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Abstract. We present our computational method for binary alloy solidification which takes
advantage of high performance computing where up to 1024 cores are employed. Much of the
simulation at a sufficiently fine resolution is possible on a modern 12 core PC and the 1024
core simulation is only necessary for very mature dendrite and convergence testing where high
resolution puts extreme demands on memory. In outline, the method uses implicit time stepping
in conjunction with an iterative solver, adaptive meshing and a scheme for dividing the work
load across processors. We include three dimensional results for a Lewis number of 100 and a
snapshot for a mature dendrite for a Lewis number of 40 .

1. Introduction

This paper summarises our mathematical and numerical approach to solving the set of multi-
scale, coupled, non-linear PDEs presented by alloy solidification using a phase field. In order to
capitalise on routinely available parallel computing both on desktop PCs and high performance
computing we adopt strategies that differ from that in which serial code is the end product.
The major challenge is to take advantage of both adaptive grid and a multigrid solver in
a parallel environment. A key strategy here is to use ‘blocks’. Blocks are subsets of the
computational domain containing a uniform grid and the adaptive grid strategy operates on
the block level. Efficient communication between blocks is enhanced the larger the block, but
efficient adaptive meshing is more effective with smaller blocks. We describe our approach
to parallel implementation which rests on an ordering scheme akin to Morton ordering. In
this approach communication at any level of grid refinement is minimised, but at a cost of
communication across levels. In order to reduce communication between blocks we use a single
‘ghost’ layer of nodes in tandem with compact 3 x 3 x 3 finite difference stencils for computing
the PDE operators. Once again there is a balance to be struck since a double ghost layer
is more expensive on communication but allows higher order accuracy in stencil operators.
The multigrid solver we employ is the Full Approximation Scheme (FAS) which utilises Jacobi
smoothing on each layer which, in turn, employs a pointwise Newton solver to approximate
the non-linear algebraic terms. The Newton solver, being an extension of the Newton-Raphson
method to systems of equations, becomes a generalisation of the Jacobi iterative method to
non-linear systems. To find the pointwise Newton correction simply requires knowledge of the
contribution of all the variables at any particular computational node. This is relatively easy
to implement once the PDEs have been discretised. We employ (and adapt) the open source
code PARAMESH to control the parallel communication between blocks so that once the FAS
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Figure 1. A close up of one of the arms of mature dendrite. An under cooling of A = 0.525 at
Le = 40 was used for this simulation. This took about three days on a 12 core desktop PC and
represents a real growth time of about 0.6us and size 0.25um from an inital seed of about 6nm.

has been implemented the code is readily adapted to a variety of applications - not necessarily
phase field. More details of this approach plus validation may be found in [1].

The particular phase field model we employ is an extension of [2], and is based on the three
dimensional thermal- phase field model of [3] and two dimensional thermal-solutal phase field
model of [4]. Fig. 1 shows a close up of one arm of a mature dendrite from a simulation in which
the undercooling, A = 0.525 and Lewis of 40. Such a dendrite does not differ in appearance
to a simulation without coupling to a evolving temperature field, but a fully coupled model
(with temperature field) becomes increasingly demanding on computing resources because of
the stiffness of the resulting equations and extent of the temperature field. It is this fact that
has generated the computing scheme detailed here.

Finally, we would like to draw the attention of researchers using an anisotropic phase field
model in three dimensions to the equation given in Eq 19 which is significantly more efficient
to compute in this form than its expanded equivalent of partial differential operators, resulting
from, say, a Maple evaluation. It also aids the non-linear solver implementation detailed in Sec.
3.4.

2. Governing equations
The non-dimensional equations for the phase field, ¢, the solute concentration, ¢ and the
dimensionless temperature, @, are given via a specification of the free energy

F= [ Am?Vo-Vo+ f(6.0)V (1)
174

and the relations
_OF
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6 = DypV30+¢. (4)

The solute diffusion parameter is given by

()

The parameter D, is a diffusion constant, thus K = 0 in the solid (¢ = 1) and K = D, in the
liquid (¢ = —1). Dy is the temperature diffusion coefficient (assumed constant). The normal to
the interface is given by

V¢

n= W, (6)

which is well defined around ¢ = 0, and the anisotropy function for cubic symmetry (growth is
preferred along the normals to the faces) is given for three dimensions by [3],

A(m) = A [14¢(nd+np+n?)] (7)

where n = [ng,ny,n;|, Ag = 1 — 3¢, € = 4¢/(1 — 3¢) and € ~ 0.02 governs the amount of
anisotropy. The dimensionless relaxation time function is defined by

(e, ¢) = Lie + Mew[l + (1 — kg)U], (8)

where the Lewis number Le = Dy/D, and

1 2¢/Coo
v 1_k’E<1+k‘E_(1_kE)¢_1>. ©)

Here kg is the equilibrium partition coefficient, ¢y, is the far boundary condition for ¢. The
anti-trapping current j, appearing in the solute equation, Eq. 3, is prescribed by

) 1

The profile of ¢ exhibits a spike at the interface, which can present computational difficulties.
Following [4], this is largely overcome by rewriting the solute equation using the variable U:

(1+kE B 1—kE¢> ou _ v-{DCWVU ﬂ-} +%[1+(1 k)22 (11)

(14 (1 — kg)|Ugn, (10)

2 2 ot 2 ot
The physical temperature field, T, can be recovered by the relationship

o T—Ty —meso
- L/C, ’

(12)

where L and C), are the latent heat of the phase transition and heat capacity respectively. The
slope of the liquidus line is given by m = M L/[Cy,(1 — k)] and Ty is the melting temperature
of the alloy.

Finally the bulk free energy density is given by

2 2 3 5
F0.6)=2 (i—1>+)\(0+COOU) <¢—2§+¢5>. (13)
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We solve the system of equations 2,4 and 11 plus initial (typically small) solid seed and far
boundary conditions

gb|fa7’ = —1
U|fa7’ = 0 (= C|far = Cs0)
9|fa7’ = A (14)

where A is the given under-cooling. The equation for temperature is a standard diffusion
equation with a heating term, ¢, proportional to the solidification rate. The phase equations,
though compact in variational form are complicated in PDE form. However, it is possible to
write the resulting PDEs in a reasonably compact form convenient for computation.

9%¢ of

7(c,$)A(n)*¢ = Do 99 96 (15)

0
where 7(c, ¢) is given by Eq. 8, is given by

)
ﬁ—¢3—¢+A(9+ U)(1 —2¢% + ¢* 16
96 cooU)( ¢~ +¢%), (16)

and g;; defined by

gii = (24X; —3)A? + (—48X7E + 12X;¢ — 40X; + 4) AgA + 16X, (X, + 1)2 A2

gii = ¢g¢ﬂ [24A2 + (=24 X, — 24X ;€ — 40)AgA + (16(X;€ + 1)) (Xi€ + 1)A3} . i

(17)

with X; = qﬁ?l- /IV#|2. However, for the purposes of discretisation we adopt the following form
by defining

¢ 1,
Mi' = - - — — i 1
T Qxtdd 3V $0iy (18)
so that the phase field equations Eq. 15 becomes
.1 0
(¢, ¢)A(n)*¢ = §5ijgijv2¢ + Mijgi5 — &J; (19)

The fully coupled system is then given by Eq 19, Eq. 11 and Eq. 4.

2.1. Parameter values
For the purposes of this paper we choose a selection of parameters to use as default values for
the simulations below in Table 1.

3. Discretisation

The approach taken to discretisation is based upon a cell centred finite difference scheme, in
that the nodes of the domain are located at the centre of cubic cells. and thus, we use the term
‘node’ and ‘cell centre’ inter changeably. One consequence of this is that there are no nodes on
the domain boundary, thus making the use of Dirichlet boundary conditions non-trivial. The
scheme makes use of the PARAMESH library to support mesh adaptivity in parallel [6, 7]. The
meshes obtained by this approach take the form of an oct tree of regular blocks, within which
the mesh is uniform, and it is the spatial discretisation on any one of these blocks that we discuss
here.
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Table 1. Table of parameter values used for the simulations in this paper.

Physical property Symbol | value
Anisotropy € 0.02
Boundary concentration Mecs | 0.05
Equilibrium partition coefficient KE 0.3
Dimensionless interface width A 2
Ratio of solute diffusivity to characteristic diffusivity D, 1.2534
Lewis number - Dy/D. Le 40 and 100
Dimensionless Undercooling at the far boundary A 0.25 to 0.80
Initial nuclear radius Ry 5.0
Computational property symbol | value
Finest grid size Az 0.195 to 0.78
Computation domain size L3 800x800x800

3.1. Temporal discretisation
For temporal discretisation we employ backward differential formula using two previous values
(BDF2).

3.2. Spatial discretisation

Compact finite difference stencils (3x3x3), are used to discretise the first and second derivatives.
Denoting these 27 points by Q and defining a generic 27 point Laplacian stencil, Wy, around
a point p = [4, j, k| by

1 111
Viulq = (Ar)? Z Z Z Wabclp ya,b, (20)

a=—1b=—1c=-1

where Az is the physical distance between nearest neighbours, we can recover the 7 point
Laplacian stencil, built from only the centre node, p and the 6 nearest neighbours (a2 +b?+4c? =
1) by setting the weights

6 a2+b2+c2=0
Wape=14 1  a®>+b*+c2=1 . (21)
0 otherwise

However, this stencil is more prone to grid anisotropy than the following 27 point Laplacian
stencil (see [5]), with weights

—128/30 a2+ b*+c* =0
14/30 a2+t +c2=1
3/30 a?+ b +c* =2
1/30 a?+ b +c*=3

The discretisation of Eq 19 is achieved using the Laplacian stencil above and stencils for g;;
and M;;. The latter have discretisations that do not have any contribution from the central
node. This is, firstly, because g;; is a rational polynomial function of first derivatives of ¢ and,
secondly, we deliberately adopt the 7 point stencil for the Laplacian in the definition of M;; for
this purpose. For example, M1; and Mo at grid point, p = [i, j, k] are discretised

Wape = (22)

2 1
Muylp = m(¢i+1,j,k + Pi—1,jk) + @(¢i,j+1,k + i1k + ijrt1 + Gijr—1) (23)
9% 1

Mislp = 21002 p = 1AL (Pir1 ek + Gic1j-1k — Pit1j—1,k — Pim1,j+1,k) (24)
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3.8. Adaptive mesh and block tree structure
The domain is first divided into a number of mesh blocks each of which contains N x N x N
hexahedral cells, where we typically choose N = 8. We employ a domain of 8003, which is large
enough for Lewis numbers of the order of 100. We divide this domain into 42 blocks, so that
when N=8, each cell is of size 25% and refer to this as level 1. The adaptive mesh strategy
then imposes a hierarchical sub-division of some or all of these blocks, and their descendants,
based upon an oct tree structure. This subdivision aims to concentrate cells where gradients
of the oct tree variables are highest and to ensure neighbour blocks differ by at most one level.
The finest grid we work with is at level 7, with a corresponding Az = 25/27 = 0.1953125. We
find that the minimum finest level necessary to obtain qualitatively reasonable results is level 5,
corresponding to Az = 0.78125.

In order to discuss further the tree structure of the blocks we denote any block by its label,
i and its contents/properties, B(i):

B(i) = [I,5,p, ¢. X (25)

where [ € [1,n] is the level, s € [1,8] is the sibling number (i.e. an index for which child of p
the block is), p is the parent index, ¢;,i € [1,8] are the 8 child indices, and x = [z, y, 2] is the
Cartesian position coordinates of the block origin. Any one of these properties can be accessed
by the block number, i. Some examples: p(i) is the block number of the parent of block i;
x(p(i)) is the position of the parent’s origin; cy(;)(p(i)) = 7 is an identity.

A complete specification of all the blocks in the oct tree is then specified by the list:

B = {B(i),i € [1, By]} (26)

where By is the total block number. Moreover, a childless block, i, can be indicated by
specifying, c(i) = 0 and so the oct tree also can be specified by a listing of just the leaf blocks

B = {B(i),i € [1,By] : c(i) = O}. (27)

Each block has uniform meshing and the adaptive strategy is further restricted by only
allowing blocks at level n adjacent to blocks of n — 1,n and n + 1. Thus, even though a block
may be flagged for coarsening, this (latter) restriction often prevents this happening. Blocks are
flagged for refinement if, for any point, p, in the block, the following criterion is satisfied:

€= max{e¢\¢p - ‘bp—q’a eU‘Up - Up—q’a eT‘Tp - Tp—q|} > 1, (28)

where we use, for tolerance, n ~ 1 and

|pp — dp—q| = \/(¢p — Gp—11,0,0) T (@p — Pp—10,1,0)? + (ép — Pp—10,0,1])% (29)

etc. Typically the weights, es, ey and e are chosen to sum to unity. If e < 0.1, the block is
flagged for derefinement.

For communication between blocks the PARAMESH implementation allocates a block of
dimension (N +2) x (N 42) x (N +2). The first and last cells in each dimension are ghost cells
- an update function may be called at any time in order to populate these guard cells with the
corresponding values from the interior of each of the neighouring blocks. The application of a
discrete stencil on any block requires access to neighborouring blocks via the guard cell nodes.
When the neighbouring block is coarser the guard cell of the coarse block is found by a weighted
average of the 8 surrounding coarse nodes. Using a tri-linear function of z,y and z, gives the
weightings, in order of nearest neighbours first

279 9 9 3 3 3 1

W= 1646464 64'64° 6464’ 64 (30)
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The process is known as prolongation. The reverse process, of finding a guard cell value for
a coarse block when one or more neighbours is refined is known as restriction and is the
simple average of the eight nearest, one level finer, cell centres. Both operations, restriction
and prolongation using Eq. 30, are also required for multigrid as detailed in the next section.

3.4. Nonlinear smoother
The non-linear system of algebraic equations can be written using the generic vector notation
Vngl = [¢g+1793+17 Ungl} by
1
Ap(vg) =0 (31)

for each node, p, in the grid and Q indicates coupling between points p and neighbouring nodes.
Using an iteration method, with Vg“ approximated by vﬁ“’m, we define the defect

dpthm = —Ap (v ™). (32)

The pointwise Newton update for this iteration is given by

V3+1’m+1 = Vg‘H’m — wc~13+1’m, (33)
where dj"" is found by solving the 3 x 3 system

Jgﬂﬂmagﬂym = dg“m (34)
with the 3 x 3 Jacobian matrix defined by

adnJrl,m
n+lm — P
JP = 8Vg+1,m’ (35)

In practice we typically select, w =~ 0.9 and find that off diagonal terms of Jat""™ are not
essential to obtain a convergent iteration.

3.5. Multigrid and parallel implementation

We supplement the Jacobi smoother with the Full Approximation Scheme (FAS) as developed
in [8]. Our parallel implementation requires communication between blocks both on the same
level and between levels. We identify communication across any one level as being as being more
costly and so we implement a depth first traversal of the blocks and then, using this numbering,
divide the work load at each level in turn between all processors. For a uniform mesh this
strategy results in a near optimum allocation to cores. For adaptive meshes the communication
on any level is also optimum, but communication between levels is compromised. See [1] for
details.

4. Results

We demonstrate the code with sets of parameters in both 2D and 3D and with two Lewis
numbers. The higher Lewis number, more undercooling and higher dimension combine to give
a severe challenge to a desktop computer. Ultimately, for higher Lewis numbers, HPC resources
are necessary with this approach. This is because the problem becomes stiff and the time
step size required for stability becomes smaller and the domain required by the temperature
field also becomes larger with larger Lewis number. Fig. 2 shows the evolution of tip radius
for 2D Le = 100 and, for both Le = 40 and Le = 100, in 3D. Here, the capillary length,
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Figure 2. The tip radius for an undercooled dendrite, A = 0.325 and Le = 100 and Le = 40

do =TTy Cp/ L?, where T is the Gibbs Thompson coefficient; Th; the melting temperature; Cp
heat capacity; and L the latent heat of fusion. The characteristic time, 7o = D.W¢/ D where
D = 107?m?/s, D, = 1.25 and interface width Wy = Adp/a; = 2.26dy. In our simulation we
set both Wy and 79 to unity. A larger domain is needed for the the 2D simulations due to the
extent of the temperature profile in 2D for a given Lewis number. So despite the large increase
in degrees of freedom in 3D there is some compensation due to this feature. These simulations
were run on 12 core desktop PCs and typically take 3 or 4 weeks to achieve steady state. Note
that the Le = 40 achieves steady tip radius after about ¢/79 = 100 but at Le = 100 steady state
is achieved after ¢/7p = 180. This is generally a feature of the higher lewis number and is an
additional significant reason for the difficulty of computing higher Lewis numbers.

5. Conclusion

We have presented a numerical method that permits computation in three dimensions of fully
coupled alloy solidification of dendritic growth at the meso scale. The model is restricted to
dilute alloys in order to take advantage of a model formulation that compensates for a larger
than realistic liquid-solid interface — anti solute trapping. Despite this we opt to use a near
realistic value for the interface in order to get good resolution of the tip radius. This is reflected
in our parameter, A\ = 2, which corresponds to approximately twice a realistic interface width.
The computational methods we employ are summarised as follows:

e finite difference compact stencils

e adaptive mesh

e implicit time stepping

e non-linear Newton-multigrid solver

e parallel code and division of labour across cores

The main difficulty of the above method, partly overcome, is that combining adaptive meshing
and multigrid makes it very difficult to allocate an even loading to the parallel cores.
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A realistic Lewis number for typical alloy solidification is Le ~ 10,000, which corresponds
to the ratio in length scales between heat and solute diffusion. We here simulate the model at
comparatively modest Lewis numbers, Le = 40 and 100, to demonstrate the method. These
being accessible on parallel desktop machines within a few weeks of computation time. Early
results suggest that not only run-times are longer for higher Lewis numbers but physical (model)
time is longer for steady state behaviour to be established.
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