermi-Dirac
electron distribution, unlike the Maxwell-Boltzmann. A
Fermi-Dirac rate for collisional excitation in units of s−1

can be calculated using Van Regemorter’s cross section
through the formula

J↑
FD(Ej , Te, µ) = 3.92× 10−6fjGNi

∫ ∞

Ej

ln(ǫ0/Ej)

×F (ǫ0, Te)F̃ (ǫ0, Te)dǫ0,(3)

with Ej the excitation energy and fj the oscillator
strength. The inverse rate (collisional deexcitation) can
be calculated by repeating the process while effectively
shifting the chemical potential by the excitation energy
and multiplying by the ratio of degeneracies to give

J↓
FD(Ej , Te, µ) =

g

g∗
J↑
FD(Ej , Te, µ+ Ej). (4)

A full calculation of the rate of collisional ionization
using Fermi-Dirac statistics requires knowledge of the
differential cross section dσ/dǫ1 - in effect the energy
distribution of the outgoing electrons after an inelastic
collision. We have for the collisional ionization rate in
units of s−1



3

K↑

FD = GNi

∫ ∞

Ei

∫ ǫ0−Ei

0

ǫ0
dσ↑

dǫ1
F (ǫ0, Te)

×F̃ (ǫ1, Te)F̃ (ǫ0 − ǫ1 − Ei, Te)dǫ0dǫ1 (5)

and three-body recombination

K↓
FD =

g

g∗
GNi

∫ ∞

Ei

∫ ǫ0−Ei

0

ǫ0
dσ↑

dǫ1
F (ǫ1, Te)

×F (ǫ0 − ǫ1 − Ei, Te)F̃ (ǫ1, Te)dǫ0dǫ1. (6)

The usual Maxwell-Boltzmann expressions emerge
from Equations (3) to (6) if the energy distribution is set
to F (ǫ, Te) = ne[2/G

√
π(kBTe)

3/2] exp (−ǫ/kBTe) and
F̃ = 1. To calculate the rates of collisional ionization
and three-body recombination, we have used a version
of the Mott differential cross section[18, 19], modified to
be consistent with Lotz’s formula[12]. Keeping the same
functional form as the Mott cross section and requiring

that
∫ ǫ0−Ei

0

dσ↑

dǫ1
dǫ1 = σ↑

Lotz, we propose for a reduced dif-

ferential cross section, in units of cm3 s−1 eV−3/2 with
energies in eV,

dσ↑

dǫ1
= ξ

1.32× 10−6

ǫ0

(

1

(ǫ1 + a)(ǫ1 + b)

+
1

(ǫ0 − ǫ1 − Ei + a)(ǫ0 − ǫ1 − Ei + b)

)

, (7)

where ξ is the number of outer shell electrons and the
quantities

a =
1

2

(

√

ǫ2
0
+ 4E2

i − ǫ0

)

(8)

b = a+ Ei. (9)

Assuming the differential cross section to be independent
of outgoing electron energy[6] leads to a small error in the
calculation of the rates, for example 30% at ne = 1023

cm−3 and Te = 6 eV.
We have compared the rates in Equation (6) to the rate

from Maxwell-Boltzmann statistics in Figure 1b; they
deviate at low temperatures as expected. In particular,
the Fermi-Dirac rate does not diverge as the Maxwell-
Boltzmann rate, but tends to a finite value at zero tem-
perature despite a divergent recombination cross section,
due to the limited occupation at low energies. The Fermi-
Dirac rate is no longer linearly dependent on the free
electron density for a given temperature.
We have compared the steady state ionization frac-

tion of carbon calculated using the Fermi-Dirac to the
Maxwell-Boltzmann rates calculated as discussed above,

in addition to ionization potential depression (using the
Stewart-Pyatt formula[20]) in Figure 2 for various inci-
dent laser intensities with Eγ = 50 eV. The ionization
fractions calculated in the Fermi-Dirac case are nearly
identical to that from Maxwell-Boltzmann in the absence
of radiation. However, we see a significant difference in
the two corresponding ionization fractions in the pres-
ence of photoionizing radiation; the steady state ioniza-
tion fraction does not vanish as Te → 0, because the
Fermi-Dirac three-body recombination rate remains fi-
nite.
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FIG. 2. (color online). Comparison of the steady state ioniza-
tion fraction of a carbon plasma (density of 2.23 g cm−3, cor-
responding to graphite) for Fermi-Dirac (solid) and Maxwell-
Boltzmann (dashed) statistics, irradiated by 50 eV photons
at intensities indicated.

In practice a constant temperature cannot be main-
tained in the presence of such high intensities, as given
in Figure 2, due to a rise in thermal energy from free-free
absorption. Nonetheless, if the plasma’s temperature is
raised by a flux of photons of these energies and inten-
sities to the range in Figure 2, steady state calculations
can provide a reasonable approximation to the transient
plasma conditions during the heating. Even if a laser
pulse is expected to heat a plasma far beyond the tem-
perature range where degeneracy effects are important,
the initial deviation from Maxwell-Boltzmann statistics
may affect subsequent evolution.
We have performed a dynamic simulation, using a pre-

viously developed collisional-radiative code[9], of a car-
bon plasma irradiated by 14 eV photons with the electron
temperature and density, resulting from a calculation
of appropriate heat capacities and assuming free elec-
trons instantly equilibrate to Fermi-Dirac or Maxwell-
Boltzmann statistics as indicated, plotted in Figure 3.
The simulation begins with the absence of free electrons,
leading the first electrons to be emitted with energies of
Eγ −E1, where E1 is the first ionization energy. As a re-
sult, the temperature is initially high and begins to drop
as further electrons are collisionally ionized. The early
temperatures differ due to the differences in heat capac-
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FIG. 3. (color online). Evolution of the electron temperature
and ionization fraction of carbon (density of 3.53 g cm−3,
corresponding to diamond) irradiated by a laser beam with
photon energies of 14 eV and Gaussian intensity as shown
shaded with a full-width half maximum of 1 fs and peak inten-
sity of 1014 W cm−2 with Maxwell-Boltzmann (dashed line)
and Fermi-Dirac (solid line) statistics as indicated.

ity between the two models, which converge as the tem-
perature rises; the difference in final temperature is due
to different overall absorption coefficients. The discrep-
ancy in temperature between the two models is lower in
the case of covalently bonded carbon, modelled initially
as neutral, compared to studies of metallically bonded
aluminum[11], which begins with an established large
density of valence electrons. We have neglected any heat-
ing of the ions, as the timescale for this is significantly
longer than the present simulation.

We have introduced formulas for collisional-radiative
rates consistent with Fermi-Dirac statistics, which form
a low temperature correction to the rates usually cal-
culated with a Maxwell-Boltzmann distribution. De-
generacy effects are important for ion densities close
to solid only with unbalanced processes such as exter-
nal ionizing radiation, but small otherwise. This work
has implications for capsule compression in inertial fu-
sion, where carbon ablator material may mix with fuel
during compression[21]; the resulting difference in radia-
tion absorption coefficient between the Fermi-Dirac and
Maxwell-Boltzmann models may be significant.
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