
This is a repository copy of Foliated groupoids and infinitesimal ideal systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/89089/

Version: Accepted Version

Article:

Jotz Lean, M. and Ortiz, C. (2014) Foliated groupoids and infinitesimal ideal systems. 
Indagationes Mathematicae, 25 (5). pp. 1019-1053. ISSN 0019-3577 

https://doi.org/10.1016/j.indag.2014.07.009

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


FOLIATED GROUPOIDS AND INFINITESIMAL IDEAL SYSTEMS

M. JOTZ AND C. ORTIZ

Abstract. The main goal of this work is to introduce a natural notion of ideal in a
Lie algebroid, the “infinitesimal ideal systems”. Ideals in Lie algebras and the Bott
connection associated to involutive subbundles of tangent bundles are special cases. The
definition of these objects is motivated by the infinitesimal description of multiplicative
distributions on Lie groupoids, which are just ideals in the Lie group case. Several
examples of infinitesimal ideal systems are presented, and the quotient of a Lie algebroid
by an infinitesimal ideal system is shown to be a Lie algebroid.
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1. Introduction

Lie algebras and tangent bundles are the corner cases of Lie algebroids. In both cases,
equivalence relations compatible with the structure are well understood.
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2 M. JOTZ AND C. ORTIZ

In the first case, the quotient of a Lie algebra by an ideal is again a Lie algebra. If TM
is the tangent bundle of a manifold M and FM is an involutive subbundle of TM , then
parallel transport relative to the Bott connection associated to FM defines an equivalence
relation on TM/FM . If the involutive subbundle is simple, i.e. if the space of leaves of the
corresponding foliation on the underlying manifold is a smooth manifold, then the quotient
by this equivalence relation is the tangent bundle of the leaf space.

In these two reduction processes, one quotients a Lie algebroid by a compatible equivalence
relation to construct a new Lie algebroid of the same type. The usual definition of an ideal of
a Lie algebroid only makes sense in Lie algebra bundles, but is useless in the case of tangent
bundles of manifolds. To be more explicit, let (q : A → M,ρ, [· , ·]) be a Lie algebroid. An
ideal in A is simply a subbundle I ⊆ A over M, such that the space of sections Γ(I) is
an ideal in Γ(A) endowed with the Lie bracket [·, ·]. The first immediate consequence of
this definition is the inclusion I ⊆ ker(ρ), which shows that I is totally intransitive. The
main goal of this work is to present a more permissive notion of ideal in a Lie algebroid,
encompassing both ideals in Lie algebras and the Bott connection associated to involutive
subbundles.

We first encountered these infinitesimal ideal systems when we found them to correspond
to multiplicative distributions on Lie groupoids. We briefly describe this problem. Let us
start with a Lie group G with Lie algebra g = TeG and multiplication map m : G×G → G.
Then the tangent space TG of G is also a Lie group with unit 0e ∈ g and multiplication map
Tm : TG × TG → TG. A multiplicative distribution S ⊆ TG is a distribution on G – that
is, S(g) := S∩TgG is a vector subspace of TgG for all g ∈ G – that is in addition a subgroup
of TG. Since at each g ∈ G, S(g) is a vector subspace of TgG, the zero section of TG is
contained in S. Thus, using T(g,h)m(0g, vh) = ThLgvh for any g, h ∈ G and vh ∈ ThG, where
Lg : G → G is the left translation by g, we find that the distribution S is left invariant. It
follows that S is a smooth left invariant subbundle of TG defined by S(g) = sL(g), where s

the vector subspace S(e) = S ∩ g of g. In the same manner, S is right invariant and we find
thus that s is invariant under the adjoint action of G on g. Hence, s is an ideal in g and the
subbundle S ⊆ TG is completely integrable in the sense of Frobenius. Its leaf N through
the unit element e of G is a normal subgroup of G and the leaf space G/S of S is the group
G/N .

In summary, we make two observations. On the one hand, the leaf space of a multiplicative
(hence integrable of constant rank) distribution on a Lie group is automatically a group. On
the other hand, multiplicative distributions on a Lie group are the same as ideals in its Lie
algebra.

Let G be a Lie groupoid over M . Applying the tangent functor to each of the structural
maps defining G ⇉ M , we get a Lie groupoid structure on the tangent bundle TG over
TM – the tangent groupoid. A multiplicative distribution on G ⇉ M is an involutive
subbundle FG ⊆ TG that is also a Lie subgroupoid of the tangent groupoid over a subbundle
FM ⊆ TM . For simplicity, the pair (G ⇉ M,FG) is then said to be a foliated groupoid.
This paper and [16] investigate the counterparts of the two observations made above in the
more general situation of Lie groupoids. The paper [16] studies the leaf space of foliations
associated to multiplicative involutive distributions1 on Lie groupoids. Here, we introduce
infinitesimal ideal systems as the infinitesimal counterpart of foliated groupoids, and of
foliated algebroids.

Just as a Lie algebroid is the infinitesimal version of a Lie groupoid, a foliated groupoid
corresponds at the infinitesimal level to a foliated algebroid. Let us be more concrete.
Take a Lie algebroid (q : A → M,ρ, [· , ·]); the tangent bundle TA inherits a Lie algebroid
structure over TM [24]. If G is a Lie groupoid with Lie algebroid A, then there exists

1Note that in the following, distributions will always be subbundles of constant rank of the tangent
bundle.
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a one-to-one correspondence between multiplicative involutive subbundles FG ⊆ TG and
morphic involutive distributions on A, i.e. involutive subbundles FA ⊆ TA which are also
Lie subalgebroids of TA [28]. It would nevertheless be rather cumbersome to infinitesimally
describe a foliated group as a morphic distribution on its Lie algebra.

The ideals of the following definition infinitesimally describe foliated groupoids as the
ideals in Lie algebras describe foliated groups.

Definition 1.1. Let (q : A → M,ρ, [· , ·]) be a Lie algebroid, FM ⊆ TM an involutive subbun-
dle, K ⊆ A a subalgebroid over M such that ρ(K) ⊆ FM and ∇ a flat partial FM -connection
on A/K with the following properties:

(1) If a ∈ Γ(A) is ∇-parallel, then [a, b] ∈ Γ(K) for all b ∈ Γ(K).
(2) If a, b ∈ Γ(A) are ∇-parallel, then [a, b] is also ∇-parallel.
(3) If a ∈ Γ(A) is ∇-parallel, then ρ(a) is ∇FM -parallel, where

∇FM : Γ(FM )× Γ(TM/FM ) → Γ(TM/FM )

is the Bott connection associated to FM .

The triple (FM ,K,∇) is an infinitesimal ideal system2 in A.

Note that this is an infinitesimal version of the ideal systems3 in [23], which are described
there to be the kernels of fibrations of Lie algebroids. Note also that infinitesimal ideal
systems already appear (not under this name) in geometric quantization as the infinitesimal
version of polarizations on groupoids in [13], where Eli Hawkins already finds that they
correspond to foliated algebroids. Finally, let us mention that the special case where FM =
TM has been studied independently in [7] in relation with a modern approach to Cartan’s
work on pseudogroups.

We claim that the infinitesimal ideal systems are the objects that should be considered
as the ideal objects in Lie algebroids. In the second part of the paper, we describe several
examples of infinitesimal ideal systems and we show that, under regularity conditions, one can
take the quotient of a Lie algebroid by an ideal system to define a new (reduced) Lie algebroid.
We prove that if (A,FA) is a foliated algebroid with corresponding ideal system (FM ,K,∇)
in A, then, modulo regularity conditions, the leaf space A/FA inherits a natural Lie algebroid
structure over the leaf space M/FM . The projections A → A/FA and M → M/FM form
a Lie algebroid morphism. The Lie algebroid structure on the leaf space is realized as the
quotient of A by the ideal system (FM ,K,∇). In particular, infinitesimal ideal systems arise
as the kernels of fibrations of Lie algebroids. We also show that if a foliated groupoid (G,FG)
– with associated foliated algebroid (A,FA) – is such that the leaf space G/FG ⇉ M/FM is
a Lie groupoid, then its Lie algebroid is isomorphic to the reduced Lie algebroid structure
on A/FA → M/FM .

This paper is organized as follows. In Section 2, we recall the definitions of the tangent
Lie groupoid associated to a Lie groupoid, and of the tangent Lie algebroid defined by a Lie
algebroid. We then recall some facts about flat partial connections, as well as the definition
of the Bott connection associated to an involutive subbundle of the tangent of a manifold.

In Section 3, we give the definition of foliated groupoids. The first main result of this paper
(Theorem 3.6) states that a foliated groupoid (G ⇉ M,FG) defines an infinitesimal ideal
system (FM ,K,∇) in the Lie algebroid A of G ⇉ M . Then, we examine how the involutivity
of the multiplicative distribution is encoded by the properties of the ideal system.

2Infinitesimal ideal systems were called “IM-foliations” in an earlier version of this work, in analogy to
the “IM-2-forms” of [5], but we find this new terminology more adequate.

3For simplicity, we will often just write “ideal systems” in this paper, but we will always refer to infini-

tesimal ideal systems.
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Infinitesimal ideal systems were found in [13] to encode morphic involutive distributions
on Lie algebroids. In Section 4 we summarize the approach of [8] to this result and we show
how infinitesimal ideal systems are in one-to-one correspondence with foliated algebroids.
The approach in [8] is an application of a result on the correspondence of morphisms of
representations up to homotopy and morphisms of VB-algebroids (see [12] for the correspon-
dence between representations up to homotopy and VB-algebroids). To avoid unnecessary
technicalities in this paper, we do not introduce these objects, but describe explicitely our
special situation. Yet, the reader who knows these concepts should note that one of the
results in [8] is that an infinitesimal ideal system in A is equivalent to a pair of subrepre-
sentations up to homotopy: one of the adjoint and one of the double representations up to
homotopy defined by the Lie algebroid A. This shows that our proposed notion of ideal
is compatible with the definition of an ideal in a Lie algebra by a subrepresentation of the
adjoint representation.

We prove that the infinitesimal ideal system defined by a foliated groupoid and the infini-
tesimal ideal system defined by the corresponding foliated algebroid coincide (Theorem 4.9),
and we conclude with the one-to-one correspondence of source-simply connected foliated
groupoids with infinitesimal ideal systems on integrable Lie algebroids.

The examples of infinitesimal ideal systems in Section 5 explain why they can be seen
as the ideals in Lie algebroids. We show that kernels of Dirac structures, usual ideals in
Lie algebroids, Bott connections associated to involutive subbundle and kernels of transitive
Lie algebroid morphisms are examples of infinitesimal ideal systems. We compare also our
notion of foliated algebroids with the ones of [34], as well as the infinitesimal descriptions in
both approaches.

Section 6 finally shows that the quotient of a Lie algebroid by an ideal system inher-
its a natural Lie algebroid structure such that the projection is a Lie algebroid morphism
(Theorem 6.10).

The first appendix recalls how the Lie algebroid A(TG) → TM of the tangent groupoid
TG ⇉ TM is isomorphic to the tangent Lie algebroid T (A(G)) → TM . The second appendix
proves some useful results on invariance of subbundles of a vector bundle under the flow of
a vector field on it.

Notation. Let M be a smooth manifold. We will denote by X(M) and Ω1(M) the sets
of (local) smooth sections of the tangent and the cotangent bundle, respectively. For an
arbitrary vector bundle qE : E → M , the set of (local) sections of E will be written Γ(E).
We will write Dom(σ) for the open subset of the smooth manifold M where the local section
σ ∈ Γ(E) is defined. The linear function on E associated to a section ξ ∈ Γ(E∗) will be
written ℓξ. For any ε ∈ ΓM (E), the vector field ε↑ ∈ X(E) is defined by

(1.1) ε↑(em) =
d

dt


t=0

em + tε(m)

for all em ∈ E. In other words, ε↑(ℓξ) = q∗E〈ξ, ε〉 for all ξ ∈ Γ(E∗), and X(q∗Ef) = 0 for all
f ∈ C∞(M). The Lie bracket of two such vector fields vanishes.

The flow of a vector field X will be written φX
· , unless specified otherwise.

Let f : M → N be a smooth map between two smooth manifolds M and N . Then two
vector fields X ∈ X(M) and Y ∈ X(N) are said to be f-related if Tf ◦ X = Y ◦ f on
Dom(X) ∩ f−1(Dom(Y )). We write then X ∼f Y .

The pullback or restriction of a vector bundle E → M to an embedded submanifold N of
M will be written E|N . In the special case of the tangent and cotangent spaces of M , we
will write TNM and T ∗

NM . If f : M → N is a smooth surjective submersion, we write T fM
for the kernel of Tf : TM → TN .
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The projection map of TM → M is finally denoted by pM .

A groupoid G over the units M will be written G ⇉ M . The source and target maps
are denoted by s, t : G −→ M respectively, the unit section ǫ : M −→ G, the inversion
map i : G −→ G and the multiplication m : G(2) −→ G, where G(2) = {(g, h) ∈ G × G |
t(h) = s(g)} is the set of composable groupoid pairs. A groupoid G over M is called a Lie

groupoid if both G and M are smooth Hausdorff manifolds, the source and target maps
s, t : G −→ M are surjective submersions, and all the other structural maps are smooth.
Throughout this work we only consider Lie groupoids.

The Lie algebroid of G ⇉ M is defined in this paper to be AG = T s

MG, with anchor
ρAG := T t|AG and bracket [· , ·]AG defined by using right invariant vector fields.

We will write A(·) for the functor that sends Lie groupoids to Lie algebroids and Lie
groupoid morphisms to Lie algebroid morphisms. For simplicity, (AG, ρAG, [· , ·]AG) will be
written (A, ρ, [· , ·]) in the following.

Acknowledgements. We would like to thank Henrique Bursztyn, Thiago Drummond, Math-
ieu Stiénon and Ping Xu for interesting discussions. We are especially thankful to Maria
Amelia Salazar who showed us a counterexample to a former version of Theorem 3.8. Thanks
to her comments, we improved considerably Section 3.3.

The first author wishes to thank Penn State University, IMPA and Universidade Federal
do Paraná, Curitiba, where parts of this work have been done. The second author thanks
IMPA, EPFL and ESI for the hospitality during several stages of this project.

2. Background

2.1. Tangent and cotangent groupoids. Let G be a Lie groupoid over M with Lie alge-
broid A. The tangent bundle TG has a natural Lie groupoid structure over TM , which is
obtained by applying the tangent functor to each of the structure maps defining G. That is,
the set of composable pairs (TG)(2) of this groupoid is equal to T (G(2)) and for (g, h) ∈ G(2)

and a pair (vg, wh) ∈ (TG)(2), the multiplication is

vg ⋆ wh := Tm(vg, wh).

We refer to TG with the groupoid structure over TM as the tangent groupoid of G [23].
As in [22], we define star vector fields on G or star sections of TG to be vector fields

X ∈ X(G) such that there exists X̄ ∈ X(M) with X ∼s X̄ and X̄ ∼ǫ X, i.e. X and X̄ are

s-related and X̄ and X are ǫ-related, i.e. X restricts to X̄ on M . We then write X
⋆
∼s X̄.

In the same manner, we can define t-star sections, X
⋆
∼t X̄ with X̄ ∈ X(M) and X ∈ X(G).

It is easy to see that the tangent space TG is spanned by star vector fields at each point in
G \M . Note also that the Lie bracket of two star sections of TG is again a star section.

We call a vector field X ∈ X(G) a t-section if there exists X̄ ∈ X(M) such that X ∼t X̄.

We will also need the cotangent groupoid T ∗G ⇉ A∗ in the proof of Theorem 3.8. It was
shown in [6], that T ∗G is a Lie groupoid over A∗. The source and target of αg ∈ T ∗

gG are
defined by

s̃(αg) ∈ A∗
s(g), s̃(αg)(a) = αg(T lg(a− T t(a))) for all a ∈ As(g)

and

t̃(αg) ∈ A∗
t(g), t̃(αg)(b) = αg(Trg(b)) for all b ∈ At(g).

A one-form η ∈ Ω1(G) is a t-section of T ∗G if t̃ ◦ η = η̄ ◦ t for some η̄ ∈ Γ(A∗).
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2.2. The tangent Lie algebroid TA → TM . Consider a vector bundle qA : A → M .
Then the tangent space TA of A has two vector bundle structures. First, the usual vector
bundle structure of the tangent space, pA : TA → A and second the vector bundle structure
TqA : TA → TM , with the addition defined as follows. If xam

and xa′
m

are such that
TqA(xam

) = TqA(xa′
m
) =: xm ∈ TM , then there exist curves c, c′ : (−ε, ε) → A such that

ċ(0) = xam , ċ′(0) = xa′
m

and qA ◦ c = qA ◦ c′. The sum xam +TqA xa′
m

is then defined by

xam +TqA xa′
m
=

d

dt


t=0

c(t) +qA c′(t) ∈ Tam+a′
m
A.

We get a double vector bundle

TA
pA

//

TqA
��

A

qA

��

TM
pM

// M

,

that is, the structure maps of each vector bundle structure are vector bundle morphisms
relative to the other structure [23]. Note that a subbundle H of TA over A is said to be
linear if it is closed under the addition of TA as a vector bundle over TM .

Assume now that qA : A −→ M has a Lie algebroid structure with anchor map ρ : A −→
TM and Lie bracket [·, ·] on Γ(A). Then there is a Lie algebroid structure on TA over TM .
In order to describe it explicitly, we recall first that there exists a canonical involution

TTM
JM

//

pTM

��

TTM

TpM

��

TM
IdTM

// TM

(2.2)

which is given as follows [23, 33]. Elements (ξ; v, x;m) ∈ TTM , that is, with pTM (ξ) = v ∈
TmM and TpM (ξ) = x ∈ TmM , are considered as second derivatives

ξ =
∂2σ

∂t∂u
(0, 0),

where σ : R2 → M is a smooth square of elements of M4. The canonical involution JM :
TTM → TTM is defined by

JM (ξ) :=
∂2σ

∂u∂t
(0, 0).

We can apply the tangent functor to the anchor map ρ : A −→ TM , and then compose with
the canonical involution to obtain a bundle map ρTA : TA −→ TTM defined by

ρTA = JM ◦ Tρ.

This defines the tangent anchor map. In order to define the tangent Lie bracket, we observe
that every section a ∈ ΓM (A) induces two types of sections of TA −→ TM . The first type
of section is simply Ta : TM −→ TA, and the second type of section are the core sections
a† : TM −→ TA, which are defined by

(2.3) a†(vm) = Tm0A(vm) +pA

d

dt


t=0

ta(m)

4The notation means that σ is first differentiated with respect to u, yielding a curve v(t) = ∂σ

∂u
(t, 0) in

TM with d

dt







t=0

v(t) = ξ. Thus, v = ∂σ

∂u
(0, 0) = pTM (ξ) and x = ∂σ

∂t
(0, 0) = TpM (ξ).
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where 0A : M −→ A denotes the zero section. As observed in [25], sections of the form Ta
and a† generate the module of sections ΓTM (TA). Therefore, the tangent Lie bracket [· , ·]TA

is completely determined by

[Ta, Tb]TA = T [a, b],
[
Ta, b†

]
TA

= [a, b]†,
[
a†, b†

]
TA

= 0

for all a, b ∈ Γ(A), the extension to general sections is done using the Leibniz rule with
respect to the tangent anchor ρTA.

2.3. Flat partial connections.

Definition 2.1. ([2]) Let M be a smooth manifold and F ⊆ TM a smooth involutive vector
subbundle of the tangent bundle. Let E → M be a vector bundle over M . An F -partial

connection is a map ∇ : Γ(F )×Γ(E) → Γ(E), written ∇(X, e) =: ∇Xe for X ∈ Γ(F ) and
e ∈ Γ(E), such that:

(1) ∇ is tensorial in the F -argument,
(2) ∇ is R-linear in the E-argument,
(3) ∇ satisfies the Leibniz rule

∇X(fe) = X(f)e+ f∇Xe

for all X ∈ Γ(F ), e ∈ Γ(E), f ∈ C∞(M).

The connection is flat if its curvature tensor vanishes.

Example 2.2 (The Bott connection). Let M be a smooth manifold and F ⊆ TM an
involutive subbundle. The Bott connection

∇F : Γ(F )× Γ(TM/F ) → Γ(TM/F )

defined by

∇X Ȳ = [X,Y ],

where Ȳ ∈ Γ(TM/F ) is the projection of Y ∈ X(M), is a flat F -partial connection on
TM/F → M .

The class Ȳ ∈ Γ(TM/F ) of a vector field is ∇F -parallel if and only if [Y,Γ(F )] ⊆ Γ(F ).
Since F is involutive, this does not depend on the representative of Ȳ . We say by abuse of
notation that Y is ∇F -parallel.

The following proposition can be easily shown by using the fact that the parallel transport
defined by a flat connection does not depend on the chosen path in simply connected sets
(see [16], [18] for similar statements).

Proposition 2.3. Let E → M be a smooth vector bundle of rank k, F ⊆ TM an involutive
subbundle and ∇ a flat partial F -connection on E. Then there exists for each point m ∈ M
a frame of local ∇-parallel sections e1, . . . , ek ∈ Γ(E) defined on an open neighborhood U of
m in M .

We will also use the following lemma, which is easy to prove.

Lemma 2.4. Let E → M be a smooth vector bundle of rank k, F ⊆ TM an involutive
subbundle and ∇ a partial F -connection on E.

(1) Assume that f ∈ C∞(M) is F -invariant, i.e. X(f) = 0 for all X ∈ Γ(F ). Then f · e
is ∇-parallel for any ∇-parallel section e ∈ Γ(E).

(2) Assume that the foliation defined by F on M is simple, i.e. the leaf space has a smooth
manifold structure such that the quotient π : M → M/F is a smooth surjective
submersion. Then X ∈ X(M) is ∇F -parallel if and only if there exists X̄ ∈ X(M/F )
such that X ∼π X̄.
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3. Foliated groupoids

3.1. Definition and properties.

Definition 3.1. Let G ⇉ M be a Lie groupoid. A subbundle FG ⊆ TG is multiplicative

if it is a subgroupoid of TG ⇉ TM over FG ∩ TM =: FM . We also say that FG is a
multiplicative involutive distribution on G. To simplify the terminology, we that that
the pair (G ⇉ M,FG) is a foliated groupoid.

Remark 3.2. Multiplicative subbundles were introduced in [32] (see also [13]) as follows. A
subbundle FG ⊆ TG is multiplicative if for all composable g, h ∈ G and u ∈ FG(g ⋆ h), there
exist v ∈ FG(g), w ∈ FG(h) such that u = v ⋆ w. It is easy to check that a multiplicative
distribution in the sense of Definition 3.1 is multiplicative in the sense of [32], but the converse
is not necessarily true, unless for instance if the Lie groupoid is a Lie group (see [15]). The
case of involutive wide subgroupoids of TG ⇉ TM has also been studied in [1].

Definition 3.3. Let FG be a multiplicative distribution on G ⇉ M . The subbundle

K = FG ∩A = {v ∈ FG | pG(v) ∈ M and T s(v) = 0}

is called the core of (G ⇉ M,FG).

A multiplicative subbundle FG ⊆ TG determines a VB-groupoid

FG
pG

//

T s

��

T t

��

G

s

��

t

��

FM pM

// M

with core K. In particular, we have the following lemma [16].

Lemma 3.4. Let G ⇉ M be a Lie groupoid and FG ⊆ TG a multiplicative subbundle. Then
the intersection FM := FG ∩ TM has constant rank on M . Since it is the set of units of FG

seen as a subgroupoid of TG, the pair FG ⇉ FM is a Lie groupoid.
The bundle FG|M splits as FG|M = FM ⊕K, where K := FG ∩A. We have

(FG ∩ T sG)(g) = K(t(g)) ⋆ 0g = Tt(g)rg (K(t(g)))

for all g ∈ G.
In the same manner, if F t := (FG ∩ T tG)|M , we have (FG ∩ T tG)(g) = 0g ⋆ F

t(s(g)) for
all g ∈ G. As a consequence, the intersections FG ∩ T tG and FG ∩ T sG have constant rank
on G.

3.2. The connection associated to a foliated groupoid. Our first result on multiplica-
tive distributions is easy to prove, by considering right-invariant and s-sections of FG (see
also [17, 14]).

Proposition 3.5. Let FG be a multiplicative involutive distribution on a Lie groupoid G ⇉

M . Then K is a subalgebroid of A and FM is an involutive subbundle of TM .

The main goal of this subsection is the construction of a partial FM -connection on
A/K induced by the Bott FG-connection on TG/FG. We will see later how the quadru-
ple (A,FM ,K,∇) contains the whole information about the foliated groupoid.

We write ā for the class in A/K of a ∈ Γ(A).

Theorem 3.6. Let (G ⇉ M,FG) be a foliated groupoid. Then there is a partial FM -
connection on A/K

∇ : Γ(FM )× Γ (A/K) → Γ (A/K) .(3.4)
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defined by

a ∈ Γ(A) is ∇-parallel if and only if ar ∈ X(G) is ∇FG-parallel.

The triple (FM ,K,∇) is an infinitesimal ideal system in A.

For the proof of this theorem, we need the following result, which can be shown with the
same techniques as its general counterpart on Dirac groupoids in [17, 14].

Lemma 3.7. Let (G ⇉ M,FG) be a Lie groupoid endowed with a multiplicative subbundle
FG ⊆ TG, X a t-section of FG, i.e. t-related to some X̄ ∈ Γ(FM ), and consider a ∈ Γ(A).
Then the derivative £arX can be written as a sum

£arX = Za,X + bra,X

with ba,X ∈ Γ(A), and Za,X a t-section of FG. In addition, if X ∼t 0, then £arX ∈
Γ(FG ∩ T tG). In particular, its restriction to M is a section of F t and ba,X is a section of
K.

Assume now that FG is involutive and define

∇ : Γ(FM )× Γ(A/K) → Γ(A/K)

by

∇X̄ ā = −ba,X ,

with ba,X as in Lemma 3.7, for any choice of t-section X ∈ Γ(FG) such that X ∼t X̄ and
any choice of representative a ∈ Γ(A) for ā. We will show that this is a well-defined partial
FM -connection and complete the proof of Theorem 3.6.

Proof of Theorem 3.6. Choose X,X ′ ∈ Γ(FG) such that X ∼t X̄ and X ′ ∼t X̄. Then
Y := X−X ′ ∼t 0 and, by Lemma 3.7, we find ba,Y ∈ Γ(K) for any a ∈ Γ(A), i.e. ba,X = ba,X′ .

Choose now a ∈ Γ(K) and X ∈ Γ(FG), X ∼t X̄ ∈ Γ(FM ). Then we have ar ∈ Γ(FG) and
since FG is involutive, £arX ∈ Γ(FG). Again, since Za,X ∈ Γ(FG), we find ba,X ∈ Γ(K).
This shows that ∇ is well-defined.

By definition, if a ∈ Γ(A) is such that ∇X̄ ā = 0 for all X̄ ∈ Γ(FM ), then we have
£arX = Za,X + bra,X ∈ Γ(FG) for all t-sections X ∈ Γ(FG). Since Γ(FG) is spanned as a

C∞(G)-module by its t-sections, we get

[ar,Γ(FG)] ⊆ Γ(FG).

Conversely, [ar,Γ(FG)] ⊆ Γ(FG) implies immediately ∇X̄ ā = 0 for all X̄ ∈ Γ(FM ). This
proves the second claim of the theorem.

We check that ∇ is a flat partial FM -connection. Choose a ∈ Γ(A), X̄ ∈ Γ(FM ), X ∈
Γ(FG) such that X ∼t X̄ and f ∈ C∞(M). Then we have t

∗f ·X ∼t fX̄ and

£ar (t∗f ·X) = t
∗(ρ(a)(f)) ·X + t

∗f ·£arX.

In particular, we find

ba,t∗f ·X = (1− T s) (t∗(ρ(a)(f)) ·X + t∗f ·£arX) |M

= ρ(a)(f) · (1− T s)X|M + f · (1− T s)(£arX)|M .

Since (T s− 1)X|M ∈ Γ(K), this leads to ba,t∗f ·X = f · ba,X and hence ∇fX̄ ā = −f · ba,X =
f · ∇X̄ ā.

Since (fa)r = t
∗f · ar, we have in the same manner

£(fa)rX = −£X(t∗f · ar) = −t
∗(X̄(f)) · ar + t

∗f ·£arX,

which leads to ∇X̄(f · ā) = X̄(f) · ā+ f · ∇X̄ ā.
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Choose X̄, Ȳ ∈ Γ(FM ) and X,Y ∈ Γ(FG) such that X ∼t X̄ and Y ∼t Ȳ . Then we have
[X,Y ] ∼t [X̄, Ȳ ] and [X,Y ] ∈ Γ(FG) since FG is involutive. For any a ∈ Γ(A), we have by
the Jacobi-identity:

£ar [X,Y ] = [£arX,Y ]− [£arY,X]

=
[
Za,X + bra,X , Y

]
−
[
Za,Y + bra,Y , X

]

= [Za,X , Y ]− [Za,Y , X] +£bra,X
Y −£bra,Y

X

= [Za,X , Y ]− [Za,Y , X] + Zba,X ,Y + bba,X ,Y
r − Zba,Y ,X − bba,Y ,X

r.

Since [Za,X , Y ]− [Za,Y , X] + Zba,X ,Y − Zba,Y ,X is a t-section of FG, we find that

∇[X̄,Ȳ ]ā = bba,Y ,X − bba,X ,Y = ∇X̄∇Ȳ ā−∇Ȳ ∇X̄ ā

which shows the flatness of ∇.
Choose now a ∈ Γ(A) such that ∇X̄ ā = 0 ∈ Γ(A/K) for all X̄ ∈ Γ(FM ). If b ∈ Γ(K),

then br ∈ Γ(FG), ρ(b) ∈ Γ(FM ) and br ∼t ρ(b). This leads to

[b, a] = ∇ρ(b)ā = 0 ∈ Γ(A/K)

and hence [a, b] ∈ Γ(K). This shows 2. For each X̄ ∈ Γ(FM ), there exists X ∈ Γ(FG) such
that X ∼t X̄. Since [ar, X] ∈ Γ(FG), a

r ∼t ρ(a) and T t(FG) = FM , we find [ρ(a), X̄] ∈
Γ(FM ), which proves 4.

To show 3., choose two sections a, b ∈ Γ(A) such that ā and b̄ are ∇-parallel. We have
then for any t-section X ∼t X̄ of FG:

£[a,b]rX = £ar (Zb,X + brb,X)−£br (Za,X + bra,X)

= £ar (Zb,X) + [a, bb,X ]r −£br (Za,X)− [b, ba,X ]r.

Since ā and b̄ are ∇-parallel, this yields ∇X̄ [a, b] = −[a, bb,X ] + [b, ba,X ]. Since ā and b̄ are
parallel, we have bb,X , ba,X ∈ Γ(K) and 3. follows using 2. �

3.3. Involutivity of a multiplicative subbundle of TG. It is natural to ask here how
exactly the involutivity of FG is encoded in the data (FM ,K,∇). For an arbitrary (not
necessarily involutive) multiplicative subbundle FG ⊆ TG, we can consider the map

∇̃ : Γ(FM )× Γ(A) → Γ(A/K),

∇̃X̄a = −ba,X

which is well-defined by the proof of Theorem 3.6.

Theorem 3.8. Let (G,FG) be a source-connected Lie groupoid endowed with a multiplicative
subbundle. Then FG is involutive if and only if the following holds:

(1) FM ⊆ TM is involutive,

(2) ∇̃ vanishes on sections of K,
(3) the induced map ∇ : Γ(FM ) × Γ(A/K) → Γ(A/K) is a flat partial FM -connection

on A/K.

The proof of this theorem is a simplified version of the proof of the general criterion for
the integrability property of multiplicative Dirac structures (see [14]).

Proof. We have already shown in Proposition 3.5 and Theorem 3.6 that the involutivity of
FG implies (1), (2) and (3).

For the converse implication, note that the t-star sections of FG span FG outside of the
set of units M . Hence, it is sufficient to show involutivity on t-star sections and right-
invariant sections of FG. Choose first two right-invariant sections ar, br of FG, i.e. with
a, b ∈ Γ(K). We then have ρ(b) ∈ Γ(FM ), br ∼t ρ(b) and, since ∇̃ρ(b)a = 0 by (2), we find

that [ar, br] ∈ Γ(FG). In the same manner, by the definition of ∇̃ and Lemma 3.7, Condition
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(2) implies that the bracket of a right-invariant section of FG and a t-star section is always
a section of FG.

We have thus only to show that the bracket of two t-star sections of FG is again a section
of FG. Let K◦ be the annihilator of K in A∗ and consider the dual FM -connection on
(A/K)

∗
≃ K◦ ⊆ A∗, i.e. the (by (3)) flat connection

∇∗ : Γ(FM )× Γ(K◦) → Γ(K◦)

given by (
∇∗

X̄α
)
(ā) = X̄(α(ā))− α (∇X̄ ā)

for all X̄ ∈ Γ(FM ), α ∈ Γ(K◦) and a ∈ Γ(A).
Choose a t-star section X ∈ Γ(FG), X ∼t X̄, X|M = X̄ and a t̃-section η ∈ Γ(F ◦

G), η ∼t̃ η̄.
Then, for any section a of A, we have

(£Xη)(ar) = X (η(ar)) + η (£arX)

= t
∗
(
X̄(η̄(ā))

)
+ η

(
Za,X + bra,X

)
by Lemma 3.7

= t
∗
(
X̄(η̄(ā))− η̄ (∇X̄ ā)

)
since η ∈ Γ(F ◦

G) and Za,X ∈ Γ(FG)

= t
∗(∇∗

X̄ η̄(ā)).

This shows that £Xη ∼t̃ ∇
∗
X̄
η̄ ∈ Γ(K◦). Note that we have not shown yet that £Xη is a

section of F ◦
G. Choose a second t-star section Y of FG, Y ∼t Ȳ and Y |M = Ȳ . An easy

computation using η(X) = η(Y ) = 0 yields

−2d (η([X,Y ])) = £X£Y η −£Y £Xη −£[X,Y ]η.

Hence, we get for a ∈ Γ(A):

−2 · ar(η([X,Y ])) =
(
£X£Y η −£Y £Xη −£[X,Y ]η

)
(ar)

=X(£Y η(a
r))−£Y η([X, ar])− Y (£Xη(ar))−£Xη([Y, ar])

− [X,Y ](η(ar)) + η([[X,Y ], ar])

=t
∗X̄(∇∗

Ȳ η̄(ā)) + (£Y η)(Za,X + bra,X)

− t
∗Ȳ (∇∗

X̄ η̄(ā))− (£Xη)(Za,Y + bra,Y )

− t
∗[X̄, Ȳ ](η̄(ā))− η ([£arX,Y ] + [X,£arY ])

=t
∗X̄(∇∗

Ȳ η̄(ā)) +£Y η(Za,X)− t
∗(∇∗

Ȳ η̄)(∇X̄ ā)

− t
∗Ȳ (∇∗

X̄ η̄(ā))−£Xη(Za,Y ) + t
∗(∇∗

X̄ η̄)(∇Ȳ ā)

− t
∗[X̄, Ȳ ](η̄(ā))− η

(
[Za,X + bra,X , Y ] + [X,Za,Y + bra,Y ]

)

=t
∗
((
∇∗

X̄∇∗
Ȳ η̄ −∇∗

Ȳ ∇
∗
X̄ η̄
)
(ā)− [X̄, Ȳ ](η̄(ā))

)

+ Y (η(Za,X))−X(η(Za,Y ))− η
(
Zba,X ,Y + brba,X ,Y − Zba,Y ,X − brba,Y ,X

)

(3)
= t

∗
(
η̄(−∇[X̄,Ȳ ]ā−∇Ȳ ∇X̄ ā+∇X̄∇Ȳ ā)

) (3)
= 0.

Hence, ar(η([X,Y ])) = 0 for all a ∈ Γ(A) and since G is source-connected, this implies that
η([X,Y ])(g) = η([X,Y ])(s(g)) for all g ∈ G. But since for m ∈ M , we have

[X,Y ](m) = [X̄, Ȳ ](m)

and FM is a subalgebroid of TM by (1), we find that [X,Y ](s(g)) ∈ FG(s(g)) for all g ∈ G
and hence η([X,Y ])(g) = η([X,Y ])(s(g)) = 0. Since η was a t̃-section of F ◦

G and t̃-sections
of F ◦

G span F ◦
G on G, we have shown that [X,Y ] ∈ Γ(FG) and the proof is complete. �

Remark 3.9. (1) We have seen in this proof that Condition (2) implies the fact that
K is a subalgebroid of A.
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(2) The same result has been shown independently in [7], using Lie groupoid and Lie
algebroid cocycles, in the special case where FM = TM , i.e. where FG is a wide
subgroupoid of TG.

Example 3.10. Assume that G is a Lie group (hence with M = {e}) with Lie algebra g.
Let FG be a multiplicative distribution. In this case, the core K =: f is the fiber of FG over
the identity and FM = 0. As a consequence, any partial FM -connection on g/f is trivial. We
check that all the conditions in Theorem 3.6 are automatically satisfied.

First of all, any element ξ of g is ∇-parallel. This implies that

[ξr,Γ(FG)] ⊆ Γ(FG) for all ξ ∈ g,

i.e. FG is left-invariant, in agreement with [27, 15, 16].
1), 3) and 4) are trivially satisfied and 2) is exactly the fact that f is an ideal in g. This

recovers the results proved in [27, 15, 16]. Note also that since all the conditions in Theorem
3.8 are trivially satisfied and a multiplicative distribution on a Lie group is hence always
involutive.

Example 3.11. Let G ⇉ M be a Lie groupoid with a smooth, free and proper action of
a Lie group H by Lie groupoid automorphisms. Let VG be the vertical space of the action,
i.e. the smooth subbundle of TG that is generated by the infinitesimal vector fields ξG, for
all ξ ∈ h, where h is the Lie algebra of H. The involutive subbundle VG is easily seen to be
multiplicative (see for instance [16]).

The action restricts to a free and proper action of H on M , and it is easy to check
that VG ∩ TM = VM is the vertical vector space of the action of H on M . Furthermore,
VG ∩ T sG = VG ∩ T tG = 0TG and we get K = 0A.

The infinitesimal vector fields (ξG, ξM ), ξ ∈ h, are multiplicative (in the sense of [25] for
instance). We get hence from [25] that the Lie bracket [ar, ξG] is right-invariant for any ξ ∈ h

and a ∈ Γ(A). We obtain a map (see also [25])

h× Γ(A) → Γ(A)
(ξ, a) 7→ [ξG, a

r]|M
,

and we recover the connection

∇ : Γ(VM )× Γ(A) → Γ(A)

defined by ∇ξMa = [ξG, a
r]|M for all ξ ∈ h and a ∈ Γ(A). This connection is obviously flat

and satisfies all the conditions in Theorem 3.6.

Example 3.12. Let (G ⇉ M,JG) be a complex Lie groupoid, i.e. a Lie groupoid endowed
with a complex structure JG that is multiplicative in the sense that the map

TG
JG

//

T s

��

T t

��

TG

T s

��

T t

��

TM
JM

// TM

is a Lie groupoid morphism over some map JM . Since JG
2 = −IdTG, we conclude that

JM
2 = −IdTM and the Nijenhuis condition for JM is easy to prove using s-related vector

fields. The map JG restricts also to a map jA on the core A, i.e. a fiberwise complex
structure that satisfies also a Nijenhuis condition. (This can be seen by noting that the
Nijenhuis tensor of JG restricts to right-invariant vector fields.)

The subbundles T 1,0G = Ei and T 0,1G = E−i of TG ⊗ C are multiplicative and involu-
tive with bases T 1,0M and T 0,1M and cores A1,0 and A0,1. The quotient (A ⊗ C)/A1,0 is
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isomorphic as a vector bundle to A0,1 and a straightforward computation shows that the con-
nection that we get from the multiplicative involutive complex distribution T 1,0G is exactly
the connection ∇ : Γ(T 1,0M)× Γ(A0,1) → Γ(A0,1) as in Lemma 4.7 of [20].

Since the parallel sections of the connection in this Lemma are exactly the holomorphic
sections of A0,1, one can reconstruct the map JA : TA → TA defined by JA = σ−1◦A(JG)◦σ
5 as in [21] by requiring that JA(Ta) = Ta ◦ JM for all parallel sections a ∈ Γ(A), and

JA(b̂) = ĵA(b) ◦ JM for all sections b ∈ Γ(A).
By Lemma 4.7 in [20] and the integration results in [21], the complex structure JG is

hence equivalent to the datum (JM , jA,∇) with its properties. This is in agreement with
the results that we will prove in the next section.

4. Foliated algebroids

In this section we study Lie algebroids equipped with distributions compatible with both
Lie algebroid structures TA → TM and TA → A on TA. This is the first step towards an
infinitesimal description of foliated groupoids.

4.1. Definition and properties.

Definition 4.1. Let A → M be a Lie algebroid. A subbundle FA ⊆ TA is called morphic

if it is a Lie subalgebroid of TA → TM over some subbundle FM ⊆ TM .
If FA is involutive and morphic, then the pair (A,FA) is a foliated Lie algebroid.

Since foliated algebroids have already been shown in [13, 8] to correspond to infinitesimal
ideal systems, we only summarize here the approach in [8], see also [19]. (Note that another
approach could be found in a former version of this paper.)

4.1.1. Connections on a vector bundle A, linear splittings of TA and the Lie bracket on
X(A). We recall here the relation between a connection on a vector bundle A and the Lie
bracket of vector fields on A.

Let qA : A → M be a vector bundle. A linear vector field on A is a derivation of C∞(A)
that sends linear functions to linear functions and pullbacks to pullbacks. More explicitely,
X ∈ X(A) is linear over X̄ ∈ X(M) if for all ξ ∈ Γ(A∗), X(ℓξ) = ℓD∗

Xξ with D∗
Xξ ∈ Γ(A∗)

and for all f ∈ C∞(M), X(q∗Af) = q∗A(X̄(f)). Hence, a vector field X which is qA-related
to X̄ ∈ X(M) defines a derivation D∗

X : Γ(A∗) → Γ(A∗) over X̄. The dual derivation
DX : Γ(A) → Γ(A) is then defined by 〈DXa, ξ〉 = X̄〈a, ξ〉 − 〈a,D∗

Xξ〉 and describes the Lie
bracket of X with core vector fields:

(4.5) [X, a↑] = (DXa)↑

for all a ∈ Γ(A). The Lie bracket [X,Y ] of two linear vector fields X and Y ∈ X(A) over
X̄ and Ȳ ∈ X(M) is again linear over [X̄, Ȳ ] and the derivation D[X,Y ] is equal to the
commutator of the derivations DX and DY .

Let ∇ : X(M) × Γ(A) → Γ(A) be a connection. For each X ∈ X(M), ∇X is a derivation

of Γ(A) and we have a corresponding linear vector field ∇̃X over X. The set of all vector
fields on A defined in this manner spans a linear subbundle H∇ of pA : TA → A that is in
direct sum with the vertical space V := T qAA = {vam

∈ TA | Tam
qAvam

= 0}:

TA ∼= V ⊕H∇ → A.

For all functions ϕ ∈ C∞(M) and sections ξ ∈ Γ(A∗), we have

(4.6) ∇̃X(ℓξ) = ℓ∇∗
Xξ, ∇̃X(q∗Aϕ) = q∗A(X(ϕ)), b↑(ℓξ) = q∗A〈ξ, b〉, b↑(q∗Aϕ) = 0.

Conversely, consider a linear splitting TA ∼= V ⊕H of TA → A. Then, since H ∼= TA/V is
isomorphic to the pullback q!ATM → A, and by the linearity of H, we find for each vector

5 To avoid confusions, we write in this example σ : TA → A(TG) for the canonical flip map.
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field X ∈ X(M) a unique linear vector field X̃ ∈ Γ(H) such that X̃ ∼qA X. One can then
define a connection ∇H : X(M)× Γ(A) → Γ(A) by setting

∇H
X = DX

for all X ∈ X(M).

This shows the correspondence of the two definitions of a connection; the first as the map

∇ : X(M)× Γ(A) → Γ(A),

the second as a linear splitting

TA ∼= V ⊕H → A.

Given ∇ or H∇, it is easy to see using the equalities in (4.6) that
[
X̃, Ỹ

]
= [̃X,Y | −R∇(X,Y )↑,

[
X̃, a↑

]
= (∇Xa)↑,

[
a↑, b↑

]
= 0

for allX,Y ∈ X(M) and a, b ∈ Γ(A). Here, R∇(X,Y )↑ ∈ X(A) is defined byR∇(X,Y )↑(am) =
(R∇(X,Y )am)↑ for all am ∈ A. That is, the Lie bracket of vector fields on A can be com-
pletely described in terms of the connection.

4.1.2. The Lie bracket on sections of TA → TM . Consider now a connection ∇ on a Lie
algebroid A. Then TA splits over TM as H∇ ⊕ ker(pA) and we can define sections ã ∈
ΓTM (H∇), for a ∈ Γ(A), by

ã(vm) = Tmavm −
d

dt


t=0

am + t∇vma

for all vm ∈ TM . Recall that for a ∈ Γ(A), we also have the core section a† of ker(pA) → TM :

a†(vm) = Tm0Avm +
d

dt


t=0

ta(m).

The vector bundle TA → TM is spanned by the sections ã and a† for all a ∈ Γ(A) and the
Lie algebroid structure on TA → TM can be described as follows:

(1) [ã, b̃] = ˜[a, b]−Rbas
∆ (a, b)†,

(2) [ã, b†] = (∇bas
a b)†,

(3) [a†, b†] = 0,

(4) ρTA(ã) = ∇̂bas
a ∈ X(TM),

(5) ρTA(b
†) = (ρ(b))↑ ∈ X(TM),

where ∇bas : Γ(A)× X(M) → X(M) and ∇bas : Γ(A)× Γ(A) → Γ(A) are given by

∇bas
a X = ρ(∇Xa) + [ρ(a), X]

for all a ∈ Γ(A) and X ∈ X(M) and

∇bas
a b = ∇ρ(b)a+ [a, b]

for all b ∈ Γ(A) [9, 10], and Rbas
∇ ∈ Ω2(A,Hom(A, TM)) by

Rbas
∇ (a, b)(X) = −∇X [a, b] + [∇Xa, b] + [a,∇Xb] +∇∇bas

b Xa−∇∇bas
a Xb.
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4.1.3. Double subbundles of the double vector bundle (TA;TM,A;M). Given a double sub-
bundle (FA;FM , A;M) of (TA;TM,A;M), we can always choose a connection ∇ that is
adapted to FA, i.e. such that FA splitts as

(FA ∩H∇)⊕ (FA ∩ V )

as a vector bundle over A, and as

(FA ∩H∇)⊕ (FA ∩ ker(pA))

as a vector bundle over FM . The restriction to the zero section of the intersection FA ∩ V
can be identified with a subbundle K of A and is called the core of FA. For any ξ ∈ FA ∩V
with pA(ξ) = am, there exists km ∈ K such that ξ = d

dt


t=0

am + tbm. Conversely, for any

am ∈ A and km ∈ K, we have d
dt


t=0

am + tbm ∈ FA ∩ V .

Note that FA∩H∇ → A is then spanned by the sections X̃ for all X ∈ Γ(FM ), FA∩H∇ →
FM by the sections ã|FM

for all a ∈ Γ(A), FA ∩ V → A by the sections a↑ for all a ∈ Γ(K)
and FA ∩ ker(pA) → FM by a†|FM

for all a ∈ Γ(K).
This leads to the following two propositions.

Proposition 4.2. The subbundle FA → A of TA → A is involutive if and only if

(1) FM is involutive,
(2) ∇Xa ∈ Γ(K) for all X ∈ Γ(FM ) and a ∈ Γ(K),
(3) and the induced connection ∇̄ : Γ(FM )× Γ(A/K) → Γ(A/K) is flat.

Proposition 4.3. The subbundle FA → FM of TA → TM is a subalgebroid if and only if

(1) ρ(K) ⊆ FM ,
(2) ∇bas

a X ∈ Γ(FM ) for all a ∈ Γ(A) and X ∈ Γ(FM ),
(3) ∇bas

a b ∈ Γ(K) for all a ∈ Γ(A) and b ∈ Γ(K),
(4) and Rbas

∇ (a, b)(X) ∈ Γ(K) for all a, b ∈ Γ(A) and X ∈ Γ(K).

Corollary 4.4. The subbundle FA is involutive and a Lie algebroid over FM if and only
if for any adapted connection ∇, ∇Xa ∈ Γ(K) for all X ∈ Γ(FM ) and a ∈ Γ(K) and the
induced connection ∇̄ : Γ(FM ) × Γ(A/K) → Γ(A/K) defines an infinitesimal ideal system
(FM ,K, ∇̄) in A.

Since for any two connections ∇ and ∇′ that are adapted to FA, the difference ∇ − ∇′

satisfies
(∇−∇′)vma ∈ K(m)

for all vm ∈ FM and a ∈ Γ(A), the induced connection ∇̄ does not depend on the choice of
the adapted connection ∇ and we have the following theorem.

Theorem 4.5. Let A be a Lie algebroid. Morphic involutive distributions on A are in
one-to-one correspondence with infinitesimal ideal systems in A.

Remark 4.6. Let (A,FA) be a foliated algebroid and (FM ,K,∇) the corresponding ideal
system in A. Let X be a linear section of FA over X̄ ∈ Γ(FM ). Then

∇X̄ ā = 0 ⇔ DXa ∈ Γ(K)

for a ∈ Γ(A).

Example 4.7. Let H be a connected Lie group with Lie algebra h. Assume that H acts
on a Lie algebroid A −→ M in a free and proper manner, by Lie algebroid automorphisms.
That is, for all h ∈ H, the diffeomorphism Φh is a Lie algebroid morphism over φh : M → M .
Consider the vertical spaces VA, VM defined as follows

VA(a) = {ξA(a) | ξ ∈ h}, VM (m) = {ξM (m) | ξ ∈ h},

for a ∈ A and m ∈ M . We check that VA inherits a Lie algebroid structure over VM making
the pair (A,VA) into a foliated algebroid with core zero. Choose ξA(am) ∈ VA(am) for some
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ξ ∈ g, then Tam
qAξA(am) = ξM (m) ∈ VM (m). Hence, if Tam

qAξA(am) = 0, then ξ = 0 since
the action is supposed to be free and we find K = 0. Notice that, since the action is by
algebroid automorphisms, each infinitesimal generator ξA is in fact a morphic vector field
covering ξM .

If ρ(am) = ċ(0), a simple computation, using ρ ◦ Φexp(tξ) = Tφexp(tξ) ◦ ρ for all t ∈ R,
yields

ρTA(ξA(am)) =
d

ds


s=0

ξM (c(s)) ∈ TξM (m)VM .

If a ∈ Γ(A) is such that Tma(ξM (m)) ∈ VA(am) for some ξ ∈ g and m ∈ M , then there
exists η ∈ g such that Tma(ξM (m)) = ηA(a(m)). But applying Tam

qA to both sides of this
equality yields then ξM (m) = ηM (m), which leads to ξ = η, since the action is free, and
hence Tma(ξM (m)) = ξA(a(m)).

Here, the induced partial VM -connection ∇ is defined on A by

[ξA, a
↑] = (∇ξMa)↑

for any a ∈ Γ(A). If a ∈ Γ(A) is ∇-parallel, then we find [ξA, a
↑] = 0 for all ξ ∈ g and hence

the flows commute, which leads to

Φexp(tξ)(bm) + s · a
(
φexp(tξ)(m)

)
= Φexp(tξ)(bm) + s · Φexp(tξ)(a(m))

for all bm ∈ A and s, t ∈ R and hence to

a
(
φexp(tξ)(m)

)
= Φexp(tξ)(a(m)).

Since H is assumed to be connected, this yields a ◦ φh = Φh ◦ a for all h ∈ H.
Because the action is by Lie algebroid morphisms, we find then that the Lie algebroid

bracket of ∇-parallel sections a, b ∈ Γ(A) is again ∇-parallel. Since the core sections of VA

are all trivial, this shows that the Lie bracket of TA → TM restricts to VA → VM .

4.2. The Lie algebroid of a multiplicative involutive distribution. The following
construction can be found in [28] in the more general setting of multiplicative Dirac struc-
tures.

Let FG be a multiplicative subbundle of TG with space of units FM ⊆ TM . Since
FG ⊆ TG is a Lie subgroupoid, we can apply the Lie functor, leading to a Lie subalgebroid
A(FG) ⊆ A(TG) over FM ⊆ TM .

As we have seen in Subsection 2.2, the canonical involution JG : TTG −→ TTG restricts
to an isomorphism of double vector bundles jG : TA −→ A(TG) inducing the identity map
on both the side bundles and the core. Since jG : TA −→ A(TG) is an isomorphism of Lie
algebroids over TM , we conclude that

FA := j−1
G (A(FG)) ⊆ TA

is a Lie algebroid over FM ⊆ TM . Since

FG
pG

//

T s

��

T t

��

G

s

��

t

��

FM pM

// M

is a VB-subgroupoid of

TG
pG

//

T s

��

T t

��

G

s

��

t

��

TM
pM

// M

,
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the Lie algebroid

A(FG)
A(pG)

//

��

A

��

FM pM

// M

is a VB-subalgebroid of

A(TG)
A(pG)

//

��

A

��

TM
pM

// M

([3]), and FA → A is also a subbundle of TA → A.
The main theorem of this subsection is the following.

Theorem 4.8. Let (G ⇉ M,FG) be a foliated groupoid with core K. Then (A,FA =
j−1
G (A(FG))) is a foliated algebroid with core K.
Conversely, let (A,FA) be a foliated Lie algebroid. Assume that A integrates to a source

simply connected Lie groupoid G ⇉ M . Then there is a unique multiplicative distribution
FG on G such that FA = j−1

G (A(FG)).

We will use a result of [3], which states that a VB-algebroid

E
qhE

//

qvE
��

A

qA

��

B
qB

// M

integrates to a VB-groupoid

G(E)
qG(E)

//

����

G(A)

����

B
qB

// M

.

Furthermore, if E′ →֒ E, B′ →֒ B is a VB-subalgebroid with the same horizontal base A,

E′
qhE

//

qvE
��

A

qA

��

B′
qB′

// M

,

then E′ → B′ integrates to an embedded VB-subgroupoid G(E′) →֒ G(E) over B′ →֒ B,

G(E′)
qG(E)

//

����

G(A)

����

B′
qM

// M

.

This is done in [3] using the characterization of vector bundles via homogeneous structures
(see [11]).
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Proof of Theorem 4.8. The first part has been shown above. Recall from Appendix A the
construction of A(FG) → FM and jG(A(FG)) = FA → FM . Since jG ◦ ã = a†, we find
immediately that the core sections of FA are jG ◦ ã for all a ∈ Γ(K).

Let (A,FA) be a foliated Lie algebroid with coreK. The VB-subgroupoid of (TG,G;TM,M)
integrating the subalgebroid jG(FA) → FM of A(TG) → TM is a multiplicative subbundle
FG ⇉ FM of TG ⇉ TM with core K. By Theorem 3.8, FG is involutive. �

Theorem 4.9. Let (G ⇉ M,FG) be a foliated groupoid and (A,FA) the corresponding
foliated algebroid. Then the infinitesimal ideal systems defined by (G ⇉ M,FG) and (A,FA)
coincide.

Proof. Since the Lie algebroid of FG ⇉ FM is a subalgebroid of TA ⇉ TM over FM , the two
involutive subbundles of TM coincide. We write (FM ,K,∇G) for the ideal system defined
by (G ⇉ M,FG) and (FM ,K,∇A) for the ideal system defined by (A,FA). We have to show
∇G = ∇A.

Choose a ∇G-parallel section a ∈ Γ(A). Then ar ∈ X(G) is ∇FG -parallel, or, in other
words, ar preserves FG. For v ∈ FM , we have hence T Exp(ta)v ∈ FG for all t ∈ R where
this makes sense, and so βA(v) ∈ A(FG). This shows that βa|FM

is a section of A(FG),
and so that Ta|FM

is a section of FA → FM (see Appendix A). As a consequence, we find

∇̃Xa ∈ Γ(K) for any connection ∇̃ adapted to FA and any X ∈ Γ(FM ), and this finally
leads to ∇A

Xa = 0.
We have thus shown

{a ∈ Γ(A) | a ∇G-parallel} ⊆ {a ∈ Γ(A) | a ∇A-parallel}.

Since both connections are flat, it is easy to conclude from this that they have the same sets of
parallel sections. Again by the flatness of the connections, one finds then that ∇G = ∇A. �

As a corollary of this and Theorem 4.5, we get the following result.

Corollary 4.10. Let G ⇉ M be a source-simply connected Lie groupoid with Lie algebroid
A → M . Then multiplicative involutive distributions on G are in one-to-one correspondence
with infinitesimal ideal systems in A.

Example 4.11. Assume that H acts on a Lie groupoid G over M by groupoid automor-
phisms. Assume also that the action is free and proper. Starting from the data (A,VM , 0,∇)
where ∇ is the partial VM -connection on A determined by

[ξG, a
r] = (∇ξMa)r

for all ξ ∈ g and a ∈ Γ(A), the last theorem states that we recover exactly the foliated
Lie algebroid VA −→ VM obtained by applying the Lie functor to the foliated groupoid
VG ⇉ VM .

Example 4.12. Assume that g is a Lie algebra, i.e. a Lie algebroid over a point. In this
case, the tangent Lie algebroid Tg is also a Lie algebroid over a point, that is, Tg is a Lie
algebra. It is easy to see that the Lie algebra structure on Tg = g × g is the semi-direct
product Lie algebra g⋉ g with respect to the adjoint representation of g on itself. Note also
that the fact that a triple (0, f,∇ = 0) is an ideal system on g is equivalent to saying that
f ⊆ g is an ideal.

The morphic involutive distribution Fg associated to the ideal system (0, f, 0) is given by
Fg = g × f. The property that Fg = g × f is a morphic involutive distribution is equivalent
to saying that g × f is a Lie subalgebra of g ⋉ g. In particular, if G is the connected and
simply connected Lie group integrating g, we conclude that the foliated algebroid Fg = g× f

integrates to a Lie subgroup G × f of the semi-direct Lie group G ⋉ g determined by the
adjoint action of G on its Lie algebra g. Using right (or left) translations, we get a subbundle
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FG ⊆ TG which is involutive and multiplicative. Thus, in the case of Lie groups and Lie
algebras, this recovers the results in [27, 15, 16].

5. Examples of ideal systems

In this section, we present several natural examples of ideal systems. These examples
show that the ideal systems are the object that should be considered as the right notion of
ideals in Lie algebroids.

5.1. Regular Dirac structures and the kernel of the associated presymplectic

groupoids. Let (M,D) be a Dirac manifold. Recall that (D → M, prTM , [· , ·]) is then a Lie
algebroid, where [· , ·] is the Courant Dorfman bracket on sections of TM ⊕ T ∗M .

Assume that the characteristic distribution FM ⊆ TM , defined by

FM (m) = {vm ∈ TmM | (vm, 0m) ∈ D(m)}

for all m ∈ M , is a subbundle of TM . The involutivity of FM follows from the properties of
the Dirac structure. Set K := FM ⊕ {0} ⊆ D. It is easy to check that K is a subalgebroid
of D. Define

∇ : Γ(FM )× Γ (D/K) → Γ (D/K)

∇X d̄ = [(X, 0), d].

This map is easily seen to be a well-defined, flat, partial FM -connection on D/K, and the
verification of the fact that (D, FM ,K,∇) is an ideal system on the Lie algebroid D → M is
straightforward.

We show that if D → M integrates to a presymplectic groupoid (G ⇉ M,ωG) [5, 4], then
(D, FM ,K,∇) integrates to the involutive subbundle FG = kerωG ⊆ TG.

The map ρ := prTM : D → TM is the anchor of the Dirac structure D viewed as a
Lie algebroid over M , and the map σ := prT∗M : D → T ∗M defines an IM-2-form on
the Lie algebroid D (see [5], [4]). Note that K is the kernel of σ and FM is the kernel of
σt : TM → D

∗. The two-form Λ := σ∗ωcan ∈ Ω2(D) is morphic in the sense that

TD
Λ♯

//

��

T ∗
D

��

TM
−σt

// D
∗

is a Lie algebroid morphism ([4]). See, for instance [23], for the Lie algebroid structure
on T ∗

D → D
∗. If D → M integrates to a presymplectic groupoid (G ⇉ M,ωG), the Lie

algebroid T ∗
D → D

∗ is isomorphic to the Lie algebroid of the cotangent groupoid T ∗G → D
∗

and the map Λ♯ integrates via the identifications TD ≃ A(TG) and T ∗
D ≃ A(T ∗G) to the

vector bundle map ω♯
G, that is a Lie groupoid morphism. See [4] for more details.

We show that the morphic involutive distribution FD ⊆ TD corresponding to (D, FM ,K,∇)
is equal to the kernel of Λ♯.

Let n be the dimension of M and k the rank of FM . Then D is spanned locally by frames
of n parallel sections, the first k of them spanning K. If d is a parallel section of D, we have
£Xd ∈ Γ(K) for all X ∈ Γ(FM ), that is, £X(σ(d)) = 0 for all X ∈ Γ(FM ). Since iXσ(d) = 0
for all X ∈ Γ(FM ), this yields iXd(σ(d)) = 0 for all X ∈ Γ(FM ). Hence, using this type
of frames, we find with formulas (4.57) and (4.58) in [4], that the kernel of Λ♯ is spanned
by the restriction to FM of the linear sections defined by parallel sections of D, and by the
restrictions to FM of the core sections defined by sections of K. Hence, by construction, the
distribution FD is the kernel of Λ♯.
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Since the kernel of ω♯
G is multiplicative with Lie algebroid equal to the kernel of Λ♯, this

yields FG = kerω♯
G.

Note that if FM ⊆ TM is simple, then the leaf space M/FM has a natural Poisson
structure such that the projection (M,D) → (M/FM , π) is a forward Dirac map. Under
a completeness condition and if FG ⊆ TG is also simple, we get a Lie groupoid G/FG ⇉

M/FM , with a natural symplectic structure ω such that the projection πG : G → G/FG

satisfies π∗
Gω = ωG. It would be interesting to study the relation between the integrability

of the Poisson manifold (M/FM , π) and the completeness conditions on FG (see [16]) so that
the quotient (G/FG ⇉ M/FM , ω) is a symplectic groupoid.

Note finally that, under the obvious smoothness and trivial holonomy conditions, the
quotient of the Lie algebroid D by the ideal system (FM ,K,∇) is the Lie algebroid Dπ =
graph(π♯ : T ∗(M/FM ) → T (M/FM )).

5.2. Foliated algebroids in the sense of Vaisman. In [34], foliated Lie algebroids are
defined as follows. A foliated Lie algebroid is a Lie algebroid A → M together with a
subalgebroid B of A and an involutive subbundle FM ⊆ TM such that

(1) ρ(B) ⊆ FM ,
(2) A is locally spanned over C∞(M) by B-foliated cross sections, i.e. sections a of A

such that [a, b] ∈ Γ(B) for all b ∈ B.

Recall our definition of ideal system on a Lie algebroid (Definition 1.1). Since the FM -
partial connection is flat, we get by Proposition 2.3 the existence of frames of parallel sections
for A. By the properties of the connection, these are K-foliated cross sections. Since (1)
is also satisfied by hypothesis, our ideal systems are foliated Lie algebroids in the sense of
Vaisman if we set B := K.

The object that integrates the foliated algebroid in the sense of Vaisman is the right
invariant image of B, which defines a subbundle of TG that is tangent to the s-fibers and
invariant under left multiplication. This is exactly the intersection of our multiplicative
subbundle FG ⊆ TG, integrating (FM ,K,∇), with T sG.

5.3. The usual notion of ideals in Lie algebroids. An ideal I in a Lie algebroid A → M
is a subbundle over M such that [a, i] ∈ Γ(I) for all i ∈ Γ(I) and all a ∈ Γ(A). The inclusion
I ⊆ ker(ρ) follows immediately and shows that this definition of an ideal is very restrictive.
In the other hand, usual ideals correspond obviously to the ideal systems (FM = 0,K =
I,∇ = 0) in A. Note that in this case, the quotient Lie algebroid A/I over M/FM = M is
always defined. This is a trivial class of example for the results in the next section.

5.4. The Bott connection and reduction by simple foliations. The second standard
example of a Lie algebroid is the tangent space TM of a smooth manifold M , endowed with
the usual Lie bracket of vector fields and the identity IdTM as anchor. Consider an involutive
subbundle FM ⊆ TM and the Bott connection

∇FM : Γ(FM )× Γ(TM/FM ) → Γ(TM/FM )

associated to it. Then it is straightforward to check that the triple (FM , FM ,∇FM ) is an
ideal system in TM .

This ideal system corresponds to the subbundle of TM given by the tangent lift of FM .
The foliated groupoid associated to this ideal system is (M × M ⇉ M,FM × FM ⇉ FM )
(we assume here for simplicity that M is simply connected).
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5.5. The ideal system associated to a fibration of Lie algebroids. Let

A
ϕ

//

qA

��

A′

qA′

��

M
f

// M ′

be a fibration of Lie algebroids, i.e. the map f is a surjective submersion and f !ϕ : A → ϕ!A′

is a surjective vector bundle morphism over the identity on A.
Then K := ker(ϕ) ⊆ A, i.e.

K(m) =
{
am ∈ Am | ϕ(am) = 0A

′

f(m)

}

is a subalgebroid of A and T fM ⊆ TM is an involutive subbundle. The equality Tf◦ρ = ρ′◦ϕ
yields immediately ρ(K) ⊆ FM .

Define a connection ∇ϕ : Γ(T fM) × Γ(A/K) → Γ(A/K) by setting ∇ϕ
X ā = 0 for all

sections a ∈ Γ(A) that are (ϕ, f)-related to some section a′ ∈ Γ(A′), i.e. such that ϕ ◦ a =
a′ ◦ f . Then the properties of the Lie algebroid morphism (ϕ, f) imply that (T fM,K,∇ϕ)
is an ideal system in A.

By the results in the next section, we can roughly say that any ideal system can be
constructed this way.

6. The leaf space of a foliated algebroid

Assume that (FM ,K,∇) is an ideal system in A. Then there is an induced involutive
subbundle FA ⊆ TA as in Corollary 4.4. We will show that if the leaf space M/FM is a
smooth manifold such that the quotient map πM : M → M/FM is a surjective submersion,
and if ∇ has trivial holonomy, then there is an induced Lie algebroid structure ([qA] :
A/FA → M/FM , [ρ], [· , ·]A/FA

) such that the projection

A

qA

��

π
// A/FA

[qA]

��

M
πM

// M/FM

is a Lie algebroid morphism. Furthermore, if A → M integrates to a Lie groupoid G ⇉ M
and the completeness and regularity conditions for the leaf space G/FG ⇉ M/FM to be a Lie
groupoid are satisfied (see [16]), then A/FA → M/FM is isomorphic to the Lie algebroid of
G/FG ⇉ M/FM . We will see that this reduction process is in reality a reduction by the
ideal system (FM ,K,∇) in A.

The class of am ∈ Am will be written [am] ∈ A/FA, and, in the same manner, the class of
m ∈ M will be denoted by [m] ∈ M/FM . The class of am ∈ Am in A/K will be written ām.

Proposition 6.1. Let (FM ,K,∇) be an ideal system in A → M and FA ⊆ TA the corre-
sponding morphic involutive distribution as in Corollary 4.4.

(1) The map π : A → A/FA factors as a composition

A

��

π

$$

A/K
π̄

// A/FA

That is, we have π(am + km) = π(am) for all am ∈ A and km ∈ K(m).
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(2) The equivalence relation ∼:=∼FA
on A can be described as follows.

(6.7) am ∼ an ⇔

There exist linear sections (X1, X̄1), . . . , (Xr, X̄r) of FA → A
with flows φ1, . . . , φr such that
am ∈ φ1

t1 ◦ . . . ◦ φ
r
tr (an) +K(m)

for some t1, . . . , tr ∈ R.

(3) The map qA induces a map [qA] : A/FA → M/FM such that

A

qA

��

π
// A/FA

[qA]

��

M
πM

// M/FM

commutes.
(4) Let a ∈ Γ(A) be such that ā ∈ Γ(A/K) is ∇-parallel. Let U := Dom(a) ⊆ M . Then

there is an induced map [a] : πM (U) → A/FA such that

U

πM

��

a
// A

π

��

πM (U)
[a]

// A/FA

commutes. The map [a] is a section of [qA]:

[qA] ◦ [a] = IdπM (U).

Proof. (1) Recall that all the core sections k↑ ∈ X(A) with k ∈ Γ(K) are sections of
FA. Choose am ∈ A and km ∈ K(m). Then there exists a section k ∈ Γ(K) with

k(m) = km. The flow φk↑

of k↑ is given by φk↑

t (a) = a+ tk(qA(a)) for all a ∈ A and
t ∈ R. Hence, we have am ∼ am + tk(m) = am + tkm for all t ∈ R, and in particular
am ∼ am + km. The map π̄ : A/K → A/FA, π̄(ām) = [am] is hence well-defined and
the diagram commutes.

(2) Since the family of linear sections of FA and the family of core sections of FA span
together FA, its leaves are the accessible sets of these two families of vector fields
([29, 30, 31], see [26] for a review of these results). Hence, two points am and an in
A are in the same leaf of FA if they can be joined by finitely many curves along flow
lines of core sections k↑ for k ∈ Γ(K) and linear vector fields X ∈ Γ(FA). By the
involutivity of FA, we have DXk ∈ Γ(K) for all k ∈ Γ(K) and linear vector fields
X ∈ Γ(FA). Hence, by Lemma B.3, we get that K is invariant under the flow lines
of linear vector fields with values in FA. That is, using the fact that φX

t is a vector
bundle morphism, we have

(
φX
t ◦ φk↑

s

)
(am) ∈ φX

t (am +K(m)) = φX
t (am) +K

(
φX̄
t (m)

)

for all am ∈ A, t ∈ R where this makes sense and s ∈ R. Since

φk↑

s ◦ φX
t (am) ∈ φX

t (am) +K
(
φX̄
t (m)

)
,

the proof is finished.
(3) Assume that am ∼ an for some elements am, an ∈ A. Then there exists, without

loss of generality, one linear vector field X ∈ Γ(FA) over X̄ ∈ Γ(FM ), an element
km ∈ K(m) and t ∈ R such that am = φX

t (an) + km. We have then immediately

m = qA(am) =
(
qA ◦ φX

t

)
(an) = φX̄

t (n),

which shows m ∼FM
n.
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(4) Assume first that ā does not vanish on its domain of definition. Since ā is ∇-parallel,
we have DXa ∈ Γ(K) for all linear vector fields X ∈ Γ(FA), X ∼qA X̄ ∈ Γ(FM ). By
Lemma B.3, this yields

(6.8) φX
t (a(m)) ∈ a

(
φX̄
t (m)

)
+K

(
φX̄
t (m)

)

for all t ∈ R where this makes sense and consequently

π (a(m)) = π
(
a
(
φX̄
t (m)

))
.

Since FM is spanned by projections X̄ of linear vector fields X ∈ Γ(FA), this shows
that a projects to the map [a] that is defined by the diagram.

In general, we have a =
∑n

i=1 fiai on an open set U with non-vanishing ∇-parallel
sections a1, . . . , an of A such that a1, . . . , ar ∈ Γ(K) for some r ≤ n and functions
f1, . . . , fn ∈ C∞(U) such that fr+1, . . . , fn are FM -invariant. This yields using (6.8):

φX
t (a(m)) = φX

t

(
n∑

i=1

fi(m)ai(m)

)
(6.9)

∈
n∑

i=r+1

fi

(
φX̄
t (m)

)
φX
t (ai(m)) +K

(
φX̄
t (m)

)

= a
(
φX̄
t (m)

)
+K

(
φX̄
t (m)

)

and we get the statement in the same manner as above.
We have

([qA] ◦ [a]) ◦ πM = [qA] ◦ π ◦ a = πM ◦ qA ◦ a = πM ◦ IdM = πM ,

which shows the last claim since πM is surjective.
�

Corollary 6.2. Let (FM ,K,∇) be an ideal system in a Lie algebroid A → M . Choose ām
and ān in A/K.

(1) π̄(ām) = π̄(ān) if and only if am ∈ A/K is the ∇-parallel transport of an over a
piecewise smooth path along the foliation defined by FM on M .

(2) If ∇ has trivial holonomy, then π̄(am) = π̄(a′m) if and only if am = a′m.

Remark 6.3. We find as a consequence of the last corollary that, if ∇ has trivial holonomy,
then the map π̄ is bijective in every fiber.

Proof. (1) Assume first that π̄(ām) = π̄(ān). Then there exists without loss of generality

one linear vector fieldX ∈ Γ(FA) over X̄ ∈ Γ(FM ) and t ∈ R such that ām = φX
t (an).

Consider the curve a : [0, t] → A over c := φX̄
· (n) defined by

a(τ) = φX
τ (an)

for τ ∈ [0, t]. For each τ ∈ [0, t], we find a parallel section aτ of A and ετ > 0
such that φX

· (an) is defined on (−ετ , τ + ετ ), φ
X
· (τ − ετ , τ + ετ ) ⊆ Dom(aτ ) and

aτ (c(τ)) = a(τ). Since φX
s preserves K for all s where defined, we get then

aτ (c(s)) = aτ (φX̄
s (n)) = aτ (φX̄

s−τφ
X̄
τ (n))

(6.9)
= φX

s−τa
τ (c(τ))

= φX
s−τa(τ) = φX

s−τφ
X
τ (an) = φX

s (an) = a(s)

for s ∈ (τ − ετ , τ + ετ ). This yields ∇X̄(c(τ))ā = 0 for all τ .

Conversely, assume that am ∈ A/K is the ∇-parallel transport of an over a
piecewise smooth path along a path lying in the leaf of FM through n. Without loss
of generality, this path is a segment of a flow curve of a vector field X̄ ∈ Γ(FM ),
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m = φX̄
t (n) for some t ∈ R, and there exists a ∇-parallel section a of A such that

a(m) = am and a(n) = an. Choose any linear vector field X ∈ Γ(FA) over X̄. Then
we get as in the proof of Proposition 6.1, 4) that

a(m) = a
(
φX̄
t (n)

)
= φX

t (a(n))

and hence am ∼ an by Proposition 6.1, 2).
(2) This is immediate since here, parallel transport does not depend on the path along

the leaf of FM through m.
�

Using Proposition 6.1, we show that if M/FM is a smooth manifold and the projection
is a submersion, and if ∇ has no holonomy, then the quotient A/FA is a vector bundle over
M/FM .

Proposition 6.4. Let (FM ,K,∇) be an ideal system in a Lie algebroid A → M . Assume
that M/FM is a smooth manifold such that the projection is a submersion, and that the
connection ∇ has no holonomy. The quotient space A/FA inherits a vector bundle structure
over M/FM such that the projection (π, πM ) is a vector bundle morphism.

A
π

//

qA

��

A/FA

[qA]

��

M
πM

// M/FM

Proof. Since the flows of linear vector fields are vector bundle morphisms over the flows
of their projection in TM , it is easy to see that for each m ∈ M , (A/FA)[m] = [qA]

−1[m]
inherits the structure of a vector space.

Choose a local frame for A/K of ∇-parallel sections ā1, . . . , āk defined on a foliated chart
domain U ⊆ M for FM , k = rank(A/K). Write qA/K : A/K → M for the vector bundle
projection and consider the local trivialization of A/K:

Φ : q−1
A/K(U) → U × Rk

bm 7→ (m, ξ1(bm), . . . , ξk(bm)),

where bm =
∑k

i=1 ξi(bm)ai(m) + cm with some cm ∈ K(m).

By Corollary 6.2, we find that for b̄m, b̄n ∈ q−1
A/K(U), the equality

π̄
(
bm
)
= π̄

(
bn
)

implies

ξi(bm) = ξi(bn) for i = 1, . . . , k,

since b̄m is the parallel transport of b̄n along any path in the leaf of FM through m and n,
and so in particular along a path in U . That is, the map Φ factors to a well-defined map

[Φ] : [qA]
−1(Ū) → Ū × Rk

such that

[Φ] ◦ π̄ = (πM × IdRk) ◦ Φ.

It is easy to see that (A/FA)[m] ≃ (A/K)m and so that [Φ] is an isomorphism in every fiber.
The map [Φ] is the projection to A/FA of the “well chosen” local trivialization qA/K ×

ξ1× . . .×ξk of A/K. Since by Proposition 2.3, we can cover A/K by this type of ∇-invariant
trivializations, we find that we can construct trivializations for A/FA, which is hence shown
to be a vector bundle over M̄ . �
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Remark 6.5. Corollary 6.2 implies that the quotient space π̄ : A/K → A/FA is the quotient
by the equivalence relation given by parallel transport. Constructions like this were made in
[35], see also [18]. This idea will be used (implicitly) in the proofs of the following statements.

Note that this shows also that the data (A,FM ,K,∇) is an infinitesimal version of the
ideal systems as in [23], and the methods of construction of both quotient algebroids are
similar.

Example 6.6. In the situation of Example 5.4, if the foliation defined by FM on M
is simple, i.e. if the leaf space M/FM is a smooth manifold, then the reduced algebroid
TM/(TM,FM , FM ,∇FM ) → M/FM is isomorphic to the tangent space T (M/FM ) → M/FM .

To see this, note that a vector field X ∈ X(M) is ∇FM -parallel if and only if [X,Γ(FM )] ⊆
Γ(FM ). But this implies that X is pr-related to a vector field X̄ ∈ Γ(M/FM ), where
pr : M → M/FM is the projection (Lemma 2.4).

If vm ∈ TM is (TM,FM , FM ,∇FM )-equivalent to wn ∈ TM , then there exists without loss
of generality one ∇-parallel vector field X ∈ X(M) such that X(m) = vm and X(n) = wn.
This shows that the map

Φ : TM/(TM,FM , FM ,∇FM ) → T (M/FM ), [v] → Tpr(v)

is a well-defined surjective vector bundle morphism over the identity. Since

rank(TM/(TM,FM , FM ,∇FM )) = rank(T (M/FM )),

it is an isomorphism.
It will be easy to see from the following constructions that the Lie algebroid structures

coincide.

Note that, by construction, we have the following vector bundle morphism

A/K
π̄

//

qA/K

��

A/FA

[qA]

��

M
πM

// M/FM

, ām 7→ [am]

which is an isomorphism in every fiber, and we find that for each local section α of A/FA

defined on Ū ⊆ M̄ , there exists a ∇-parallel section a of A defined on π−1
M (Ū) such that

π ◦ a = α ◦ πM , i.e. α = [a].

Proposition 6.7. Let (FM ,K,∇) be an ideal system in A and assume that the quotient
space M̄ = M/FM is a smooth manifold and ∇ has trivial holonomy. Then there is an
induced map [ρ] : A/FA → TM̄ such that

A
ρ

//

π

��

TM

TπM

��

A/FA
[ρ]

// TM̄

commutes.

Remark 6.8. If a ∈ Γ(A) is ∇-parallel, then ρ(a) ∈ X(M) is ∇FM -parallel and πM -related
to [ρ][a] ∈ X(M̄).

Proof. Define [ρ] : A/FA → T (M/FM ) by

[ρ]([am]) = TmπM (ρ(am)) ∈ T[m](M/FM ) ≃ TmM/FM (m).

To see that [ρ] is well-defined, recall first that ρ(K) ⊆ FM . If [am] = [an], then am =
km + φX

t (an) for some linear section X ∈ Γ(FA) over X̄ ∈ Γ(FM ), t ∈ R and km ∈ K(m).
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As in the proof of Corollary 6.2 , consider the curve a : [0, t] → A over c := φX̄
· (n) defined

by

a(τ) = φX
τ (an)

for τ ∈ [0, t]. Then ∇X̄(c(τ))ā = 0 for all τ . For each τ ∈ [0, t], we find ετ > 0 and a parallel

section aτ of A such that aτ (c(s)) = a(s) for s ∈ [τ−ετ , τ+ετ ]. Then, ρ◦a
τ is ∇FM -parallel,

and we get by Lemma 2.4 that (ρ ◦ aτ ) ∼πM
Y τ for some Y τ ∈ X(M̄).

Since [c(τ − ετ )] = [c(s)] for all s ∈ [τ − ετ , τ + ετ ], we have then

Tc(τ−ετ )πM (ρ(a(τ − ετ ))) = Tc(τ−ετ )πM (ρ(aτ (c(τ − ετ ))))

= Y τ ([c(τ − ετ )]) = Y τ ([c(s)]) = Tc(s)πM (ρ(a(s)))

for all s ∈ (τ − ετ , τ + ετ ). Since [0, t] is covered by (finitely many) intervals like this, we get
TmπM (ρ(am)) = TmπM (ρ(a(0))) = TnπM (ρ(an)), which shows that [ρ] is well-defined. �

Now we will define a Lie bracket on the space of sections of A/FA. For α, β ∈ Γ(A/FA),
choose ∇-parallel sections a, b ∈ Γ(A) such that α ◦ πM = π ◦ a and β ◦ πM = π ◦ b. Then
[a, b] is ∇-parallel by the properties of ∇ and we can define

[
α, β

]
A/FA

∈ Γ(A/FA)

by [
α, β

]
A/FA

= [ [a, b] ]

or in other words [
[a], [b]

]
A/FA

◦ πM = π ◦ [a, b]

for all ∇-parallel sections a, b ∈ Γ(A). By the properties of ∇, this definition does not depend
on the choice of the ∇-parallel sections (which can be made up to sections of K) and by
definition and with Remark 6.8, and Example 6.6 we get the following result.

Proposition 6.9. Let (FM ,K,∇) be an ideal system in A and assume that the quotient
space M̄ = M/FM is a smooth manifold and ∇ has trivial holonomy. Then for all ∇-parallel
sections a, b ∈ Γ(A), we have

[ρ]

([
[a], [b]

]
A/FA

)
=
[
[ρ][a], [ρ][b]

]
TM̄

,

where the bracket on the right-hand side is the Lie bracket on vector fields on M̄ , and the
bracket on the left-hand side is defined as above.

We can now complete the proof of the following theorem.

Theorem 6.10. Let (FM ,K,∇) be an ideal system in a Lie algebroid A. Assume that
M̄ = M/FM is a smooth manifold and that ∇ has trivial holonomy. Then the triple
(A/FA = (A/K)/∇, [ρ], [· , ·]A/FA

) is a Lie algebroid over M̄ such that the projection (π, πM )
is a Lie algebroid morphism.

A

qA

��

π
// A/FA

[qA]

��

M
πM

// M/FM

Proof. The Jacobi identity follows immediately from the properties of the Lie bracket [· , ·]
on ΓM (A) and the definition of [· , ·]A/FA

. For the Leibniz identity choose [a], [b] ∈ Γ(A/FA)

corresponding to ∇-parallel sections a, b ∈ ΓM (A), and f ∈ C∞(M̄). We have then π∗
Mf ∈
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C∞(M)FM and f · [b] corresponds to the ∇-parallel section (π∗
Mf) · b of A (see Lemma 2.4).

We have hence

[[a], f · [b]]A/FA
◦ πM = π ◦ [a, (π∗

Mf) · b]

= π ◦ (π∗
Mf · [a, b] + ρ(a)(π∗

Mf) · b)

= π ◦ (π∗
Mf · [a, b] + π∗

M ([ρ][a](f)) · b)

=
(
f · [[a], [b]]A/FA

+ [ρ][a](f) · [b]
)
◦ πM ,

where we have used Proposition 6.7 in the third equality.
The fact that (π, πM ) is compatible with the Lie algebroid brackets is immediate by

construction and the compatibility of the anchor maps is given by the definition of [ρ]. �

Example 6.11. (1) In the situation of Example 5.1, assume that the leaf space of the
foliation defined by FM is a smooth manifold. Then the reduced Lie algebroid
constructed as above is the graph of the Poisson structure that is induced by the
Dirac structure D on M/FM .

(2) In the case of an ideal in the usual sense as in Example 5.3, the reduced algebroid is
just the induced structure on A/I → M .

(3) As already mentionned, the reduced algebroid in Example 5.4 is the tangent space
of the leaf space of the foliation defined by FM .

(4) In the case of the kernel of a fibration as in Example 5.5, the reduced algebroid is
the Lie algebroid structure on A′ → M ′.

(5) Assume that FM = TM (this is the special case of ideal systems studied in [7]).
Then the quotient Lie algebroid is a Lie algebra.

Assume now that FG ⊆ TG is multiplicative and involutive on G ⇉ M such that the leaf
space G/FG is a Lie groupoid over the leaf space M/FM (there are topological conditions
for this to be true, see [16]). The multiplicative involutive distribution FG determines an
ideal system (FM ,K,∇) in the Lie algebroid A of G ⇉ M and, under the trivial holonomy
condition on ∇, a Lie algebroid (A/FA, [ρ], [·, ·]A/FA

) as in the preceding theorem. We
conclude this subsection with the comparison of this Lie algebroid with the Lie algebroid of
the quotient groupoid G/FG ⇉ M/FM .

Theorem 6.12. Let (FM ,K,∇) be an ideal system in A. Assume that A integrates to a Lie
groupoid G ⇉ M , and FA to a multiplicative involutive distribution FG on G. If G/FG and
M/FM are smooth manifolds, ∇ has trivial holonomy and FG is such that G/FG ⇉ M/FM

is a Lie groupoid, then we have

A(G/FG) = A/FA,

where A/FA is equipped with the Lie algebroid structure in the previous theorem.

Remark 6.13. It would be interesting to study the relation between the trivial holonomy
property of ∇ and the condition of FG for G/FG ⇉ M/FM to be a Lie groupoid.

Proof of Theorem 6.12. Let πG : G → G/FG be the projection, and [s], [t] the source and
target maps of G/FG ⇉ M/FM . Recall from Theorem 3.6 that a section a ∈ Γ(A) is ∇-
parallel if and only if [ar,Γ(FG)] ⊆ Γ(FG) and the vector field ar is then πG-related to a
vector field ar ∈ X(G/FG). We have

T [s] ◦ ar ◦ πG = T [s] ◦ TπG ◦ ar = TπG(T s ◦ a
r) = 0,

which shows that ar is tangent to the [s]-fibers. By Lemma 3.18 in [16], we get

ar([g]) = TgπG(a
r(g)) = TgπG(a(t(g)) ⋆ 0g) = Tt(g)πG(a(t(g))) ⋆ 0[g] = ar([t][g]) ⋆ 0[g],

which shows that ar = ãr for ã := ar|M/FM
∈ Γ(A(G/FG)).
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Since (πG, πM ) is a Lie groupoid morphism

G
πG

//

s

��

t

��

G/FG

[s]

��

[t]

��

M
πM

// M/FM

the map A(πG) = TπG|A

A
A(πG)

//

��

A(G/FG)

��

M
πM

// M/FM

is a Lie algebroid morphism and K = ker(A(πG)). For any ∇-parallel section a ∈ Γ(A) we
have ar ∼πG

ãr and hence

(6.10) A(πG) ◦ a = TπGa = ã ◦ πM .

Define the map

A/FA
Ψ

//

��

A(G/FG)

��

M̄
IdM

// M/FM

by

Ψ([am]) = A(πG)(am)

for all am ∈ A. To see that this does not depend on the representative, use K = ker(A(πG))
and recall that am ∼ an if and only if ām is the ∇-parallel transport of ān along a path
lying in the leaf through m of FM (Corollary 6.2). Without loss of generality, there exists a
∇-parallel section a ∈ Γ(A) such that a(m) = am and a(n) = an + kn for some kn ∈ K(n).
Then, using (6.10), we get

Ψ([am]) = A(πG)(am) = (A(πG) ◦ a) (m) = (ã ◦ πM ) (m)

= (ã ◦ πM ) (n) = A(πG)(an) = Ψ([an]).

Hence, Ψ is a well-defined vector bundle morphism over the identity onM/FM . Furthermore,
the considerations above show that for any ∇-parallel section a of A and corresponding
section [a] of A/FA, we get

Ψ ◦ [a] = ã.

The compatibility of the Lie algebroid brackets and anchors is then immediate by the con-
struction of A/FA, and the fact that A(πG) is a Lie algebroid morphism. �

Example 6.14. In the situation of Example 5.4 with M simply connected, the foliated Lie
groupoid integrating the ideal system was (M ×M ⇉ M,FM ×FM ). It is easy to check that
the leaf space of the foliation defined by FM×FM is the groupoid M/FM×M/FM ⇉ M/FM

(see also [16]), hence a Lie groupoid if M/FM is a smooth manifold. As we have seen above,
the reduced Lie algebroid TM → M by the ideal system is equal to T (M/FM ). This is the
Lie alegbroid of M/FM ×M/FM ⇉ M/FM .
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Appendix A. The Lie algebroid of the tangent groupoid

If G ⇉ M is a Lie groupoid with Lie algebroid A, then we can consider the Lie algebroid
qA(TG) : A(TG) → TM of the tangent Lie groupoid TG ⇉ TM . Since the projection pG :
TG → G is a Lie groupoid morphism, we have a Lie algebroid morphism A(pG) : A(TG) → A
over pM : TM → M :

A(TG)
A(pG)

//

qA(TG)

��

A

qA

��

TM
pM

// M

(1.11)

Let a be a section of A, choose v ∈ TM and consider the curve γ : (−ε, ε) → TG defined
by

γ(t) = T Exp(ta)v

for ε small enough. Then we have γ(0) = v and T s(γ(t)) = v for all t ∈ (−ε, ε). Hence,
γ̇(0) ∈ Av(TG) and we can define a linear section βa : TM → A(TG) by

(1.12) βa(v) =
d

dt


t=0

T Exp(ta)v

for all v ∈ TM . It is easy to check that βr
a ∈ X(TG)r is the complete lift of ar (see [23]). In

particular the flow of βr
a is TLExp(·a), and (βa, a) is a morphism of vector bundles.

In the same manner, we can consider vm ∈ TM , a ∈ Am and the curve γ : R → TG
defined by

γ(t) = v + ta,

where TM and A are seen as subsets of TG, TMG = TM ⊕ A. We have again γ(0) = v
and T s(γ(t)) = v for all t, which yields γ̇(0) ∈ Av(TG). Given a ∈ ΓM (A), we define a core

section ã of A(TG) by

(1.13) ã(v) =
d

dt


t=0

v + ta(pM (v))

for all v ∈ TM . We have for vg ∈ TgG with Tgt(vg) = vm:

ãr(vg) = ã(vm) ⋆ 0vg
=

d

dt


t=0

vg + tar(g).

The vector bundle A(TG) is spanned by the two types of sections βa and ã, for a ∈ ΓM (A),

and, using the flows of βr
a and b̃r ∈ Xr(TG), it is easy to check that the equalities

[βa, βb]A(TG) = β[a,b],
[
βa, b̃

]
A(TG)

= ˜[a, b],
[
ã, b̃
]
A(TG)

= 0

hold for all a, b ∈ ΓM (A).
There exists a natural injective bundle map

(1.14) ιA : A −→ TG

over ǫ : M → G. The canonical involution JG : TTG −→ TTG restricts to an isomorphism
of Lie algebroids jG : TA −→ A(TG). More precisely, there exists a commutative diagram

TA
jG

//

TιA

��

A(TG)

ιA(TG)

��

TTG
JG

// TTG

(1.15)



30 M. JOTZ AND C. ORTIZ

We check the following identities:

(1) jG ◦ Ta = βa and
(2) jG ◦ a† = ã,

where a† is defined as in (2.3). First, we have for vm = ċ(0) ∈ TM :

jG(Tmavm) =jG

(
d

dt


t=0

d

ds


s=0

Exp(sa)c(t)

)

=
d

ds


s=0

d

dt


t=0

Exp(sa)c(t) = βa(vm).

In the same manner, we compute

jG

(
Tm0Avm +

d

ds


s=0

sam

)
=jG

(
d

ds


s=0

sa(c(s))

)
= jG

(
d

ds


s=0

d

dt


t=0

Exp(tsa)c(s)

)

=
d

dt


t=0

d

ds


s=0

Exp(tsa)c(s) =
d

dt


t=0

vm + ta(m),

which proves the second equality.
The identity

ρA(TG) ◦ jG = JM ◦ TρA = ρTA

is verified easily on these linear and core sections. This shows that the Lie algebroidA(TG) →
TM of the tangent groupoid is canonically isomorphic to the tangent Lie algebroid TA →
TM of A.

Appendix B. Invariance of bundles under flows

We prove here a result that is standard, but the proof of which is difficult to find in the
literature.

Theorem B.1. Let M be a smooth manifold and E be a subbundle of the direct sum vector
bundle TM := TM ⊕ T ∗M . Let Z ∈ X(M) be a smooth vector field on M and denote its
flow by φt. If

£Ze ∈ Γ(E) for all e ∈ Γ(E),

then

φ∗
t e ∈ Γ(E) for all e ∈ Γ(E) and t ∈ R where this makes sense.

Corollary B.2. Let F be a subbundle of the tangent bundle TM of a smooth manifold M .
Let Z ∈ X(M) be a smooth vector field on M and denote its flow by φt. If

[Z,Γ(F )] ⊆ Γ(F ),

then

TmφtF (m) = F (φt(m))

for all m ∈ M and t where this makes sense.

Proof. Choose X ∈ Γ(F ) and m ∈ M . Then, by Theorem B.1, we have Tφt ◦ X ◦ φ−t =
φ∗
−tX ∈ Γ(F ) for all t where this makes sense, and hence:

TmφtX(m) =
(
φ∗
−tX

)
(φt(m)) ∈ F (φt(m)).

�
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Proof of Theorem B.1. The subbundle E of TM is an embedded submanifold of TM . For
each section σ of TM , the smooth function lσ : TM → R is defined by

lσ(v, α) = 〈σ(p(v, α)), (v, α)〉

for all (v, α) ∈ TM , where p : TM → M is the projection. For all e ∈ E, the tangent space
TeE of the submanifold E of TM is equal to

ker
{
delσ | σ ∈ Γ

(
E⊥
)}

,

where E⊥ is the orthogonal space to E relative to the canonical symmetric fiberwise pairing
on TM ⊕ T ∗M :

〈(vm, αm), (wm, βm)〉 = αm(wm) + βm(vm)

for all vm, wm ∈ TmM , αm, βm ∈ T ∗
mM , m ∈ M .

Consider the complete lift Z̃ to TM of Z, i.e. the vector field Z̃ ∈ X(TM) defined by

Z̃(lσ) = l£Zσ and Z̃(p∗f) = p∗(Z(f))

for all σ ∈ Γ(TM) and f ∈ C∞(M) (see [23]).
Choose e ∈ E and σ ∈ Γ

(
E⊥
)
. Then we have £Zσ ∈ Γ

(
E⊥
)
since for all τ ∈ Γ(E):

〈£Zσ, τ〉 = Z (〈σ, τ〉)− 〈σ,£Zτ〉 = 0.

This leads to

(delσ)(Z̃(e)) =
(
Z̃(lσ)

)
(e) = l£Zσ(e) = 0.

Hence, the vector field Z̃ is tangent to E on E. As a consequence, its flow curves starting
at points of e remain in the submanifold E.

It is easy to check that the flow Φt of the vector field Z̃ is equal to (Tφt, (φ−t)
∗), i.e.,

Φt(vm, αm) = (Tmφt(vm), αm ◦ Tφt(m)φ−t)

for all (vm, αm) ∈ TmM . Choose a section (X,α) ∈ Γ(E) and a point m ∈ M . We find

(φ∗
t (X,α))(m) =

(
Tφt(m)φ−tX(φt(m)), αφt(m) ◦ Tmφt

)
= Φ−t ((X,α)(φt(m))) ∈ E(m)

since (X,α)(φt(m)) ∈ E(φt(m)). Thus, we have shown that φ∗
t (X,α) is a section of E. �

Assume now that qA : A → M is a vector bundle, and consider a linear vector field X on
A, i.e. the map X : A → TA is a vector bundle morphism over X̄ : M → TM such that
X ∼qA X̄. Let φX

· be the flow of X and φX̄
· the flow of X̄. Then φX

t : A → A is a vector

bundle morphism over φX̄
t for all t ∈ R where this is defined.

Note that for any a ∈ Γ(A), the section DXa ∈ Γ(A) is defined by

(DXa)(m) =
d

dt


t=0

φX
−t(a(φ

X̄
t (m)))

for all m ∈ M . In the same manner, if ϕ ∈ Γ(A∗), we can define

(DXϕ)(m) =
d

dt


t=0

(φX
t )∗(ϕ(φX̄

t (m)))

for all m ∈ M . We have then ϕ(a) ∈ C∞(M), and

(2.16) X̄(m)(ϕ(a)) = ϕ(DXa)(m) + (DXϕ)(a)(m).

We can now show the following lemma.

Lemma B.3. Let A be a vector bundle and B ⊆ A a subbundle.

(1) If (X, X̄) is a linear vector field on A such that

DXb ∈ Γ(B)

for all b ∈ Γ(B), then φX
t (bm) ∈ B

(
φX̄
t (m)

)
for all bm ∈ Bm.
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(2) Assume furthermore that a ∈ Γ(A) is such that a(m) is linearly independent to B(m)
for all m in Dom(a) and

DXa ∈ Γ(B).

Then
φX
t (a(m)) ∈ a

(
φX̄
t (m)

)
+B

(
φX̄
t (m)

)

for all m ∈ U and t ∈ R where this makes sense.

Proof. (1) We check that the vector field X is tangent to B on points in B. Let ϕ ∈
Γ(A∗) be a section of B◦, i.e. ϕm(bm) = 0 for all bm ∈ B. Let lϕ ∈ C∞(A) be
the linear function defined by ϕ. By (2.16), we have then DXϕ ∈ Γ(B◦). Choose
bm ∈ B. We have then

dbm lϕ(X(bm)) =
d

dt


t=0

lϕ(φ
X
t (bm)) =

d

dt


t=0

ϕφX̄
t (m)(φ

X
t (bm))

= (DXϕ)(bm) = 0.

Thus, X is tangent to B on B and the flow of X preserves B.
(2) Assume now that (b1, . . . , bk) is a local frame for B on an open set U ⊆ M . Complete

this frame to a local frame (b1, . . . , bn) for A defined on an open U such that bk+1 :=
a ∈ Γ(A). Let ϕ1, . . . , ϕn be a frame for A∗ that is dual to (b1, . . . , bn), i.e. such that
(ϕk+1, . . . , ϕn) is a frame for B◦ and ϕk+1(a) = 1. Then, the closed submanifold C
of A|U defined by C ∩Am = a(m)+Bm is the level set with value (1, 0, . . . , 0) of the
function

(lϕk+1
, . . . , lϕn

) : A|U → Rn−k.

Since DXa ∈ Γ(B) for the linear vector field (X, X̄) on A, we get

0 = X̄(ϕi(a)) = ϕi(DXa) +DXϕi(a) = 0 +DXϕi(a)

for i = k + 1, . . . , n and this yields as before for all bm ∈ B:

da(m)+bm lϕi(X(a(m) + bm)) =
d

dt


t=0

lϕi(φ
X
t (a(m) + bm))

= (DXϕi)(a(m) + bm) = 0.

Hence, X is tangent to C on points of C. That is, the flow of X preserves C.
�
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