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A Survey on Architectures and Energy Efficiency in Data

Center Networks

Ali Hammadi and Lotfi Mhamdi

School of Electronic and Electrical Engineering, University of Leeds, UK

Abstract

Data Center Networks (DCNs) are attracting growing interest from both
academia and industry to keep pace with the exponential growth in cloud
computing and enterprise networks. Modern DCNs are facing two main
challenges of scalability and cost-effectiveness. The architecture of a DCN
directly impacts on its scalability, while its cost is largely driven by its power
consumption. In this paper, we conduct a detailed survey of the most recent
advances and research activities in DCNs, with a special focus on the archi-
tectural evolution of DCNs and their energy efficiency. The paper provides a
qualitative categorization of existing DCN architectures into switch-centric
and server-centric topologies as well as their design technologies. Energy effi-
ciency in data centers is discussed in details with survey of existing techniques
in energy savings, green data centers and renewable energy approaches. Fi-
nally, we outline potential future research directions in DCNs.

Keywords: Data center networks (DCNs), Architecture, energy efficiency,
virtualization, renewable energy for DCNs,

1. Introduction

Recent years are witnessing an unprecedented growth in data centers.
This is mainly driven by the plethora of services and applications housed
by modern data centers, such as web-search, scientific computations, social
networks, distributed files systems, etc. Data centers are at the heart of
almost every sector at the private, public and governmental levels. Today’s
data centers contain hundreds of thousands of servers, interconnected via
switches, routers and high-speed links. The design of modern data centers
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mandates joint expertise from diverse engineering fields and entails a number
of considerations ranging from real estate, geographic location, to the data
center hardware and software requirements as well as its power budget. The
ultimate objective in designing a data center is to maximize efficiency while
maintaining a low cost.

In order to keep pace with the high-demand in services and applications,
DCNs are continuing to evolve and considerable research efforts are being
made to address the various challenges observed. The choice of a DCN solu-
tion to address one challenge impacts and often limits the alternatives of how
to address other issues. Furthermore, DCNs are deployed for various sectors
and the solutions (and geometries) differ such as the difference between en-
terprise DCNs and cloud-service DCNs [1]. Irrespective of the DCNs type,
various common challenges for the design of DCNs have been observed at
various levels, including: i) the architecture of the DCN and its topology,
ii) the energy efficiency issue and how to keep the DCN power budget man-
ageable including virtualization, network load management and scheduling,
etc. iii) congestion handling in DCNs including congestion notification and
avoidance. A typical challenge is the problem of TCP incast, iv) routing in
DCNs with the provision of efficient and cost-effective routing mechanisms
such as multipath routing concepts. The focus of this article is to survey
the first two issues of architectural evolution and energy efficiency in DCNs.
Readers are referred to [2] and references therein for issues such as routing,
congestion control, etc.

The choice of the architecture of a DCN is of premium importance as it
impacts on the overall efficiency of the DCN. The architecture of a DCN, or
its topology, directly reflects on its scalability, cost, fault-tolerance, agility
and power consumption [3]. Conventional DCNs have been designed using
a tree-like topology. A typical example of this topology is the three-tier
topology proposed by [3] where the tree’s leaves (end-nodes or servers) are
connected to Top-of-Rack (ToR) switches and these (ToR) switches are con-
nected to aggregation switches which are in turn connected to core routers at
the root of the tree. This topology has soon been shown to suffer numerous
drawbacks of scale, capacity, reliability, utilization and power budget [2]. As
a result, efforts have been dedicated to address some (or all) of the above
encountered problems in the tree-based DCN topology and various DCN
architectures have appeared [4][5][6][7][8][9][10][11][12][13][14][15]. These ar-
chitectures can be classified as server-centric and switch-centric and/or based
on their infrastructure technologies such as electronic versus optical DCNs.

Energy efficiency is a central issue in modern data centers. DCNs are
typically high-capacity networks that are tuned for maximum performance
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(peak network load or busy-hour), making them extremely power hungry. A
typical DCN facility has more than 100 times power density than a typical
office building of the same space. In 2007, a report to the U.S. congress by
the EPA estimated that DCNs power usage has doubled between 2000 and
2006 [16]. This trend is likely to persist between 2006 and 2011, rendering
the DCN’s energy budget a major cost. In response to this, numerous pro-
posals for energy-efficiency at various levels of the DCN have been studied
and proposed. In addition to advances in energy-efficient server designs [17],
other studies have addressed ways to dynamically monitor the DC network
traffic load in order to balance it and optimize the DCN power consump-
tion. Virtualization is perhaps the most promising approach, whereby DCN
resources are logically partitioned (or “sliced”) and provided to users as vir-
tual machines (VMs). Simply put, virtualization is a means through which
the same amount of processing can be run on fewer servers by increasing
server utilization, therefore allowing more efficient use of DCN resources.

While previous work has surveyed research efforts in DCNs, such the
the comprehensive work by [2], our work focuses on the two interrelated
issues of DCN architecture and its energy efficiency. Our work differs from
[2] in both the architecture of DCNs and their energy efficiency as follows.
First, the current work surveys more DCN architectures such as the one-
tier DCN architecture, the hybrid electro-optical, the full optical and the
passive optical-based DCN architectures. Second, the current work covers
more energy efficiency related research efforts in DCNs. We also provide
a comparative study (Section 6) on energy efficiency in DCNs. We further
provide a survey and a comparative study of the most adopted testbeds and
simulation tools for DCNs.

The remainder of this article is structured as follows. Section 2 revisits
conventional data center architecture and design. We describe the multi-tier
DCN topology and discuss the main challenges facing conventional DCNs.
In Section 3, we survey most recent advances in DCNs and we classify these
architectures into switch-centric and server-centric topologies. We also cate-
gorize these proposals based on their underlying technologies into electronic
DCNs, full optical DCNs and hybrid electro-optical DCNs. Section 4 pro-
vides a qualitative comparison and discussion of the DCN architectures. In
Section 5, we conduct a detailed study of energy efficiency in DCNs including
the various recently proposed techniques such as virtualization, energy-aware
routing, dynamic voltage/frequency scaling, dynamic power management,
renewable energy, cooling, etc. In Section 6, provides a comparative study
of existing efforts in DCN energy efficiency and optimisation. Section 7, sur-
veys some of the most adopted testbeds and simulation tools for DCNs. In
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Section 8, we provide some insights and outline potential futures research
directions in DCNs. Finally, Section 9 concludes the article.

2. Conventional Data Center Architecture and Challenges

2.1. Conventional Data Center Design

The classic data center design architecture [3] [18] consists of switches
and routers in two or three tier hierarchal structure as shown in Figure 1.
The hierarchy in the case of three tiers consists of layer-3 with border routers,
layer-2 with aggregation switches, and layer-1 with Top of Rack (ToR) access
switches. A ToR switch usually connects 20-40 servers placed in a rack with
1Gbps link, and for redundancy each ToR is connected with two aggregation
switches which in turn connect with the core layers through multiple high
speed 10 Gbps links. The aggregation layer provides and manages many
functions and services such as spanning tree processing, default gateway
redundancy, server to server traffic flow, load balancing, firewall and more.
Core routers/switches, running 10Gbps high-speed links, are at the top of the
hierarchy. These are used for traffic going in and out of the data center. The
Core routers/switches also run well-known routing algorithms such as Open
Shortest Path First (OSPF) or Enhanced Interior Gateway Routing Protocol
(EIGRP) and can load balance traffic using Cisco Express Forwarding based
hashing algorithms between core and aggregation layers [3]. Unfortunately,
the hierarchal three tiers DCN structure suffers various issues as will be
discussed next.

2.2. Conventional Data Center Challenges

Several challenges [2] and issues appeared with conventional data centers
which have led many researches to explore and intensively study alternative
designs and approaches to provide scalable, fault tolerant and efficient data
centers. One of the most important performance handicaps that could lead
to congestions is oversubscription. Oversubscription is the ratio between the
servers’ bandwidth to the total uplink bandwidth at the access layer. Hence,
as moving up to aggregation and core layer, the number of servers sharing
the uplinks increases and hence the oversubscription ratio also increases and
results in bottlenecks. Oversubscription limits the server to server capac-
ity where the ratio should be 1:1 so hosts can communicate with their full
network interface bandwidth. On the other hand, congestion resulting from
oversubscription could also lead to overloading switch buffers which will in
turn start dropping packets. Hence, another issue arises because of the lack
of a mechanism to avoid packet drops at congested switches. Moreover,
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Figure 1: Conventional Data Center.

congestion can also occur at a switches where simultaneous transmission of
packets from multiple senders arrive at the same time, switch gets overloaded
and starts to drop packets leading to TCP timeout and hence a collapse in
TCP throughput, known as TCP incast. Many approaches to mitigate the
issues of incast and congestion are covered in details in [19][20][21][22][23].
Other challenges introduced with classical data center network such as the
lack of fault tolerance especially at the upper levels of the tree due to the
low physical connectivity. Hardware failures in the core or aggregation layers
will result in sharp degrade of overall network performance. Additionally,
poor utilization of resources occurred because of the fact that within layer-
2 domain, Spanning Tree Protocol (STP) only uses one path even though
multiple paths exist; in addition to that another issue with load balancing
arises since traffic cannot be evenly distributed over paths within core and
aggregation layers.

The fast growth of DCNs has triggered the issue of power consumption
due to the high number of power hungry devices and cooling systems. Most
of these devices are underutilized, as statistics has shown that a typical
utilization of a data center is only 30% [24]. Hence, dynamic reassignment
of resources among servers running on the data center is an optimal solution
to consolidate most jobs on 30% of the servers while being able to shut down
the other unused servers and hence save power. The ability to assign any
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server to any service without considering topology is called Agility. This is
another challenge in conventional data centers and will be covered in details
in subsequent sections.

3. Data Center Architectural Evolution

Numerous problems in conventional data centers have driven researchers
to propose and design various data center architectures to solve these issues.
Data centers can be categorized mainly in two classes, the switch-centric and
the server-centric. In switch-centric, switches are the dominant components
for interconnection and routing whereas in server-centric, servers with multi-
ple Network Interface Cards (NIC) exist and take part in routing and packet
forwarding decisions.

The conventional data center is a switch-centric design. Other examples
of switch-centric include VL2 [6], Portland [5], Fat-tree [4], and Monsoon [10].
Server-centric topology also attracted great interest by researcher and many
designs were proposed such as Dcell, Bcube, and FiConn. These topologies
and designs are based on packet-switched electronic networks, however; hy-
brid electro-optical packet switch along with full optical solutions were also
proposed and implemented for low power consumption and high bandwidth.

3.1. Switch Centric Data Center Architectures

In this section, the most well-known switch centric data center designs
such as fat-tree [4], portland [5], VL2 [6], and one-tier Qfabric [25] shall
be covered. Such designs rely on switches for interconnection and traffic
routing. The different design choices in the switch centric class came to
resolve many issues that existed with the conventional data center. These
issues, as shall be explained in subsequent sections, are oversubscription,
agility, load balancing and high power consumption.

3.1.1. Fat-Tree

The fat-tree topology [4], depicted in Figure 2, consists of k pods, each
of which consisting of k

2 edge switches and k
2 aggregation switches. Edge and

aggregation switches connected as a clos topology [26] and form a complete
bipartite in each pod. Also each pod is connected to all core switches form-
ing another bipartite graph. Fat-Tree built with k-port identical switches
in all layers of the topology and each of which supports k3

4 hosts. Fat-Tree
IP addresses are in the form 10:pod:subnet:hosted. With Fat-Tree topology
issues with oversubscription, costly aggregation and core switches, fault tol-
erance, and scalability are resolved. Fat-Tree established a solid topology for
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Server Switch

Figure 2: The Fat-Tree Topology with k = 4.

researchers to work on to solve other important issues such as agility through
virtualization.

In Fat-Tree, the issue of address lookup time was studied and a two table
lookup approach was proposed to replace the longest prefix match which is
found impractical with data centers having hundreds of thousands entries for
routing tables. Two level routing table and address lookup were implemented
using specialized hardware; Ternary Content Addressable Memory (TCAM)
which can store addresses and also perform parallel searches among its en-
tries. Basically, address lookups are done in two steps; first the lookup engine
does a lookup on the TCAM to find the longest matching prefix. Then the
matched address is used to index the SRAM which holds the information of
the IP address and output port to reach the intended destination. It is also
worth mentioning that routing tables are meant to be static to avoid delays
that may occur from routing table updates but on the other side CAMs are
seen as power hungry components and have low storage density and also may
introduce considerable cost.

3.1.2. VL2

VL2 was proposed in [6] and considered as a solution to overcome some
of the critical issues in conventional data centers such as oversubscription,
agility and fault tolerance. VL2, shown in Figure 3, exploits a uniform
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Server Switch

Figure 3: The VL2 DCN architecture.

high capacity from server to server, supports VM migration from server to
server without breaking the TCP connection and keeping the same address.
It is very similar to the three-tier architecture DCN proposed by Cisco,
except that it implements a clos topology (low cost ASICs) between core
and aggregation layers to provide multipath and rich connectivity between
the two top tiers. The architecture design of the VL2 topology enhances
the availability and reliability of the network, especially in the presence of
link or hardware failures. VL2 employs Valiant Load Balancing (VLB) to
evenly load balance traffic flows over the paths using Equal Cost Multi Path
(ECMP). VL2 also employs TCP for end to end congestion control. As
additional advantage is that VL2 can be easily implemented on low cost
existing commodity switches since it uses already existing ECMP for packet
forwarding and link state routing for topology updates. VL2 will be revisited
later in this article with further details on agility and virtualization capability
to improve energy saving contribution for green data centers.

3.1.3. Portland

The Portland DCN topology, proposed in [5], is similar to VL2 in that
both are based on a Fat-tree [4] network topology. Portland, depicted in Fig-
ure 4, consists of three layers: edge, aggregation and core. It is built out of
low cost commodity switches. They both differ in the way of associating and
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Figure 4: The Portland DCN Topology.

separating names from locators but both at the end aim at providing agility
among services running on multiple machines. Both reduce broadcast by
intercepting Address Resolution Protocol (ARP) requests and employ a uni-
cast query through a centralized lookup service. Portland imposes additional
requirements on the switch software and hardware unlike VL2 where imple-
mentation only takes place in the servers’ network stack. A deeper look into
the methodology imposed by Portland for agility and virtualization support
shall be covered in details in section 6.1. For load balancing, Portland and
VL2 employ flow hashing in ECMP; except that VL2 employs VLB which
before forwarding a packet, it randomly selects an intermediate switch. This
was found to be impractical in the case where two hosts, connected to the
same edge switch, want to communicate.

3.1.4. One-Tier Fabric Architecture

Flattening three-tier tree structure to one tier fabric is an existing solu-
tion proposed for modern data center architecture as introduced by Juniper
[25]. Juniper Qfabric architecture as shown in Figure 5 has flattened the data
center network and simplified the management of the data center by reduc-
ing the number of switches. Furthermore, since there is no tree structure,
there is no need for multiple hops traversing between any communicating
nodes within the network. The location of hosts is not any more an issue
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Figure 5: The Qfabric architecture [27].

since the network diameter and the shortest path between any two com-
municating nodes is always equal to one and no more oversubscription or
congestion issues are arising and all nodes can benefit from their all line card
bandwidth.

The Qfabric single logical switch has an added value to the DCN since it
reduces the complexity, operational cost, cooling cost, occupied floor space
and power consumption. The Qfabric supports high speed server to server
connectivity with low latency which makes it an attractive structure for
modern data centers hosting delay sensitive applications. It also smoothen
the process of virtualization among servers within the data center leading to
great energy savings. Qfabric could reduce power saving to less than 77% if
the reduced number of switches, links, cooling systems are considered along
with applying other energy saving techniques such as virtualization among
data center resources [27]. Consequently, Qfabric is considered to be a green
data center architecture that can contribute to reducing carbon footprint in
the environment.

3.2. Server-Centric Data Centers

Unlike switch centric designs, server centric designs appeared to use
servers to act as relay nodes to each others and participate in the traffic
forwarding. Server centric schemes such as Bcube [8], Dcell [7], and Ficonn
[9] can provide low diameter compared to switch centric schemes, can pro-
vide high capacity and support all types of traffic, especially for the intensive
computing applications with very low delays. In this section, an overview
of Bcube, Dcell, and Ficonn server centric schemes shall be described along
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with their properties.

3.2.1. BCube

BCube [8] is an example of server-centric DCN structure which consists
of servers equipped with multiple network ports connecting multiple low
cost mini switches. In BCube, servers are not only hosts but they also
act as relay nodes for each other and take part in traffic forwarding through
multiple parallel short paths between any pair of servers. The design is driven
by demands for intensive computing and higher bandwidth requirements to
support applications for different traffic patterns such as one to one, one to
many, one to all and all to all. BCube supports and accelerates all types of
traffic patterns and provides high network capacity due to its low diameter.
The benefits of BCube design is that it can provide fault tolerance and load
balancing and while requiring lower cooling and manufacturing cost. BCube,
as shown in Figure 6, can be constructed in a recursive manner starting at
BCube0 as its basic building block, which is built around n-servers connected
to n-port switch. Then, BCube1 is built out of n-BCube0 each of which has
n-servers. A general BCubek is constructed recursively, as before, based
on BCube(k − 1). For detailed construction of a general BCubek topology,
readers are referred to [8].

BCube employs source routing protocol (BSR) when existing routing pro-
tocol such as Intermediate System To Intermediate System (IS-IS) and OSPF
cannot scale to thousands of servers. BSR can utilize high multipath capac-
ity and also load balance the traffic automatically. With BSR, the source
server controls the selection of the path without coordination with interme-
diate servers which is only responsible for forwarding received packets based
on information obtained from the header. BSR probes the network to select
the best path which eliminates the need of frequent link state broadcasting
which is not scalable since the network consists of 1000s of servers.

3.2.2. DCell

DCell [7] is another server-centric structure for data center that can pro-
vide desirable properties to overcome issues with scalability, fault tolerance
and network capacity. As illustrated in Figure 7, DCell is a structure with
rich physical connectivity among servers and switches and replaces expen-
sive core and aggregation switches with mini low cost switches. However,
additional cost introduced because of additional and lengthy wiring commu-
nication links between switches and servers.

Similar to BCube [8], large DCells are recursively constructed from smaller
DCells, with DCell0 as the initial building block. A DClell0 is constructed
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Server Switch

Figure 6: The BCube Topology.

by connecting n servers to one low cost mini-switch with small port count.
A DCell1 consists of (n + 1) DCell0, where every DCell0 is connected to
every other DCell0 in full mesh fashion as depicted in Figure 7. Servers
in a generalized DCell topology have two interfaces each, one connects to
its mini-switch and the other interface is connected to another server in a
neighboring DCell0. Any two servers with 2-tuples [i, j − 1] and [j, i] are
connected with a link to every i and every j > i [7]. As an example, in
Figure 7, server with tuple [4, 1] shall be connected to [1, 3].

DCell is a scalable network structure which can be expanded gradually
without a need for re-wiring or changing addresses. DCell networks with k
equal to 3 can be scaled up to accommodate millions of servers. DCell em-
ploys a distributed fault tolerant routing algorithm designed to well exploit
the DCell structure/topology, with fault tolerance capability in the presence
of various types of failures such as links, servers and/or racks [7].
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Figure 7: The DCell DCN Topology.

3.2.3. Ficonn

Ficonn [9] employs an interconnection structure using commodity servers
and switches to establish a scalable data center network. It differs from
BCube and DCell by making use of the two built-in Ethernet ports in the
servers to establish connections and load balance traffic on two outgoing
links through a Traffic Aware Routing algorithm (TAR). The throughput
and routing path length can be severely affected by changing network condi-
tion. The TAR in Ficonn has the capability to monitor link capacities and,
based on information obtained on the status of network condition, it adapts
accordingly.

The construction of the Ficonn interconnection can be demonstrated and
explained as shown in Figure 8 where the Ficonn physical topology consists of
FiConn2 with n = 4. FiConn2 is composed of 4 FiConn1, and each FiConn1
is composed of 3 FiConn0. There are three different level-links to constitute
the interconnection within the topology, level 0 link connects each server
with its switch within the same Ficonn0, level 1 or level 2 links connect the
second port of the server to either another server within the same Ficonn1
or a server in another Ficonn1 within Ficonn2.

Ficonn is found to be scalable since its number of servers can be scaled
up and increased exponentially with the increase of levels. The number of
servers (N) can be calculated from; N = 2(k+1)

∗ (n4 )
2k , For n > 4 where n is
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the number of servers in FiConn0. Also Ficonn has a relative small diameter
with an upper bound of 2(k+1)

− 1, which makes the structure suitable for
real time applications. Most attractively, the Ficonn’s cost is much less than
other topologies since it employs less number of switches and most relies on
servers and efficient routing algorithms for switching and packet forwarding.

Ficonn1[0]

Ficonn1[1]

Ficonn1[2]

Ficonn1[3]

Server Switch

Figure 8: The Ficonn Topology.

3.3. Optical Data Centers

In 2009 vision and roadmap report estimated a 75% of energy saving
can be obtained if data center infrastructure moves toward full optical net-
work [28]. Optical interconnect schemes in data centers mainly relies on
a mixture of active and passive optical devices to provide switching, rout-
ing, and interconnection. Such devices are Tunable Wavelength Convert-
ers (TWC), Optical Amplifier, Arrayed-Waveguide Grating (AWG), Micro-
Electro-Mechanical Systems Switches (MEMS), Wavelength Selective Switch
(WSS), Couplers, Splitters and Combiners. Optical interconnect schemes are
mainly classified into two categories, the hybrid scheme where optical along
with the electrical switches are considered in the design to constitute the fab-
ric interconnection, and the full optical network where only optical devices
are employed. An insight of each scheme shall be presented in this section
with a demonstration of the architecture and main properties of the most
well-known schemes such as Helios, C-through and Petabit.
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3.3.1. Hybrid Electro-Optical Data Centers

3.3.2. Helios

Helios is a hybrid Electronic/Optical switch architecture for modular
data center proposed by [29] as a design to reduce the number of switches,
number of cables, cost and power consumption while maintaining full bi-
sectional bandwidth at minimum oversubscription ratio. Helios is a two-tier
network consisting of ToR and core switches. The ToR switches are electronic
packet switches while the core switches are a combination of optical and elec-
tronic switches. The electronic switches are used for all to all communication
among pods, while the optical ones are used for long lived high-bandwidth
communication. Each ToR switch has two types of transceivers: 10G color-
less for connecting pods to electronic core switches and Wx10G (where W
can be from 1 to 32 and it is the number of wavelength multiplexed) for
connecting pods to optical core switches.

The optical circuit switching in Helios relies on MEMS [30] technology.
MEMS consists of crossbar fabric made of mirrors which can direct light
beams from inputs to outputs without decoding or processing packets. Em-
ploying MEMS excludes the requirement of signal conversion from optical to
electronic which results in high performance and less delays. Furthermore,
MEMS consumes less power as compared to electronic switching (240mW
vs. 12.5W per port). However, MEMS has an issue with the reconfigura-
tion time (few ms) which is seen to be long. A simplified Helios topology
model consists of 64 pods, each with 1024 hosts and two core switches; one
for optical circuit switching and the other for packet switching. Depending
on communication patterns, traffic shift and assignment are done statically
between core switches through control software.

The Helios design as depicted in Figure 9 was based on three main mod-
ules for its control software: Topology Manager (TM), Circuit Switch Man-
ager (CSM) and Pod Switch Manager (PSM). Each module has a distinct
role. The TM is responsible for monitoring and estimating pods traffic de-
mands between servers. Then, it computes a new topology with optical
switch configuration to sustain high network throughput all the time. The
CSM is responsible for configuring the MEMS after receiving the graph of
traffic connection. The PSM module resides on the pod switches and has
a connection interfacing with the topology manager. The PSM maintains
statistical details about traffic sent out from its pods. Based on calculation
made by the TM for traffic routing decisions, the PSM gets the information
and routes traffic accordingly either through the colorless transceivers or the
WDM transceivers [30].
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Figure 9: The Helios Hybrid Electro-Optical DCN Topology.

3.3.3. C-Through

C-Through as depicted in Figure 10 is a hybrid packet and circuit switched
data center network architecture (HyPaC) introduced in [31]. The design
aims at supplying high bandwidth to data intensive applications through
high speed optical circuit switched network that interconnects the DCN’s
ToR switches. The HyPaC configuration, as can be seen in Figure 10, con-
sists of traditional packet switched DCN tree hierarchy with access, aggrega-
tion and core switches in the top part and in the lower part, optical circuit
switched network is used for rack to rack high-speed connectivity. Each rack
can have one circuit switched connection at a time to communicate with any
other rack in the network. For changing traffic demands over time, opti-
cal switch can be reconfigured (few milliseconds) to establish new matching
between different pairs of racks.

The traffic demands are analyzed and hence links are formulated by Ed-
mond’s algorithm [32] for best maximum weight matching to satisfy dynamic
intensive traffic requests among racks. The design relies on optical configu-
ration manager that collects traffic information from the traffic monitoring
systems placed on each host. Based on collected information, configuration
manager establishes circuit switched optical links among racks with respect
to the bandwidth requirement among every pair of racks. Once the optical
switch is configured, the ToR switches are informed about the new set up

16



Core 
Switch

Aggregation 
Switch

Access(TOR)

Circuit Switched
Optical Network

Packet Switched
Optical Network

Aggregation/Core 
Switch

Reconfigurable 
Optical Switch

Access 
Switch

Figure 10: The C-Through Hybrid Electro-Optical DCN Topology.

to route traffic via a special preconfigured VLAN that is dedicated to serve
only optical circuits.

In addition to C-Through, there were other hybrid designs such as the
Optical Switching Architecture (OSA) architecture. OSA is a recent novel
scheme for data center network presented in [33]. The OSA is closely related
to C-Through and Helios architectures except that OSA avoids using elec-
tronic components other than ToR switches. The added value of the OSA
design is that it is highly flexible because it can instantaneously adapt its
topology and link capacities whenever traffic patterns changes.

3.3.4. Hybrid electro-WDM PON Data Centers

Tomkos in [34] proposed a novel design that introduces passive optical
network devices (PON) such as Arrayed Wave Guide Routers (AWGR) in
data centers. The design scheme as shown in Figure 11 consist of Ether-
net ToR electronic switches that are used for intra rack communication and
WDM PON devices (AWGR) for inter rack communication. Each server is
equipped with Ethernet and optical WDM transceivers. WDM PON partici-
pates in offloading inter-rack traffic and eliminating additional processing on
ToR switches, hence power dissipated by TOR switches is reduced and high
throughputs between racks are achieved with low delays. Authors reported
a 10% power saving through simulation using three different traffic ratios for
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Figure 11: The Hybrid Electro-WDM PON DCN Topology.

inter-rack and intra-rack flows.

3.3.5. Full Optical Data Centers

Petabit [35][36] is a full optical switching solution for data center net-
works based on a bufferless optical switch fabric using commercially avail-
able Array Waveguide Grating Router (AWGR) and TWC [37]. The Petabit
design objective is to overcome the issues with oversubscription, bottlenecks,
latency, wiring complexity and high power consumption. The Petabit switch
flattened the network by designing one switch that is capable of connecting
all racks within the data center. The design is targeting 10,000 of 100 Gbps
ports by using one optical switch that is capable of delivering Petabit per
second capacity. The structure of the Petabit switch as shown in Figure 12
is composed of a three-stage clos network fabric with Input Modules (IMs),
Central Modules (CMs) and Output Modules (OMs), where each module
has an AWGR [36]. Multiple of AWGRs are required for the Petabit switch
since each AWGR can support few ports (128x128). Although the AWGR
is passive and not configurable, the routing path from an input to an out-
put and reconfiguration of the switch fabric are managed by TWCs which
take care of wavelength conversion and hence traffic can be routed from any
input to any output. To overcome the switch fabric reconfiguration time
delay when dealing with small packets, Petabit assembles packets in frames
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Figure 12: The Petabit Full Optical DCN Topology.

of 200ns size to allow sufficient time for fabric reconfiguration. In addition,
the Petabit switch employs an iterative frame scheduling algorithm to co-
ordinate input output traffic assignment. The performance of Petabit was
shown to be improved; with the employment of three iterations and speed
up of 1.6, the scheduling algorithm achieved 100% throughput, a detailed
description of the scheduling algorithm is presented in [36].

Numerous other full optical designs for DCN interconnection have been
presented to provide viable solutions for future data centers, allowing for
high bandwidth interconnection for especially video streaming and cloud
computing applications with acceptable reduced latency. Such full optical
solutions are like DOS [38], Proteus [39] OSMOSIS [40], Space-WL [41],
E-RAPID [42], IRIS [43], Data vortex [44], Polatis [45], OPST [46].

4. Comparison and Discussion of DCN Architectures

Over the past few years, the emergence of bandwidth intensive appli-
cations with power consumption concerns has driven the evolution of data
center architectural designs. Figure 13 depicts a classification of the most
well-known DCN architectures and their categorizations. DCNs are mainly
classified into two classes: the electronic switch centric and server centric
designs and the optical DCN designs.
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The efforts in the design of electronic data centers have succeeded to mit-
igate many dilemmas and obstacles in providing switch centric architectures
that can support fault tolerance, load balancing, agility and also overcome
high oversubscription ratios. Server centric data centers then came next to
use servers as relay nodes for each other and provide an infrastructure with
low diameter and high capacity in order to support different traffic types
for applications with intensive computing requirements. However, in server
centric designs, additional wiring cost and complexity are a result of having
servers equipped with more than one port.

Advances in the optical networking technologies in providing optical
transceivers, arrayed wave guide routers, wave division multiplexing, tun-
able lasers and passive optical devices have attracted great attention by
researchers in academia and industries to adopt these technologies to over-
come many existing issues in the design of electronic switch and server centric
data centers. The driving force for the redesign of data centers to include
optical switching along with electronic switches has become an attractive
option because of the advancement of optical technology which has brought
the prices of optical switches and transceivers down and also due to the fact
that optical switching can provide high bandwidth, low power consumption
and less complexity as compared to the designs which only include electronic
switching technology.

Hybrid schemes such as Helios and C-through are based on readily com-
mercially available optical components and can be implemented by upgrad-
ing current data centers. Helios and C-through are quite similar in the de-
sign except that C-through uses WDM links. The main drawback of hybrid
schemes is that MEMS take few milliseconds to be reconfigured, however,
MEMS were found as an attracting solution to replace high power consum-
ing electronic switches, where MEMs consume 0.24 Watts and electronic
switches consume 12.5 Watts per port. On the other hand, most of full
optical data center schemes are based on Semiconductor Optical Amplifier
(SOA) switches which can replace MEMS and sustain negligible reconfigu-
ration time. Unlike hybrid schemes, full optical schemes require a complete
change of current data center in order to be implemented. Apparently, opti-
cal data center schemes seem to be promising solutions to gradually replace
electronic data center schemes as they tend to provide low power consump-
tion and high bandwidth with low latency.
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Figure 13: Summary of Data Center Architectures

5. Energy-Efficient Data Centers

The United States (US) Environmental Protection Agency (EPA) has re-
ported in 2007 that data center power usage in the US doubled between 2000
and 2006 to nearly 61 billion kilowatt-hours, which represented about 1.5% of
all US electricity consumption [16]. The increase of power consumption will
definitely result in large carbon foot print and more emission of greenhouse
gases which are the main contributors to global warming. The IT equipment
is the most power hungry components in data centers, represented by the
servers, switches, routers and power distribution infrastructure [18]. A per-
formance metric for Power Usage Efficiency (PUE) is used to measure how
efficient a data center is in using its power and can be calculated by dividing
the total facility power by the IT equipment power consumption. The value
of the PUE can be within the range 1.2 and 2, where a PUE value of 1.2
would indicate a highly energy efficient data center [47].
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In the following sections, the followings will be presented: a concen-
trated investigation in different methods with a detailed overview of energy
saving approaches and industry adopted techniques for energy efficient data
centers such as virtualization, dynamic frequency and voltage scaling, dy-
namic network management, efficient green routing, green schedulers, net-
work scheduling schemes, and rate adaptation, smart cooling and renewable
energy.

5.1. Architecture of the Data center Topology and Power Consumption

The energy consumption of different structures of data centers with em-
phasis on energy requirement of data center architecture with respect to
transmission capability has been studied in [48]. Different topologies cover-
ing switch centric and server centric have been studied and simulated using
power consumption values of switches available in the market (Cisco and D-
link). The power consumption of a server’s port was assumed to be 3W. The
energy consumption of DCell, BCube, Fat-tree and balanced tree architec-
tures with comparable number of servers were studied in [48]. The result has
shown that balanced tree architecture consumes less power regardless of the
number of servers but it has limited transmission capacity because it has a
server in the root that becomes a throughput bottleneck. DCell and BCube
happened to consume the same amount of energy for small sized data centers
consisting of about 2500 servers. However, Bcube consumes more energy for
larger data center if the number of servers is to be increased to more than
5000. On the other hand, Fat-Tree structure topology was found to have
moderate power consumption values between Dcell and Bcube.

5.2. Virtualization

Starting with virtualization since it has given a great attention by re-
searchers and being the mostly adopted technique for data centers power
saving [49]. Virtualization is a method to enable services to be moved be-
tween servers and have mutiple VMs Machines which can serve different
applications multiplexed to share one server. Knowing that idle servers con-
sume about 66% of its peak and having in mind that data center resources
are underutilized since the average traffic load accounts for about 30% of
its resources [24], agility can achieve servers statistical multiplexing and give
the illusion to services to make them feel that they all connected to the
same switch. Hence, servers can be placed anywhere within the network and
be assigned to any service. The migration of virtual machines to consoli-
date workloads on a set of servers and then by shutting down underutilized
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servers could definitely lead to a great power saving in data centers. How-
ever, many barriers [1] like VLANs, access lists (ACLs), broadcast domains,
and Load Balancers (LB) were standing as an obstacle and prevented re-
searchers and industries from immediate implementation of VM migration
(agility) on conventional data centers. The static network assignment be-
tween servers and services in conventional data centers prevent idle servers
from being assigned for overloaded services thus resulting in underutilization
of resources [2]. VL2, for instance, can be implemented on existing hardware
and can still provide high load balancing. The main objectives of VL2 are
providing agility among servers via the use of special flat addressing scheme
that separate server names (AA) from their locations (LA), then mapping
between the AA and LA can be managed and handled by a directory system.

LAs are addresses assigned to switches and interfaces (network infras-
tructure) while applications are assigned with permanent AAs. AAs remain
unchanged no matter how servers’ location changes because of the VM mi-
gration. Each AA is associated with LA which is the IP of the ToR switch to
which the application server is connected. The sender server, before sending,
must encapsulate the packets in the outer header with the LA of the destina-
tion AA. Once packets arrive to the LA (ToR), the ToR switch encapsulates
the packets and sends them to the destination AA [6]. All servers believe
that they all belong to the same subnet, hence when any application sends
a packet to AA for the first time; the servers’ network stack broadcasts an
ARP request [6]. The VL2 agent intercepts the request and sends a unicast
query message to the directory server which replies with the LA of the ToR
switch where packets should be tunneled.

Portland [5] has proposed another way to solve the agility issue in data
centers. Portland, just like VL2, is based on a Fat-tree network topology
and consists of three layers: edge, aggregation and core. Both separate
names from locators and reduce broadcast by intercepting ARP requests
and employ a unicast query through a centralized lookup service. Portland
assigns Pseudo MAC (PMAC) to all end hosts to encode their positions
within the topology and it is changed whenever the location of the host is
changed. The Portland fabric manager is used for centralized lookup services,
it is used to reduce broadcast overhead from the network and it works in the
following manner: The switches intercept the ARP requests for IP to MAC
mapping and forward a unicast query to the fabric manager which then
provides the requested information to the switch. The switch then forwards
it to the requesting end host. In the case where the mapping details are not
available, the fabric manager broadcasts to the core/aggregation/edge/hosts,
host which will reply with its AMAC which will be rewritten by the egress
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switch to the appropriate PMAC before forwarding to the requesting host
and the fabric manager [2].

According to the EPA study, the servers are found to be the most hungry
power parts of the ICT components of data centers since they contribute
about 40% of total electricity consumption [16]. The agility was mainly
proposed to reduce the cost of power consumption by low utilized servers
and to facilitate an efficient use of data center resources. By introducing
virtualization, the services are able to be moved between machines and have
the illusion that all the servers assigned to them are connected by the same
switch and hence allow a smooth migration among servers without changing
the IP address or any occurrence of TCP disconnection. Two methods were
presented to achieve agility in current data centers via the implementation of
VL2 [6] or Portland [5] designs respectively. Researchers [50] have proposed a
method to optimize data center resources through dynamic consolidation of
VMs on few servers while putting the rest on sleep state and hence bringing
substantial energy savings while providing the required Quality of Services
(QoS).

The migration of VMs is optimized by selecting the VMs to be relo-
cated on the basis of heuristics related to utilization thresholds. By set-
ting up predefined thresholds values and through a continuous monitoring of
the servers’ resources utilization, a decision of migrating VMs can be taken
if these thresholds are exceeded. This results in a better performance for
servers and also in lower power consumption because of the overheating and
the cooling system. On the other hand, VMs migration will also take place
if servers’ resources utilization is below certain predefined threshold values,
which will allow for shutting off these servers and save the power consumed
by an idle device. The system structure as shown in Figure 14 [50] consists
of a dispatcher, global and local managers. The local manager role in the
structure is to monitor the thermal status and resources utilization of the
network devices [51]. Based on the local manager observations, it sends to
the global managers the collected information about the utilization of re-
sources and the VMs that have to be migrated, when the global managers
become responsible for issuing commands for live migration of VMs, resizing
the network and hence eliminating servers by switching them off. Another
measure of VMs migration decisions carried by the local manager is the
VMs that have intensive communication with other VMs that are allocated
in different physical hosts.

Workloads corresponding to web applications and online services have
been simulated in [50]. Results show that dynamic consolidation of VMs
brings substantial energy savings that is close to 83% while providing the
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required QoS. Consequently, this results in a user’s enhanced Quality of
Experience (QoE) [52]. The VM migration in data center can generate a
significant amount of overhead traffic passing from one server to another;
hence an efficient method for migration should be taken into account to
avoid unnecessary congestion of the network links that may occur. A study
[53] investigated the effect of overhead traffic resulting from live migration
on a realistic web 2.0 application hosted on networked virtual machines with
several load samples and experimental results have shown that live migration
overhead is acceptable but cannot be disregarded.

Having network resources into consideration while migrating VMs, [54]
has discussed the impact of VM live migration on network resources and how
to control the traffic overhead caused by live VMs migrations. A network
aware scheduling for live migration of VMs is introduced in [54]. It catego-
rizes VMs according to their workload size and duration with an emphasis
on hosts’ utilization. Adequate resource and migration scheduling models
for each class were also introduced [54], taking into account bandwidth re-
quirement for the migrations and network topologies to ensure that load
generated from VMs migration will not cause network congestion.

SecondNet [55] is a virtual data center network architecture that can be
built on top of many existing data center network topologies such as fat-tree
[4], VL2 [6], and Bcube [8]. In SecondNet, a central Virtual Data Center
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(VDC) manages the VM requests and controls virtual to physical mapping
with guaranteed bandwidth reservation. Neighboring servers are grouped
into clusters, so that when VM requests are received, VDC allocation requires
search in specific cluster instead of searching in the whole network, which
reduces the time complexity. In addition, grouping servers into clusters can
place communicating VMs in the same cluster or within a close distance
which is in fact more bandwidth efficient. The VDC manager uses spanning
tree for signaling and devices also uses the spanning tree to deliver failure
messages to the manager VDC which in turn changes the routing paths
and reallocate VMs if required. Path reallocation can be done in seconds
where VM migration takes tens of seconds. Simulation results have shown
that SecondNet provides a guaranteed bandwidth along with high network
utilization.

A method for VM placement has been proposed in [56] to minimize the
distance between VMs with large mutual bandwidth to reduce load at aggre-
gation and core switches and to avoid unnecessary consumption of network
resources. The authors of [56] defined the Traffic-aware VM Placement Prob-
lem (TVMPP) as an optimization problem, having traffic matrices and cost
among VMs as the input. The heuristic algorithm to solve the TVMPP
works in two tier approach, first it partitions the VMs and hosts into clus-
ters, then it matches the VMs and hosts with respect to traffic matrices and
cost among VMs. [56] has investigated four known data center architectures;
Tree, Fat-Tree, VL2 and Bcube under different traffic patterns. The results
have shown that the benefits of the TVMPP relies on the network archi-
tecture. Since the VL2 architecture deploys valiant load balancing, it has
shown results with minimal benefits where Bcube shows more benefits.

Finally, virtualization and live VM migration are widely adopted for re-
source allocation because of the fact that this technique can lead to consider-
able energy savings in data centers. Nevertheless, the effects this could cause
to the network performance in terms of delay and throughput require careful
considerations. A study on Amazon data center to measure the impact of
virtualization on network parameters such as throughput, packet delay, and
packet loss has been conducted in [57]. This study shows that, although data
center is underutilized, virtualization can cause delay variation and through-
put instability. Hence, further studies are required on how to customize
applications to achieve good performance on virtualized data centers.

5.3. Energy-Aware Routing in Data Centers

The objective of energy aware routing is to save power consumption via
putting idle devices on sleep or shutting them down and using few network
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devices to provide routing with no sacrifice on network performance. Net-
work devices consume 20%-30% of the energy of the whole data center [58].
In [59], an energy aware routing model was proposed and described as ERP-
1: (G, T,K), where G is the topology, T is the traffic matrix and K is a
predefined threshold of network throughput. The objective is to find a rout-
ing for a specific topology where the total number of switches involved in
the routing can sustain a network throughput that is equal to or higher than
the defined threshold.

A knapsack problem approach is used to optimize the number of nodes
that should be part of the routing for a number of flows while maintaining a
throughput level not less than a predefined threshold value [59]. The authors
proposed a heuristic routing algorithm made of three modules: Route Gener-
ation (RG), Throughput Computation (TC), and Switch Elimination (SE).
Basically, the algorithm first computes the network throughput through basic
routing. Then, it gradually removes switches until the network throughput
approaches the predefined performance threshold. Finally, it powers off or
puts on sleep mode the switches that are not involved in the final routing.
The output of the heuristic shall consist of a (R,G) tuple where R is energy-
aware routing chosen for T, and G is a final topology with SE. Three modules
are executed repeatedly until the best acceptable performance threshold is
achieved and, in each round, some switches and links are eliminated then
routing is generated for T in the updated topology G.

27



5.4. Dynamic Voltage/Frequency Scaling (DVFS)

The frequency and voltage scaling represents another method to re-
duce servers power consumption, where there is a relation between volt-
age/frequency and the power consumed as described by: P= V2 *f , (f is the
frequency, V is the voltage and P is the power). The servers’ memory, bus,
I/O resources and disks power consumptions are not affected since they do
not rely on the CPU frequency. Still, a significant saving can be achieved by
reducing power via reducing frequency or voltage supplied to the processing
chips [18]. In order to implement the DVFS technique on computing devices
such as servers, hardware support for Advanced Configuration and Power
Interface (ACPI) power management is required. The ACPI has four modes
of power states: G0 for power-on, G1 for partial sleeping that subdivides
into four states, G2 is for soft-off except with having the Power Supply Unit
(PSU) still supplying power and G3 for power-off state [60].

Researchers in [61] proposed PowerNap, which is a system that dynami-
cally and rapidly responds to instantaneous workload and makes transitions
between the active and the idle states. PowerNap detects Lower Power Idle
(LPI) state that discovers servers that have been idle for long period to put
them in low power states and also to minimize the response time in case of
transition between states. The authors introduced the concept of Redundant
Array of Inexpensive Load Sharing (RAILS) that facilitates the sharing of
power draw among multiple power supplies and guarantees zero power draw
in idle states which results in saving up to 66% of servers’ consumed idle
powered. The authors claimed that through the implementation of RAILS
and PowerNap power consumptions by servers can be reduced to 74% [61].

5.5. Rate Adaptation in Networks

Similar to the servers, DVS can be applied to links and switches to reduce
power consumption. With respect to traffic patterns and link utilizations,
data rate can be reduced by applying DVS on transceivers and ports. The
energy consumed by a switch can be defined as [18]:

Pswitch = Pchasis + nlinecards × Plinecard +
∑R

i=0 nports × Pr, where Pr is
the power consumed with respect to rate.

An ethernet link dissipates 2-4W when operating at 100Mbps-1Gbps and
can dissipate 10-20W when operating at 10Gbps. Hence, lowering the oper-
ating data rate could have a dramatic effect on power saving in data centers
[62]. However, a keen care has to be taken into consideration while low-
ering down the rate to keep the overall performance of the network intact
which can be caused by congested links. The authors in [62] proposed two
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approaches for rate adaptation; optimal and practical approaches. The op-
timal approach assumes a full knowledge of future traffic arrival time, link
rates and packet delay. Hence, the service curve is chosen to be the optimal
for minimizing energy consumption and shall be the arrival curve which is
shifted in time by the accepted delay bounds. On the other hand, the prac-
tical approach makes use of the history of previous packet arrival rates and
chooses the rates among a predefined rate set. For queuing delay estimation,
the practical approach relies on link buffer size and the rates. In summary,
the rate shall be increased to ri+1 for if the current queue size divided by the
current rate is bigger than the delay time. A decrease of rate to ri−1 shall
be enforced if the queue is empty and the arrival rate is lower than ri−1.
The authors proposed an algorithm to monitor the queuing delays in order
to adapt the rates accordingly and achieve a steady state without creating
large queues and delays.

5.6. Dynamic Power Management (DPM)

Dynamic Power Management (DPM) is a method used in data centers to
reduce power consumptions of some IT infrastructure components by switch-
ing them off or by lowering the power state when inactive. Such components
can be the NICs, access switches, aggregation switches, and servers as well
[63]. Putting network elements to sleep is not a new idea; it has been already
implemented for microprocessors and smart phones. The idea is to put line
cards on sleep one by one then to put route processor and switch fabric on
sleep if all line cards are on sleep [62]. Measures and considerations for mod-
eling a network sleep state should take care of power draw of sleep state over
idle state, transition time in and out of a sleep mode, and the method to
enter and exit a sleep state [62]. The Wake Up on Arrival (WOA) method
was proposed in [64] for green internet is another example deployed for data
center routers. The routers shall have a sensing circuit that is left powered
on during the sleep mode, and it senses traffic arrival and hence wakes up
routers to forward and then returns to sleep if no more packets are arriving.
An issue of lost bits which arrive first to wake up the router which takes
time to transit from sleep to active mode was also solved by having dummy
packets. In [62], an issue of frequent transitions due to small packet sizes
was discussed and a solution was proposed to overcome this issue by shaping
traffic into bursts. As in Figure 15 [62], the routers arrange and maintain
packets destined to the same egress into bursts and then forward them. This
approach is called Buffer and Burst (B&B) and allows routers to sleep for
longer time and hence save more power.
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Computational Intensive
Workload (CIW)

Data Intensive Workload (DIW) Balanced Workload (BW)

• Load at computing
servers and require
almost no data transfer
in the interconnection
network fabric of the
data center.

• CIW scheduling groups
the workload at the
minimum set of servers
and routing using the
minimum set of routes.

• No danger of congestion
as long as data transfer
is low.

• No load at computing
servers and require
heavy data transfers.
(examples: video file
sharing and streaming).

• Continuous feedback
between switches and
scheduler to allow
scheduler send loads over
non congested routes

• Applications having
both computing and
data transfer
requirement

• Example of such is
Geographic Information
System (GIS).

• Scheduler accounts for
servers’ load and the
load of links.

Table 1: Data Center Workloads Classification [65].

5.7. Data Center Energy-Aware Scheduling Methods

Different approaches [18] of traffic scheduling in data centers were stud-
ied and proposed to either consolidate workloads on a few set of servers or
to fairly distribute workload on the servers. A tradeoff is always present
between energy saving and performance, hence the scheduling should always
consider delay bounds, rate threshold and buffers occupancy in order to avoid
degradation of performance while achieving a considerable saving in power
consumption in data centers. Traffic workloads are classified into three main
categories as described in [62] with the workload types in data centers and
the best way of scheduling implemented in each category.

In [65], the authors proposed Data center Energy efficient Network aware
Scheduling (DENS) whose main objective is to balance the energy consump-
tion of a data center with performance, QoS and traffic demands. DENS
achieves this objective via the implementation of feedback channels between
network switches for workloads consolidation distribution amendments to
avoid any congestion or hot spots occurrences within the network which can
definitely affect the overall performance. Congestion notification signal by
overloaded switches can prevent congestion which may lead to packet losses
and sustain the high data center network utilization.

On the other hand, the green scheduler [65] performs workload consoli-
dation on minimum possible set of links, switches, and servers and then uses
DPM to switch off unused servers and switches. Finally, round robin sched-
uler is implemented for uniform distribution of workload over all servers,
which results in underutilization of resources of data centers. Figure 16
shows simulation results for the different three schedulers: DENS scheduler,
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Figure 16: The DENS, Green and Round Robin Schedulers [65].

green scheduler and round robin scheduler [65].
The noticeable increase in energy consumption due to the increase of

number of selected servers between the green scheduler and the DENS sched-
uler can be justified by the necessity of involving extra servers and commu-
nication resources, detected by DENS methodology to keep the quality of
job execution at the desired level without congestions. DENS methodology
always avoids overloaded switches and servers by distributing the traffic load
based on switches’ queue size and servers’ loads using a special metric.

M = α× fs + β × fr + γ × fm

The DENS metric M is defined as a weighted combination of server-level
fs, rack-level fr, and module-level fm functions. The coefficients β, α, and γ

define the impact of each component (servers, racks, and/or modules) on the
metric behavior. Higher α values result in under-utilized racks being selected
by the overloaded servers. Higher values of β give priority to computationally
loaded racks with low network traffic activity, and Higher γ values favor the
selection of loaded modules [65].
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Server Switch

Figure 17: The Fat-Tree versus ElasticTree.

5.8. Dynamic Adjustments of Active Elements via Network Power Manager

5.8.1. ElasticTree

The ElasticTree as depicted in Figure 17, proposed in [58], is a fat-tree
based data center topology that consists of a network optimizer which con-
tinuously monitors traffic conditions within the data center. The optimizer
then chooses the set of network elements that need to be active in order to
meet performance and fault-tolerance requirements and switch off the re-
maining links and switches that are not involved in the routing and load
processing. Various methods are proposed in [58] to decide which subset of
links and switches to use, such methods can be greedy bin-packer, topology-
aware heuristic, or prediction methods. The experiments have shown that
savings of 25-40% of the network energy in data centers can be achieved if
ElasticTree was implemented.

The ElasticTree as depicted in Figure 19, consists of three logical mod-
ules: optimizer, routing and power control. The optimizer role is to find the
minimum subset of the network in order to satisfy traffic demands with de-
cent performance. Once the optimizer analyses the traffic matrix, it selects
the minimum set of network that needs to be on to satisfy the demands,
then it passes the information to the power and routing modules which in
turn control the switching on or off of links and select flows routing re-
spectively. The optimization goal of ElasticTree is to minimize

∑
(links +
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Figure 18: ElasticTree experimental setup for k=4 (1 NetFPGA emulates 4 servers with
1GE connection each) [58].

switch power) while meeting the capacity, demand, and flow conservation
constraints. Power saving can be calculated by finding the ratio between the
power consumed by the elasticTree and the power consumed by Fat-Tree.
Figure 18 presents the experimental setup through test bed to test and eval-
uate ElasticTree as demonstrated in [58]. In the experiments, four NetFPGA
representing 16 servers were used to generate traffic and a latency monitor
was used to monitor packet drops and delays.

5.8.2. Pcube

In addition to the switch centric ElasticTree, researchers have also inves-
tigated server centric data centers to improve power efficiency through dy-
namic adjustment of the network structure based on traffic demands. Mod-
ular server centric data centers such as Bcube can offer high bandwidth with
sufficient speed-up to support high-performance for one to one, one to all
and all to all applications. PCube [66] as shown in Figure 20 is represented
as PCube(n,k,q) where n is the number of switch ports, k is the number of
levels and q is the number of ports in each server. Pcube is an adaptive
design with capability of switching off links depending on the traffic pat-
terns within a data center. For low traffic, Pcube turns off many links and
outputs a topology with few numbers of links. Figure 20 demonstrates an
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Figure 19: The Elastic Tree System Diagram.

example for PCube(2,4,3) and PCube(2,4,4) where both host the same num-
ber of servers, but in PCube(2;4;3) 25% of switches are powered off to save
25% of the energy consumed by switches. Further reductions in the number
of switches, by switching off 8 more switches, will result in PCube(2,4,2),
contributing to a saving of 50% in switch power.

In PCube, a dedicated server acting as the network manager is respon-
sible for receiving bandwidth requirement requests from other servers and
based on that it decides on how the structure can be transformed. PCube
calculates the new routing paths for the modified structure and broadcasts
the new topology structure and routing information to all servers. The net-
work manager allows for few seconds before switching off the unnecessary
switches to ensure that all servers received the changes to the topology and
reacted upon it.

Both PCube and ElasticTree dynamically and instantaneously act on
traffic demands to select a subset of the network elements and hence reduce
power consumption without sacrificing network performance. PCube and
ElasticTree are based on the switch centric fat-tree and server centric BCube
respectively. As a comparison, PCube (BCube) provides better one-to-all
traffic support than ElasticTree and with respect to power consumption,
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Figure 20: PCube.

PCube can save 50% of power consumed by ElasticTree serving the same
number of servers [66].

5.8.3. Hierarchical Energy Optimization (HERO)

In data centers with thousands of switches, complexity is an issue in solv-
ing the energy optimization problem because of the high number of variables
and constraints needed to formulate the problem. HERO is a recently in-
troduced work by [67][68] to solve an optimization problem in a hierarchal
way to achieve similar results for power saving achieved in non-hierarchal
models. Hierarchal HERO to non-hierarchal models ratio of variables and
constraints are 35% and 40% smaller respectively. Hence a great reduction
in time complexity is achieved with HERO.

In HERO, power optimization in data centers is divided into two levels,
the core level and the pod level. In the core level optimization, core switches
that serve outgoing traffic and aggregation switches that serve for out of
pod traffic must be determined and be on active mode. While in Pod level
optimization, aggregation switches to serve intra pods traffic are determined
and put on active mode.

For a given traffic matrix, a capacity constraint multi-commodity flow
optimization (CMCF) problem is formulated for each level to determine
switches and links that should be switched off in the network while assur-
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ing connectivity and QoS. Greedy heuristics based on different criteria for
switches/links disconnection were also implemented to find additional nodes
and links that can be switched off and hence more power saving is achieved.
Simulations have been carried out for different traffic scenarios and results
have shown that the hierarchical model can achieve similar results of power
saving as with the non-hierarchical model with a great reduction in algorithm
complexity.

5.9. Energy Efficient Cooling in Data Centers

The most challenging issue in designing a data center is how to come up
with a design which can reduce overall power consumption and has less car-
bon foot print contribution to the environment. According to some studies
[69], the power consumption of the global data centers in 2007 was 330 billion
kWh. The same study claimed if no implementation on green energy meth-
ods is enforced on data centers, data center’s power consumption will exceed
1000 billion kWh by 2020 which translates to 257 MtCO2 gas emissions
[69]. As the size of data centers increases, power density and heat dissipa-
tion from servers and network equipment have also significantly increased.
The dissipated heat from these systems along with the elevated equipment
temperature must be maintained at acceptable rates for reliable operation
and to avoid any hardware failures. A break down cost analysis for a data
center has been provided in [1], stating that the amortized cost for cooling
and power distribution is about 25% of the total cost. As a result, smart
energy efficient cooling techniques for data centers have become a major and
an attractive challenge. To tackle this issue, in 2004 the American Soci-
ety of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE)
published ‘‘Thermal Guidelines for Data Processing Environments’’ [70] as a
guideline document for designers and equipment manufacturers to standard-
ize the designs of data center facility to help creating energy efficient data
centers [71].

Researchers and industries have investigated smart cooling technologies
and shown its effectiveness in saving energy in data centers. Dynamic Smart
Cooling (DSC) [72][73], proposed by HP can reduce the cooling power con-
sumption within a data center by 30 to 60%. DSC combines sensors with
control nodes that continuously monitor temperatures and consequently ad-
just air conditioning settings in parts of the data center accordingly. The fa-
cility infrastructure design along with sensor reporting values of temperature
indicate which parts of the data center is in need of cooling, instead of having
the cooling system in operation continually. The DSC was implemented in
Bangalore and achieved 40% reduction in cooling energy consumption [74].
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Schneider Electric [75][76] proposed 15 economizer modes to fully or partially
bypass the function of the compressor without effecting the performance and
reliability of the data centers, hence reducing the compressor energy use at
full operational mode. Details on the functionalities of the compressor and
the proposed technique can be found in [75][76].

A case study [77] conducted by numerical modeling to show that proper
layout of racks can result in efficient utilization of cooling systems and hence
save energy. The study has shown that slight changes in the layout and loca-
tion of the data center racks could result in imbalance in cooling load on air
conditioning units by 25%. In [78], the authors have presented a method to
control the temperatures at the racks by employing a thermodynamic model
that combines air flow control and thermal aware scheduling. The thermal
aware scheduler receives information about temperatures measurement at
the racks outlets and based on that it dynamically allocates workloads to
the servers. A model called heat flow has been proposed in [79] that can
be implemented with real time thermal aware scheduling to achieve optimal
energy efficiency. The heat flow model is designed to characterize hot air
recirculation based on temperature information collected by distributed sen-
sors. C-Oracle [80] and Weatherman [81] introduced a software infrastructure
to predict heat profiles in the data center for dynamic thermal management,
thereby obviating the need of manual static configuration of thermal load
management systems.

As presented earlier, many techniques for reducing power on idle servers
rely on shutting them down and concentrate loads on a subset of the network.
This method will cause hot spots and therefore increase the cooling cost.
Also degradation in the response time for servers to transit from off to active
mode will cause a delay and affect the overall performance. In order to reduce
cooling power, the network load has to be spread over many servers which
will result in low utilization and increase idle power. To overcome these
problems, two techniques were proposed in [82], the PowerTrade technique
for joint optimization of idle power and cooling power and the SurgeGaurd
technique to address and solve the issue of response time degradation caused
by the state transition of servers.

5.10. Renewable Energy Supply for Data Centers

The driving force of green energy efficient data center is not only related
to reducing power consumption and electrical bills but also to minimizing
the carbon foot print of DCNs to the environment. In order to achieve these
goals, industry and academia have a great interest in applying renewable
green energy sources to power data centers by using wind or solar energy
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and replacing brown energy supplied from the electrical grid. In [83][84]
a parallel patch job scheduler was proposed to maximize the usage of the
green supply while meeting the job’s deadlines. If the deadlines cannot be
met, brown energy is used and the workload is scheduled for times when
the energy is cheap. This implementation guarantees more consumption of
renewable energy and incurs low cost when brown energy is issued. Similarly,
the Hadoop [85] was proposed, a MapReduce framework for data centers,
powered by solar energy and also by electrical grid as a back-up. Hadoop
predicts the amount of solar energy that will be available, and schedules the
MapReduce [86] jobs to maximize the solar energy consumption within the
deadlines of the jobs.

Maximizing the usage of green energy for multiple data centers which are
geographically distributed has also been studied. In fact, for a geographically
distributed data center, better opportunities can be exposed to implement
greener data centers where less brown energy is consumed. A framework
[87] was proposed for request distribution within two policies. The policies
consider time zones, variable electricity prices and green energy to lever-
age data centers powered by green energy and data centers with minimum
electricity prices. Similarly in [88], a framework is presented for request
distribution policy to promote capping of brown energy under the concept
of cap-and-trade [89]. Distributed algorithms for green optimal geographi-
cal load balancing have been proposed in [90] . The distributed algorithms
proved that optimal route can be computed to route to areas where green
energy is available and therefore reduce the use of the brown energy. A dis-
cussion [91] on how to maximize green energy use in data centers through
renewable-aware management made two observations. First, request dis-
tribution policy should identify data centers powered by renewable energy
and forward as many user requests as possible to these data centers. The
second observation is to build request-level power/energy profiles that can
classify energy hungry requests and have them handled by data centers with
excess renewable energy. GreenWare [92] was proposed to maximize the
use of renewable energy. GreenWare is a middleware system that can dy-
namically dispatch incoming service requests among multiple geographically
distributed data centers, based on electricity prices and weather conditions.

6. Comparison of Energy Efficient Efforts in DCNs

Both industry and academia have heavily contributed to tackle the issue
of power consumption of the exponentially growing DCNs. In this section,
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a qualitative comparison to summarize and compare different efforts for de-
signing energy efficient DCNs shall be presented along with a classification
of these efforts as depicted in Table 2.

The architecture of a DCN plays an important role and could lead to
great savings in power budget if taken into consideration. Architectural
designs such as Portland [5] and VL2 [6] provided a solution for agility. The
introduction of PONs in the DCNs design for rack to rack communication
have enhanced the performance and reduced energy consumption for about
10% [34]. The optical-based architecture designs such as Petabit [36] and
Proteus [39] were reported to bring huge savings in power consumption that
could reach almost 75% [28]. Flattening data centers from three tiers and
two tiers to one-tier fabric such as QFabric has also reported to increase the
savings to reach 77% [27]. Numerous other efforts as presented in section 6
are also included in the summary comparison as shown in Table 2. Different
metrics have been considered in the comparison such as techniques used,
methods of evaluation and reported results of saving.

Table 2: Comparison of energy efficient efforts in data centers

Ref. Approach Methods/Techniques Evaluation Results
[48] Architecture Structure of topology Simulation Results have shown a tradeoff between

transmission capacity and power con-
sumption. Fat-Tree structure topol-
ogy has moderate power consumption
values lays between Dcell and the
Bcube.

[27] Architecture One-tier fabric prototyped Qfabric reported to save 77% by re-
ducing power consumption of links,
cooling systems, and switches.

[31][33]
[29]

Architecture Hybrid optical and elec-
trical

prototyped Reduction in power consumption when
decision is taken to route traffic
through optical switches

[38][39]
[40][41]
[42][43]
[44][45]
[46][35]
[36]

Architecture Full Optical Proteus and
IRIS are pro-
totyped only

Saving reported to reach 75%

[34] Architecture Hybrid WDM PON Simulation 10% of power saving with negligible
delay

[5][6] Virtualization Agility Testbed and
simulation

Agility implemented on Portland us-
ing additional hardware (fabric man-
ager), and by modifying servers’ net-
work stack for VL2 to allow smooth
migration of services from one machine
to another without TCP disconnec-
tion.

[50] Virtualization Dynamic relocation of
VMs

CloudSim
toolkit Simu-
lator

83% of energy saving for web applica-
tion

[53] Virtualization Live migration Testbed Effect of overhead traffic resulted from
live migration between servers for web-
applications are reported to be accept-
able but shall not be disregarded

[54] Virtualization Design of network aware
scheduler

To be imple-
mented on
commercial
data center
operator

Provided a sketch for how to include
migration control and scheduling to
the architecture. Proposed scheduler
design to categorized VMs according
to workload size and duration in order
to control and avoid congestion.

Continued on next page
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Table 2 – Continued from previous page

Ref. Approach Methods/Techniques Evaluation Results
[55] Virtualization SecondNet Virtual data

center
Testbed and
simulation

SecondNet can provide guaranteed
bandwidth along with high network
utilization. Path relocation and VMs
migrations can be done in few seconds.

[56] Virtualization Traffic-aware VM place-
ment

Heuristics Minimization of distance between
VMs with large mutual bandwidth re-
duced the load at core and aggregation
switches and unnecessary power con-
sumption is avoided.

[57] Virtualization Virtualization on Ama-
zon data center to study
its impact on through-
put, packet delay, and
packet loss.

Measurement
study on
commercial
Amazon EC2
cloud service

Study has shown considerable saving if
virtualization is implemented however
delay variation and throughput insta-
bility will occur.

[59] Energy-Aware
Routing

Routing algorithm
to balance between
throughput and switch
elimination

Algorithm Algorithm tested on fat-tree and
Bcube, results have shown that at low
network load, energy-aware routing al-
gorithm could result in significant sav-
ing on energy consumed by network.

[60] DVFS Equipping servers with
ACPI

Hardware in-
terface

The ACPI has four modes of power
states: G0 for power-on, G1 for par-
tial sleeping, G2 is for soft-off and G3
for power-off state

[61] DVFS PowerNap and RAILS Analytical
modeling
and simula-
tion on real
workload
traces

Tested on Web 2.0; PowerNap mini-
mizes idle power and transition time,
and result in almost 70% of power re-
duction. RAILS add additional 26%
of power savings if implemented with
PowerNap.

[62] Rate adapta-
tion (RA)

Optimal RA and Practi-
cal RA

Agorithms Saving with low impact on perfor-
mance

[64] DPM Wake up on arrival
(WOA)

Simulation Saving with some impact on perfor-
mance caused by transition delays

[58] DPM ElasticTree Heuristics
and testbed
with NetF-
PGA

25-40% saving of the network energy

[62] DPM Burst and Buffer (B&B) Simulation/
Algorithm

20-75% energy saving with low impact
on performance (low delays).

[67][68] DPM HERO Hierarchal
model for power op-
timization on fat-tree
DC

Heuristic HERO achieves similar results of
power saving as with the non- hierar-
chical model with a great reduction on
algorithm complexity.

[66] DPM Pcube Simulation PCube can save 50% of power con-
sumed by ElasticTree serving the same
number of servers

[65] Energy-aware
scheduler

Green scheduler GreenCloud
simulator

51.3% of power savings compared to
round robin scheduler

[65] Energy-aware
scheduler

DENS scheduler GreenCloud
simulator

49% of power saving compared to
round robin scheduler. Comparable
savings with the Green scheduler with
congestion notification to avoid loss of
packets at switches

[72][73] Energy-
efficient
cooling

Dynamic Smart Cooling
(DSC)

Experiments
on data
center

Reduce cooling power by 30-60%. Im-
plemented in Bangalore and achieved
40% of reduction in cooling power

[75][76] Energy-
efficient
cooling

15 economizer modes N/A Saving can reach 70% of yearly cooling
cost

[77] Energy-
efficient
cooling

Numerical modeling for
rack layouts

Numerical
modeling
experiments

Minor change of layout and location of
the racks would imbalance in cooling
load on AC units by 25%.

[78] Energy-
efficient
cooling

Thermo-dynamic model Simulink
simulations
with syn-
thetic and
real work-
load traces
(NASA)

Results with simulations have shown
that with the approach of combining
air flow control and thermal aware
scheduling, the temperatures at the
racks can be controlled in an efficient
and stable manner.

Continued on next page
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Table 2 – Continued from previous page

Ref. Approach Methods/Techniques Evaluation Results
[79] Energy-

efficient
cooling

Heat flow model Computational
Fluids Dy-
namics
(CFD) simu-
lation

Heat flow model implemented with
real time thermal aware scheduling to
evaluate temperature and characterize
air recirculation in data centers.

[80] Energy-
efficient
cooling

C-Oracle Software in-
frastructure

Implementation of C-oracle with ther-
mal management policies shown provi-
sion of accurate prediction in order to
manage thermal emergencies.

[81] Energy-
efficient
cooling

Weatherman CFD ap-
proach with
a prototype
model

Weatherman thermal topology aware
with different load distribution intro-
duced benefits in minimizing cooling
costs, and in the avoidance of degra-
dation under thermal emergencies.

[83][84] Renewable
energy supply

GreenSlot: A parallel
patch job scheduler

Experimental
hardware
and soft-
ware. Micro
data center
prototyped
(Parasol)

GreenSlot scheduler predicts solar
availability and guarantees more con-
sumption of green energy and decrease
brown energy consumption cost by
39%

[85] Renewable
energy supply

GreenHadoop Experimental
hardware
and software

Similar to GreenSlot, GreenHadoop
predict solar availability to increase
green energy consumption by up to
31% and decrease grid power cost by
up to 39%

[87] Renewable
energy supply

Request distribution
based on policies for ge-
ographically distributed
data centers

Heuristic and
optimization
problem

Request distribution on Geo-
distributed mirror data centers
with policies to leverage data centers
powered by green energy and assure
minimum electricity prices when
routed to grid power data centers.

[88] Renewable
energy supply

Request distribution
based on cap and trade
concept.

Cost aware
heuristic
policy and
cap-trade
optimization
problem

24% reduction in brown energy con-
sumption for only a 10% increase in
cost

[90] Renewable
energy supply

Distributed routing al-
gorithms

Algorithms Distributed routing algorithms to load
balance and to favor areas where green
energy is available.

[92] Renewable
energy supply

GreenWare Optimization
based on lin-
ear fractional
programming
(LFP)

Geographical dispatching of requests
based on electricity prices and weather
conditions to increase usage of green
energy without violating cost budget.

7. Green Data Center Simulators

Different simulation tools were developed to test and experiment the
performance and energy saving in cloud computing infrastructures such as
GreenCloud [18], CloudSim [93][94][95] and MDCSIM[96]. These simulators
differ in many aspects. A qualitative comparison using different evaluation
metrics to present key differences between the three simulators is presented in
Table 3. Important aspects are evaluated in the Table to provide insights on
which simulator to use to experiment certain criteria on power saving within
a data center. The main metrics used for the comparative evaluation are;
simulation run time, supported workload types, platform used, implemented
power saving modes and virtualization capability.
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Table 3: Comparison of Data Center Green Simulators

GreenCloud CloudSim MDCSim
Execution time Minutes Seconds Seconds
GUI implementa-
tion

Partial with network ani-
mation tool Nam

Partial with CloudAnalyst None

Platform/language C++/Tcl on NS2 Java on SimJava C++/Java on CSIM [97]
Developer/owner University of Luxembourg University of Melbourne Pennsylvania state Univer-

sity
Year Announced 2010 2009 2009
Licence Open source Open source Commercial Product
DVFS/DNS
modes support

enabled Not enabled Not enabled

Packets/event
support

Packet based simulator Event based simulator Event based simulator

Virtualization N/A Enabled N/A
TCP/IP support Full support N/A N/A
Workload sup-
port

(CIW), (DIW), and (BW) (CIW) and (DIW) (CIW)

GreenCloud [18], a packet based with TCP/IP support, built on top of
the NS2 [98] network simulator, can determine the total power consumption
by the data center components (servers, switches, and links). GreenCloud
is coded in C++ with Otcl scripting. An advantage of Greencloud is that it
has the capability of computing the power consumption with enabled saving
modes such as DVS, DNS or by enabling both modes together. However,
GreenCloud has a drawback since its simulation takes a long time, requires
high memory usage and its scalability is limited to only small data centers
[18]. GreenCloud supports the test and evaluation of different workload
types: Computational Intensive Workload, Data Intensive Workload, and
Balanced Workload. For more details on each workload type refer to Table
1.

The CloudSim [93] simulator, developed at the University of Melbourne,
is found to be one of the best simulators since it has short simulation times
and can run for large data centers scaling to hundreds of thousands of nodes
[93]. Unlike GreenCloud, where algorithms to model and simulate data cen-
ters to evaluate power saving modes such as DVS and DNS are only sup-
ported, CloudSim allows evaluating other energy saving schemes in data
centers through resource virtualization and does not evaluate energy con-
sumption by network elements. Hence, its workload is more relevant in grid
networks since it mostly concentrates on servers, the highest energy con-
suming component in the data center. The application model implemented
by CloudSim works well for computationally intensive workloads with no
specific completion deadlines. A Graphical User Interface tool (GUI) called
CloudAnalyst [93] is built on top of the CloudSim to provide simplicity for
using the simulator and visual modeling and to help determining the best
approaches for allocating resources.
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The MDCSim Simulator [96] is a commercial product and is not available
for public use unlike the GreenCloud and CloudSim simulators which are
released under open source GPL license. MDCSim is built on CSim platform
and coded using Java and C++. The MDCSim simulator is similar to the
CloudSim where both are event-driven simulators which give the advantage
of minimizing the simulation time and have the capability of simulating
large data centers. Similar to CloudSim, MDCSim is meant to monitor and
measure energy consumption for servers only and ignores communication
elements such as switches and links. MDCSim lacks accuracy since it relies
on rough estimation by employing a heuristics averaging on the number of
the received requests for a given time period [18].

8. Insights and Future Research Directions in DCNs

While considerable research efforts have been devoted to efficient DCN
design, there are numerous open questions to be addressed to keep up with
the ever growing cloud computing infrastructures. Below, we outline some
of the future research directions in DCNs.

The design of scalable cost effective and energy efficient DCNs requires a
unified view that takes into account various factors such as the architectural
choices, the transport layer and the energy efficiency. This unified vue is
perhaps largely missing in current research proposals and still to be seen. In
fact, up until now, most research efforts target one problem while neglecting
the impact of other important and related issues. An example of this is the
architecture and DCN transport design. On the architectural level, most
DCNs rely on traditional enterprise-class networking equipment designed for
traditional Internet infrastructure, which are not optimized for the levels of
agility, reliability and high utilisation required by modern DCNs. The trans-
port layer design is seeing similar practices by mainly mapping earlier solu-
tions proposed for traditional networks where performance is often traded
for generality. Therefore, a combined architecture and transport design may
be beneficial for both problems, by taking advantage of the properties and
optimisation goals of each. Most existing DCN topologies exhibit some sort
of regularity (e.g., Fat-Tree, BCube) which should be taken advantage of
in better traffic prediction and VM placement. This would not only trans-
late into scalable DCN design but also in more energy efficient DCNs. As
a result, having a unified vue of the DCN as a whole would result in a bet-
ter design of both scalable and cost effective architectures, while providing
efficient transport. This requires further research work.
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As for energy efficiency, a good architecture design should be tailored
along with efficient algorithms to address not only power consumption but
also network performance along with cost. More research efforts are required
to design energy aware routing algorithms capable of consolidating traffic on
routes to avoid underutilization of parts of the network with continuous mon-
itoring of network conditions to avoid bottlenecks and to ensure acceptable
delays for sensitive delay applications such as video and online gaming ap-
plications. Consolidation of workload on group of servers would create high
utilization on servers which will result in more power consumption for server
cooling. A study has shown that for each watt consumed by a network device
or a server, one watt is consumed for cooling [34]. Hence setting thresholds
for servers’ utilization and proper thermal monitoring would enhance net-
work performance and avoid unnecessary power consumption. More efforts
are encouraged to further study means of monitoring loads and thermal
status on servers to avoid overheating to avoid network performance degra-
dation. More investigation on the reduction of processing power of DCN
switches by promoting the implementation of PONs in data centers for not
only rack to rack communication but also for intra rack interconnections.

For geographically distributed data centers, the emphasis should be on
the implementation of content distribution networking to cache most popular
objects at data centers where most demands for those objects exist to avoid
long routes. This reduces the number of router ports used which is found
to be the most consuming elements in long haul networks in addition to
the reduction of number of amplifiers, transponders and optical mux/demux
used along the long routes. More efforts are needed to make efficient use
of renewable green energy to power few sites of geographically distributed
data centers. Achieving this requires the design of efficient energy aware
routing algorithms to forward classified tagged demands with non sensitive
delay applications to data centers supplied with renewable energy. Optimal
DCN design is a challenge since reduction in power consumption should not
jeopardize performance or DCN operational cost. More research efforts are
needed to address these challenges.

9. Conclusions

This survey provides a full review of the most recent advances in DCNs
with a special emphasis on the architectures and energy efficiency in DCNs.
We have described the conventional tree-based DCN architecture and dis-
cussed the challenges inherited from this architecture. We then surveyed
the architectural evolution in DCNs and categorized these architectures as
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switch-centric, server-centric as well as their underlying technologies into
electronic, optical and hybrid electro-optical DCNs. The switch-centric ar-
chitectures surveyed include the Fat-Tree, VL2 and Portland. The server-
centric architectures include BCube, DCell and FiConn. We have provided
a quantitative comparison and detailed discussion of current DCN architec-
tures.

In parallel to the architectural evolution in DCNs, a detailed survey of
recent advances in energy efficiency has been conducted. Techniques such
as virtualization, energy-aware routing in DCNs, dynamic voltage/frequency
scaling, rate adaptation, dynamic power management (DPM), energy-aware
scheduling methods and dynamic adjustment of active network elements in
DCNs. We have also outlined current techniques and practices for energy-
efficiency in DCNs and green data centers, including cooling techniques and
the use of renewable energy in DCNs. We have provided a detailed compar-
ison of existing research efforts in DCN energy efficiency as well as the most
adopted testbeds and simulation tools for DCNs. Finally, we have outlined
some insights for potential futures open research questions in DCNs.
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