
Venters, C C et al 2014 The Blind Men and the Elephant: Towards an Empirical
Evaluation Framework for Software Sustainability. Journal of Open Research
Software, 2(1): e8, pp. 1-6, DOI: http://dx.doi.org/10.5334/jors.ao

Introduction

“It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.”

- Blind Men and the Elephant, John Godfrey Saxe

The parable of the Blind Men and the Elephant[1] tells
the tale of a group of six blind men who touch only one
part of an elephant in order to learn what it is like. Based
on their individual experience they suggest that the ele-
phant is like a wall, spear, snake, tree, fan or rope. They
then compare their experience and learn that they are in
complete disagreement. This paper argues that the cur-
rent understanding of software sustainability is similar
to the parable of the Blind Men and the Elephant in that
there is no agreed definition of what software sustainabil-
ity means and how it can be measured or demonstrated.
Software sustainability is a vague term and is not well
understood within the software engineering community

with individuals, groups and organization holding dia-
metrically opposed views. However, Penzenstadler[2]
states that without a clear and commonly accepted defini-
tion of what sustainability means, contributions remain
somewhat insular and isolated, which can lead to ineffec-
tive and inefficient efforts to address the concept or result
in its complete omission from the software system. This
paper proposes that software sustainability can be con-
sidered as a composite, non-functional requirement that
can be analyzed and evaluated at the architectural-level
to allow architectural-level reasoning about the software
system(s). Section 2 of the paper sets the context for the
discussion by examining the concept of sustainability.
This lays the foundation for Section 3, which considers
how sustainability can be defined as a composite, non-
functional requirement. Section 4 considers the role of
architectural evaluation methods as an empirical frame-
work in reasoning about sustainability at an architectural
level in the software development process, outlines how
scenarios could be used to develop a set of measures, and
positions this in terms of the increasing use of agile meth-
ods in scientific computing. In Section 5, conclusions are
drawn and future directions are outlined.

Software Sustainability?
In recent years, the traditional approaches of research of
experimentation and theory have been joined by large-
scale computational simulation and data-intensive science,
commonly referred to as the third and fourth paradigms
of science[3]. For example, domain scientists are utilizing
state of the art computational methods combined with
atomistic molecular dynamic simulations of DNA circles
to understand the role of DNA topology and supercoiling

*	School of Computing Engineering, University of Huddersfield,
UK
c.venters@hud.ac.uk

†	School of Computing & Informatics, University of Leeds, UK
‡	Corporate Information and Computing Services, University of
Sheffield, UK

§	School of Computer Science, University of Manchester, UK
‖	Optimized Systems and Solutions Limited, Derby, UK
Corresponding author: Colin C. Venters

ISSUES IN RESEARCH SOFTWARE

The Blind Men and the Elephant: Towards an Empirical
Evaluation Framework for Software Sustainability
Colin C. Venters*, Lydia Lau†, Michael K. Griffiths‡, Violeta Holmes*, Rupert R. Ward*,
Caroline Jay§, Charlie E. Dibsdale‖ and Jie Xu†

Keywords: architectural-reasoning; software architectures; software engineering; software quality;
software sustainability; non-functional requirements

Software sustainability has been identified as one of the key challenges in the development of scientific
and engineering software as we move towards new paradigms of research and computing infrastructures.
However, it is suggested that sustainability is not well understood within the software engineering com-
munity, which can led to ineffective and inefficient efforts to address the concept or result in its com-
plete omission from the software system. This paper proposes a definition of software sustainability and
considers how it can be measured empirically in the design and engineering process of software systems.

Journal of
open research software

http://dx.doi.org/10.5334/jors.ao
mailto:c.venters@hud.ac.uk

Venters et al: The Blind Men and the ElephantArt. e8, page 2 of 6

in genetic control[4]. Other examples include civil engi-
neers utilizing artificial intelligence approaches with sen-
sor networks to monitor water systems[5]. However, these
new approaches to research are highly dependent on soft-
ware systems, which are increasingly complex in nature
and operate in evolving, distributed e-infrastructure eco-
systems. In addition, the emergence of service-oriented
computing where software is composed of loosely coupled
services with the ability to bind to these services dynami-
cally at runtime i.e. ultra late binding, which allows for a
system to respond to changing requirements represents
a significant paradigm shift in the way that software and
hardware are not only developed but are also utilized by
end-users[6]. A major challenge in developing sustainable
computational science and engineering software within
such environments is how to integrate it with existing
components, services and systems that were not originally
designed to interact with each other; this includes both
software and hardware. Similarly, the ‘as a Service’ para-
digm such as Software as a Service (SaaS), Infrastructure as
a Service (IaaS) etc., as part of the nomenclature of cloud
computing presents new challenges.

As an area of research, software sustainability is receiv-
ing increasing attention with a significant increase in
research output in the last few years[7]. Its importance
has been underlined by recent funding initiatives from
the National Science Foundation and the Engineering
and Physical Sciences Research Council (EPSRC) in the
UK combined with the establishment of the Software
Sustainability Institute and the emergence of a number
of workshops dedicated to the topic of sustainable soft-
ware and systems. This leads us to the question of what is
software sustainability? Software sustainability is a rather
ambiguous concept and a number of definitions have
been proposed. The Oxford English Dictionary[8] defines
sustainability as ‘the quality of being sustained’, which in
turn is defined as ‘capable of being endured’ and ‘capable
of being ‘maintained’. Endured being defined within the
context of this paper as ‘continuing to exist’ and main-
tained as ‘being supported’ [8]. Seacord et. al.,[9] view sus-
tainability in relation to ‘all activities related to software
evolution and the ability to modify a software system
based on stakeholders changing requirements’. This per-
spective accords with the OED definition of maintainabil-
ity. However, they argue that there is a strong dependency
on a range of other factors including the organization,
developers, end-users, the operational domain in which
the software operates as well as other software artifacts
including the architecture, design documentation, and
test scripts. The Software Sustainability Institute define
sustainability as ‘software you use today will be avail-
able - and continue to be improved and supported - in
the future’ which implicitly suggests that sustainability is
concerned with concepts of availability, extensibility, and
the maintainability of the software[10]. This aligns with
the previous definitions, which emphasize the concepts
of maintainability, extendibility and evolvability as being
core underpinnings of sustainability. Calero, Bertoa and
Moraga[11] define sustainable software as ‘a mode of

software development in which resource use aims to meet
product software needs while ensuring the sustainability
of natural systems and the environment’. This definition
goes beyond the focus of the software artifact and high-
lights how software development practices themselves
can affect the sustainability of society, economy, and the
environment. This suggests that a broader definition may
be required to encompass how software is developed in a
sustainable manner. A number of frameworks have also
been proposed for defining sustainability without specific
reference to the field of software engineering[12–13].
Despite the numerous definitions that exist for sustain-
ability most are either too vague or limited in their scope
and any consensus within the field of software engineer-
ing has yet to be achieved. When we consider software
sustainability in terms of how it is loosely defined by the
Software Sustainability Institute with implicit references
to the concepts of availability, extensibility, and main-
tainability, it naturally leads us to consider it as a prime
candidate to be classified as a composite, non-functional
requirement. Such a classification allows us to move from
the focus from thinking about how we sustain existing
software, to understanding how we can develop sustain-
able software in the future.

Software Sustainability as a Non-Functional
Requirement
In software engineering, non-functional requirements
or software quality attributes can be defined as ‘the
degree to which a system, component or process meets a
stakeholders needs or expectations’[14]. Non-functional
requirements express desired qualities of the system to
be developed and refer to both observable qualities and
also to internal characteristics. McCall et. al.,[15] pro-
posed a taxonomy which distinguished between two
levels of quality attributes: quality factors and quality
criteria. Quality factors are external attributes and can
be only measured indirectly. Examples of quality factors
include correctness, efficiency, flexibility, integrity, inter-
operability, maintainability, portability, reliability, reus-
ability, testability, and usability. Quality criteria can be
measured either subjectively or objectively by combining
the rating for the individual quality criteria that affects a
given quality factor, and then a measure can be obtained
to assess the extent to which that quality factor can be
satisfied. Quality factors can be broadly categorized into
three classes (Fig. 1):

We propose that software sustainability should be con-
sidered in a similar manner to the concept of depend-
ability[16]; a measure of a system’s availability, integrity,
maintainability, reliability, and safety where the attributes
of dependability are defined as:

•	 Availability: readiness for correct service;
•	 Integrity: the absence of improper system alteration;
•	 Maintainability: undergo modifications and repairs;
•	 Reliability: continuity of correct service;
•	 Safety: the absence of catastrophic consequences on

the user(s) and the environment.

Venters et al: The Blind Men and the Elephant Art. e8, page 3 of 6

These attributes are then combined with the concepts of
threats and failures to create the composite, non-func-
tional requirement of dependability. How might a similar
approach work for software sustainability? We propose
that software sustainability can be defined as ‘a measure
of a systems extensibility, interoperability, maintainability,
portability, reusability, scalability, and usability’ where the
attributes are defined as:

•	 Extensibility: a measure of the software’s ability to
be extended and the level of effort required to imple-
ment the extension;

•	 Interoperability: the effort required to couple soft-
ware systems together.

•	 Maintainability: the effort required to locate and fix
an error in operational software;

•	 Portability: the effort required to port software from
one hardware platform or software environment to
another;

•	 Reusability: the extent to which software can be
reused in other applications;

•	 Scalability: the extent to which software can accom-
modate horizontal or vertical growth.

•	 Usability: the extent to which a product can be used
by specified users to achieve specified goals with

effectiveness, efficiency, and satisfaction in a specified
context of use.

If we accept that the concept of sustainability goes beyond
the software artifact itself then other quality attributes
such as efficiency may be appropriate candidates:

•	 Efficiency: the amount of computing resources and
code required to execute a function.

Defining sustainability as a non-functional requirement is
a position supported by Calero, Bertoa, and Moraga[11].
However, they do not explicitly state which attributes con-
tribute directly to the concept of sustainability, rather they
believe that it must be related in someway to the ISO/IEC
25010 quality model[17]. One of the principal challenges
in defining sustainability as a composite, non-functional
requirement is how to develop appropriate measures and
metrics for the identified quality factors to demonstrate
that they have been addressed in a quantifiable way. For
example, the reliability of a software system cannot be
directly measured. To achieve a measure of software reli-
ability requires directly measuring the number of defects
encountered. Here we can distinguish between the terms
measures and metrics where metrics are a system of

Figure 1: McCall’s Software Quality Factors.

Venters et al: The Blind Men and the ElephantArt. e8, page 4 of 6

measurement through which the merits of an entity can
be assessed and measures may contribute to a metric as a
set of quantitative values within the system. McCall’s[15]
approach to this problem was to define a set of metrics
and develop expressions for each quality factor according
to the following formula:

	 1 1 2 2q n nF c m c m c m= + + +

Equation 1: McCall’s Software Quality Formula.

where Fq is a quality factor, Cn are regression coefficients
and mn are the metrics that affect that quality factor.
Unfortunately, many of the metrics McCall defined can
only be measured subjectively. However, the metrics
may be used as a form of checklist to grade subjective
specific aspects of the software. Whether existing meas-
ures and metrics of quality attributes are appropriate or
new measures and metrics are required for evaluating
software sustainability is unclear. As a result, what meas-
ures and metrics are suitable to demonstrate software
sustainability is an open research question. However,
software quality attributes are the most neglected ele-
ments of software projects due to a perfect storm of
influences including the primary focus on functional
capabilities, the effort associated with the process of
extracting and refinement, and a lack of appropriate
methods and tools[18]. For software to be sustainable it
needs to be both useful and adaptable as stakeholders
requirements, technology and environments evolve and
change. Solutions to these issues must be planned and it
is appropriate that these issues be addressed at the archi-
tectural-level. How this might be achieved is discussed in
the following section.

Software Sustainability & Software
Architectures
As a basis for discussion we propose that software archi-
tectures and architectural evaluation methods provide a
potential mechanism for reasoning about software sus-
tainability at an architectural level. This leads us to the
question of what are software architectures and why are
they useful for developing sustainable software? The
architecture is the foundation of any system. It expresses
the fundamental organization of a system, embodied in
its components, their relationships to each other and the
environment, and the principles governing its conceptual
design and evolution[19]. It is a design artifact or blueprint
of how the system will be built. However, software archi-
tectures are often the by-product of the software devel-
opment process rather than providing a solid foundation
upon which the software is built. This is particularly true
in academic research-intensive environments where the
focus is on proof of concept or is highly experimental in
nature, and the primary driver is implementing functional
requirements rather than engineering the best solution.
As a result, software created in academic research insti-
tutions often exhibit a number of characteristic flaws
and are generally not sustainable beyond the lifetime of
a given project or usable by other researchers. Clements,

Kazman, and Klien[20] argue that successful software sys-
tem development and evolution is highly dependent on
making informed decisions at the architectural level. This
is a position supported by Koziolek[21] who argues that
the quality of software architectures determines sustain-
ability. To achieve this they suggest that scenario-based
software architecture evaluation methods can support
the analysis of sustainability. However, their own analysis
highlights the limitations of existing methods and they
suggest that methods and metrics should be integrated
into a new method.

A number of architectural evaluation methods exist
which provide a structured approach to evaluating how
well an architecture meets stakeholder’s requirements in
terms of the quality attributes that the architecture exhib-
its. Their purpose is to analyze a candidate architecture
in order to identify potential risks and to verify that the
non-functional requirements have been addressed in the
design. However, they differ significantly in their focus
and the number of attributes employed. For example,
while the Software Architecture Assessment Method[22]
and its variants focus on singular quality attributes,
other methods such as the Architecture Tradeoff Analysis
Method[23] include multiple attributes, which is sug-
gested contributes to a better understanding of the
strengths and weaknesses of the overall architecture
and its constituent parts. The key concept underpinning
these methods is a set of scenarios that are important
to stakeholders’ and allow the systems properties to be
estimated. Scenarios are primarily used in requirements
engineering to provide a personalized, fictional story with
characters, events, products and environments in which
stakeholders can engage during the design and evalu-
ation process[24]. They also provide system designers
with a method to explore ideas and identify the potential
ramifications of specific design decisions. To address the
limitations of the existing architectural evaluation meth-
ods, Venters et. al.,[25] proposed an architectural evalu-
ation framework (AEF) that utilizes scenarios in order to
understand how to achieve interoperability for military
capability. While the use of scenarios is not inherently
different from existing methods the framework was built
upon two measures derived from NATO’s Measures of
Merit (MoM):

•	 Measures of Performance: verify an individual system
against its service specification and are independent
of the scenario allowing the results to be compared
with services that provide the same or similar func-
tionality.

•	 Measures of Effectiveness: are dependent on the sce-
nario and provide a measurement of how well a sys-
tem accomplishes its assigned tasks within a specific
context and provides a level of confidence.

Key quality attributes included agility, dependability,
availability, and interoperability. Specific military quality
attributes included survivability and lethality where sur-
vivability in this context was concerned with the ability
to remain mission capable after a single engagement, and

Venters et al: The Blind Men and the Elephant Art. e8, page 5 of 6

lethality was the effectiveness of a weapon’s system in
all environments against the full spectrum of battlefield
threats. While we do not advocate that these measures are
necessarily applicable to the topic of software sustainabil-
ity it illustrates that scenarios can be used to derive a set of
meaningful measures that allow reasoning at an architec-
tural-level. This is a view supported by Sehestedt, Cheng,
and Bouwers[26] who state that software architectures
and their representations in models are instrumental in
achieving sustainability and the fulfillment of require-
ments. They propose seven metrics, which characterize
the completeness, consistency, correctness and clarity of
the documentation within views of architecture models
and architectural decisions:

•	 Decomposition quality;
•	 Best practices adherence;
•	 View consistency;
•	 Rationalization completeness;
•	 Requirement fulfillment;
•	 Change scenario robustness;
•	 Decision traceability.

However they acknowledge that the challenge in design-
ing such metrics is that architecture models are generally
not formal models and that expert knowledge is required
for computing the metrics. One of the biggest hurdles to
this approach is that the use of software architectures and
evaluation approaches are still reluctantly used in prac-
tice and are not integrated with architecture-level met-
rics when evaluating implemented systems, which limits
their capabilities[21]. Similarly, the selection of the most
appropriate methods is highly dependent on the context
in which the architecture is being evaluated and the qual-
ity attributes being addressed[24].

Anticipation of software evolution indicates that an agile
approach to development may be desirable, or indeed
necessary. The most significant implication of this for the
proposed framework is that architecture design – and its
evaluation – is not a one-off event that happens early in
the design phase, but a process that happens continu-
ously. Ensuring quality when using agile methods relies
considerably on automation of development processes
such as testing. Capturing software sustainability within
quantifiable measures and metrics is therefore potentially
very powerful, as it opens up the possibility of monitoring
certain aspects of it automatically.

Conclusions

“And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!”

- Blind Men and the Elephant, John Godfrey Saxe

In this paper we present our ideas as a basis for discussion
in order to consider how we can address the challenges

associated with developing sustainable software. We
propose that software sustainability is a composite, non-
functional requirement that is a measure of a number of
core quality attributes including extensibility, interoper-
ability, maintainability, portability, reusability and scal-
ability. In addition, we suggest that software architectures
and architectural evaluation methods are integral to the
development of sustainable software. Complex software
systems can only be built when we architect them using
existing as well as newly engineered parts that provide
the required overall capabilities. During the development
and evolution of such software, the architecture plays a
crucial role in defining the relations between these parts.
It permits the decomposition of software into manage-
able parts and to compose the software from existing or
adapted parts and enables the cost-effective engineer-
ing of software by multiple teams. Architecting sustain-
able science and engineering systems essentially means
finding the right trade-off between the attributes and
the various other requirements imposed on the system.
Architectural representations of systems can be effective
in understanding broader system concerns by abstracting
away from system details, hence the trend for reason-
ing about quality attributes at the architectural level. A
key task in this activity will be the derivation of suitable
measures and metrics to be used for evaluating the archi-
tectures, addressing both functional and non-functional
concerns. It is important to define measures and metrics
that truly quantify the characteristics of the architectures
they intend to assess. This should include formalizing
intuitive ideas of measures and metrics, which follow a rig-
orous process of validation. The parable of the Blind men
and the Elephant[1] has been used to illustrate a range of
different purposes including the need for improved com-
munication and respect for different perspectives. Each of
the six blind men has their own perspectives as to what
they have observed. We propose that the development of
a software sustainability architectural evaluation frame-
work would assist in facilitating a greater holistic view of
software sustainability.

References
1.	 Saxe, J G 1963 The blind men and the elephant.

McGraw-Hill.
2.	 Penzenstadler, B and Femmer, H 2013 Towards a

Definition of Sustainability in and for Software Engi-
neering. In: SAC’13: Proceedings of the 28th Annual
Symposium on Applied Computing.

3.	 Hey, T, Tansley, S and Tolle, K 2009 The Fourth Para-
digm: Data-Intensive Scientific Discovery. Microsoft
Research.

4.	 Mitchell, J S, Laughton, C A and Harris, S A 2011
Atomistic simulations reveal kinks, bubbles and wrin-
kles in supercoiled DNA. Nucleic Acids Research, 39:
3928–3938. DOI: http://dx.doi.org/10.1093/nar/gkq
1312

5.	 Mounce, S R, Mounce, R B and Boxall, J B 2011
Novelty detection for time series data analy-
sis in water distribution systems using Support
Vector Machines. Journal of Hydroiformatics, 13(4):

http://dx.doi.org/10.1093/nar/gkq1312
http://dx.doi.org/10.1093/nar/gkq1312

Venters et al: The Blind Men and the ElephantArt. e8, page 6 of 6

672–686. DOI: http://dx.doi.org/10.2166/hydro.20
10.144

6.	 Tsai, W T 2005 Service-oriented system engineering:
A new paradigm. In: SOSE’05: Proceedings of the 2005
IEEE International Workshop on Service-Oriented Sys-
tem Engineering. IEEE Computer Society, pp. 3–6.

7.	 Penzentadler, B, Bauer, V, Calero, C and Franch, X
2012 Sustainability in Software Engineering: A System-
atic Literature Review.

8.	 Oxford English Dictionary 2012 Oxford Dictionaries.
9.	 Seacord, R C, Elm, J, Goethert, W, Lewis, G A, Pla-

kosh, D, Robert, J, Wrage, L and Lindvall, M 2003
Measuring software sustainability. Pittsburgh, PA, USA:
Software Engineering Institute, Carnegie Mellon Uni-
versity.

10.	Software Sustainability Institue Available at:
http://www.software.ac.uk/about

11.	Calero, C, Bertoa, M F and Moraga, M A 2013 Sus-
tainability and quality: Icing on the cake. In: RE4SuSy:
Second International Workshop on Requirements
Engineering for Sustainable Systems.

12.	Burger, P and Christen, M 2011 Towards a capability
approach of sustainability. Journal of Cleaner Produc-
tion, 19(8): 787–795. DOI: http://dx.doi.org/10.1016/j.
jclepro.2010.06.019

13.	Seghezzo, L 2009 The five dimensions of sustainabil-
ity. Environmental Politics, 18(4): 539–556. DOI: http://
dx.doi.org/10.1080/09644010903063669

14.	IEEE 1990 IEEE Standard Glossary of Software Engi-
neering Terminology, IEEE Std. 610.12–1990.

15.	McCall, J A, Richards, P K and Walters, G F 1977
Factors in software quality: concepts and definitions
of software quality. RDAC-TR-77–369.

16.	Avizienis, A, Laprie, J-C, Randell, B and Landwehr, C
2004 Basic concepts and taxonomy of dependable and
secure computing. IEEE Transactions on Dependable
and Secure Computing, 1: 11–33. DOI: http://dx.doi.
org/10.1109/TDSC.2004.2

17.	ISO/IEC 25010 2010 Systems and software engineer-
ing - Software product Quality Requirements and Eval-

uation (SQuaRE) - Software product quality and system
quality in use models.

18.	Brosseau, J 2010 Software quality attributes: Following
all the steps. Clarrus Consulting Group Inc.

19.	ISO/IEC 42010 2007 Systems and Software Engineer-
ing: Recommended Practice for Architectural Descrip-
tion of Software-Intensive Systems, International
Organization for Standardization.

20.	Clements, P, Kazman, R and Klien, M 2002 Evaluat-
ing Software Architectures: Methods and Case Studies.
Addison-Wesley Professional.

21.	Koziolek, H 2011 Sustainability evaluation of software
architectures: a systematic review. In: QoSA-ISARCS’11:
Proceedings of the joint ACM SIGSOFT conference on
quality of software architecture and architecting criti-
cal system, New York, NY, USA, pp. 3–12.

22.	Kazman, R, Abowd, G, Bass, L and Clements, P 1996
Scenario-based analysis of software architecture. IEEE
Software, vol. Nov, pp. 47–55.

23.	Kazman, R, Klein, M, Barbacci, M, Lipson, H, Long-
staff, T and Carrieare, S J 1998 The architecture
tradeoff analysis method. In: ICECCS’98: Proceedings
of the Fourth International Conference on Engineer-
ing of Complex Computer Systems Monterey, CA,
USA: IEEE Computer Society, pp. 68–78.

24.	Dobrica, L and Niemelae, E 2002 A survey on soft-
ware architecture analysis methods. IEEE Transactions
on Software Engineering, 28 (7): 638–653. DOI: http://
dx.doi.org/10.1109/TSE.2002.1019479

25.	Venters, C C, Russell, D J, Liu, L, Luo, Z, Webster, D
E and Xu, J 2009 A scenario-based architecture evalu-
ation framework for Network Enabled Capability. In:
COMPSAC’09: Proceedings of the 33rd Annual IEEE
International, pp: 9–12.

26.	Sehestedt, S, Cheng, C-H and Bouwers, E 2014
Towards Quantitative Metrics for Architecture Models.
In: First International Workshop on Software Archi-
tecture Metrics, WICSA 2014: 11th Working IEEE/IFIP
Conference on Software Architecture, Sydney, Aus-
tralia on 7–11 April 2014.

How to cite this article: Venters, C C, Lau, L, Griffiths, M K, Holmes, V, Ward, R R, Jay, C, Dibsdale, C E and Xu, J 2014 The Blind Men
and the Elephant: Towards an Empirical Evaluation Framework for Software Sustainability. Journal of Open Research Software, 2(1):
e8, pp. 1-6, DOI: http://dx.doi.org/10.5334/jors.ao

Published: 9 July 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

 	 OPEN ACCESS Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

http://dx.doi.org/10.2166/hydro.2010.144
http://dx.doi.org/10.2166/hydro.2010.144
http://www.software.ac.uk/about
http://dx.doi.org/10.1016/j.jclepro.2010.06.019
http://dx.doi.org/10.1016/j.jclepro.2010.06.019
http://dx.doi.org/10.1080/09644010903063669
http://dx.doi.org/10.1080/09644010903063669
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TSE.2002.1019479
http://dx.doi.org/10.1109/TSE.2002.1019479
http://dx.doi.org/10.5334/jors.ao
http://creativecommons.org/licenses/by/3.0/

