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1. Introduction

Recently, the use of an electric ield (E-ield) to control the 

magnetic properties in multiferroic (MF) materials (converse 

magnetoelectric effect, CME [1]) rather than a magnetic ield 

generated by a current [2] or the current itself [3] has drawn 

intensive interest due to the important potential applications of 

these materials such as magnetoelectric random access memory 

(MERAM) devices [4–7] and magnetoelectric sensors [8, 9]. 

Single phase MF materials are rare in nature [10] and almost all 

of them show only a weak magnetoelectric (ME) coupling below 

room temperature [1]. Therefore, most research has focused on 

MF composites. Many papers have reported the strain-induced 

magnetization changes in a wide range of MF layered compos-

ites (ferromagnetic (FM) ilms/ferroelectric (FE) substrates) 

such as Fe-Ga/(1 1 0) PMN–PT [11], Ni80Co20/(1 1 0) PZN–PT 

(lead zinc niobate–lead titanate) [12], FeGaB(1 1 0) PZN–PT 

[13], Fe3O4/PZN–PT [14], NiFe2O4/(0 0 1) PMN–PT [15] and 

Ni/(1 1 0) PMN–PT [16].

Kim et al [17] studied the effects of the thickness and 

composition of the magnetic CoxPd1−x layer on the ME 

coupling strength. The ME constant (α) increased from 

2   ×   10−7 s m−1 to 2.5   ×   10−7 s m−1 as the ilm thickness of 

Co0.25Pd0.75 decreased from 30 nm to 10 nm. However, for 

both Co0.22Pd0.0.78 and Co0.18Pd0.0.82 compositions, α for the 

10 nm thick magnetic ilm was lower than that for the 20 nm 

thick magnetic ilm due to the change of perpendicular mag-

netic anisotropy (PMA) at 10 nm. In addition, for ultrathin 

magnetic layers (<20 nm), the magnetostriction constant (λ) 

can be strongly inluenced by the thickness [18] according to 

the formula λ = λb + λi/t, where λb is the magnetostriction of 

the bulk, λi is the interfacial contribution and t is the magnetic 

layer thickness [19]. However, the effect of varying λ with t on 

ME coupling was not considered by Kim et al.
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In this study, Co50Fe50 (CoFe) ilm was chosen to be the FM 

layer due to excellent soft magnetic properties, relatively high 

magnetostriction [20, 21] and large saturated magnetization 

[22]. The (0 1 1)-oriented PMN–PT [23] was considered as the 

FE substrate due to its large in-plane anisotropic strains. The 

effect of magnetic layer thickness on ME coupling in CoFe/

PMN–PT heterostructures was investigated over a much wider 

thickness range, from 30 nm to 100 nm. The in-plane magnetic 

anisotropies of all as-grown samples were similar, which ruled 

out the inluence of magnetic anisotropy on ME coupling.  

A record high remanence ratio (Mr/Ms) tunability of 95% was 

demonstrated in the 65 nm CoFe/PMN–PT heterostructure, 

corresponding to a ten times larger α of 2.5   ×   10−6 s m−1 than 

in the CoPd/(0 0 1) PMN–PT system [17]. The reason is a large 

transverse anisotropic strain [24] produced in (0 1 1) PMN–PT 

by the E-ield, which signiicantly contributes to the change of 

in-plane magnetic anisotropy of the magnetic layer [11].

2. Experiments

We deposited 30 nm, 45 nm, 65 nm and 100 nm thick CoFe 

ilms on the (0 1 1) PMN–PT substrate at room temperature by 

RF sputtering in a Nordiko NM2000 RF deposition system. To 

achieve a smooth surface, the substrate was cold-mounted into 

epoxy resin mixed with epoxy hardener after being wrapped 

with PMMA. The cold-mounted substrate was then polished 

on Automet grind and polish equipment using a series of polish 

suspensions. The PMMA was dissolved by acetone and then 

the sample was taken out from the hardened resin. The polished 

substrate was cleaned prior to use with acetone and IPA. The 

sputtering power, working pressure and base pressure were 

75 W, 5.0   ±   0.1 mTorr and 1.2   ±   0.2   ×   10−3 mTorr, respec-

tively. An in situ magnetic ield was applied along the (1 0 0) 

or (0 1-1) crystallographic direction of the PMN–PT sub-

strate during the growth of the CoFe ilm. The (0 1 1)-oriented 

PMN–PT (10 cm (0 1   −  1)  ×  5 cm (1 0 0)  ×  0.5 cm (0 1 1)) had 

anisotropic strains with in-plane piezoelectric coeficients 

of d31 =  −1500 to  −2000 pC/N and d32 = 500–700 pC N−1 

reported by the supplier. The PMN–PT was prepoled through 

the thickness at an E-ield of 5 kV cm−1 for 10 min before being 

used as a substrate. Conductive silver paint was used as the 

electrodes on the top CoFe surface and the bottom PMN–PT 

surface for the applied E-ield. Magneto-optical Kerr effect 

(MOKE) measurements were used to investigate the magnetic 

properties when a series of dc E-ields were applied to MF 

heterostructures. The transverse geometry MOKE system was 

used, which is sensitive to the in-plane component of magne-

tization perpendicular to the plane of laser incidence. A solid 

state laser diode of wavelength about 635 nm was used. The 

skin depth of the laser is about 10–20 nm at this wavelength 

for metallic ilms. A space was left on the CoFe surface for 

the relection of the laser. The polarizer angle was set at 142° 

so that the laser is plane polarized before falling onto the ilm. 

After relecting from the ilm, the laser beam passed through 

an analyser and was then detected by a photodetector. A well 

polished substrate surface was required to avoid the obvious 

laser scattering and thus enhance the ratio of signal to noise. 

The magnetic ield was applied along the (1 0 0) or (0 1   −  1) 

direction of the PMN–PT, while the E-ield was applied along 

the (0 1 1) direction of the PMN–PT, as shown in igure 1(a). 

The positive E-ield was referred to be parallel to the prepolar-

ization of the substrate, while the negative E-ield was referred 

to be antiparallel. The effective saturation magnetostriction 

constants (λ) were measured using a technique [25, 26] based 

on the Villari effect. Because it is dificult to directly measure 

λ of the CoFe ilm on the PMN–PT substrate, it was estimated 

by measuring the same grown CoFe ilm on a Si substrate. The 

sample was strained by bending tools with different known 

radii R, i.e. 300 mm, 400 mm and 500 mm. MOKE measure-

ments were made at each band radius. For each loop, the 

effective saturation ields Heff were taken at Mr/Ms = 0.96, 

0.97 and 0.98. These Heff values were plotted as a function of 

the inverse band radii (1/R) and then the gradient of each line 

was determined. Finally, the λ was determined from [25, 26]
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where the saturation induction μ0Ms was 2.4 T [22]. The 

Poisson ratio vs and Young’s modulus Ys for the (1 0 0) Si sub-

strate were 0.28 and 130 GPa [27, 28]. The Si substrate thick-

ness ts was 380   ±   50 μm.

To investigate the microstructure of the heterostructure, 

x-ray diffraction (XRD) measurements were made on the 

sample without the top Ag electrode using a Siemens D5000 

x-ray diffractometer with Cu Kα radiation (λ = 1.540 56 Å). 

Figure 1. (a) A schematic diagram of a CoFe/500 μm (0 1 1) 
PMN–PT heterostructure. Magnetic properties were measured by 
the MOKE system. (b) XRD spectra of CoFe/PMN–PT and CoFe/
Si heterostructures.

J. Phys. D: Appl. Phys. 00 (2015) 000000



W-G Yang et al

3

The x-ray beam before and after incidence on the specimen 

was collimated with both the divergence slit and the anti-scat-

tering slit 0.6° wide. The x-ray diffractometer was run at a scan 

speed of 0.5 deg min−1. Cross-sectional transmission electron 

microscopy (TEM) specimens were prepared by focused ion 

beam (FIB) in an FEI Quanta 200 3D. A specimen foil about 

2 μm thick was in situ lifted out by an Omniprobe and then it 

was attached to a TEM grid. Next, it was gradually thinned by 

varying the current ion beam from 0.5 nA to 30 pA. Finally, 

the fabricated TEM specimens were observed on both an FEI 

Tecnai T20 and a JEOL 2010F operating at 200 kV.

3. Results and discussion

Figure 1(b) shows a XRD result for CoFe/PMN–PT and 

CoFe/Si heterostructures. It shows strong (0 1 1) and (0 0 4) 

diffraction peaks of PMN–PT and Si substrates, respectively. 

The weak (1 1 0) diffraction peak of the CoFe ilm is seen only 

on a much smaller scale of intensity, as shown in the inset. 

This indicates that the ilms are not grown epitaxially on both 

substrates as expected.

To understand the microstructure of the magnetic ilm and 

interface in the heterostructure in more detail, cross-sectional 

high-resolution transmission electron microscopy (HRTEM) 

images are shown in igures 2(a) and (c). The heterostructure 

shows a well deined interface between the CoFe ilm and 

PMN–PT substrate. Figure  2(b) shows a uniform columnar 

growth structure of the CoFe ilm and an average columnar 

grain size of 3.3   ±   0.5 nm, which is comparable with that 

of ~5 nm in the Fe-Ga/PMN–PT system [11]. The selected 

area electron diffraction (SAED) pattern in igure  2(d) 

shows the polycrystalline structure of the CoFe ilm, and 

that the columnar grains are composed of randomly oriented 

nanocrystals. The crystalline plane of (1 1 0) in the CoFe ilm 

shows the strongest diffraction, which is well consistent with 

the XRD results for the CoFe ilm.

Figures 3(a)–(d) show the electrical dependence on the 

magnetic hysteresis loops of CoFe/(0 1 1) PMN–PT hetero-

structures for the series of CoFe thicknesses. In igures 3(a)–
(c), the hysteresis loops were measured along the (1 0 0) 

direction of PMN–PT, while in igure  3(d), the hysteresis 

loops were measured along (0 1   −  1) due to stronger coupling 

along this direction than (1 0 0). The insets show similar in-

plane magnetic anisotropy for all the samples’ thicknesses. In 

these samples, both the magnetic properties and anisotropy 

were changed greatly by the applied E-ields. In particular, 

it is noted that a signiicant anisotropy change was observed 

in the 65 nm thick sample. An initial in-plane magnetic ani-

sotropy was induced by the in situ magnetic ield. When the 

E-ield-induced strains were applied on the magnetic ilm, the 

strain-induced anisotropy change could be described as [17]

λε
Δ =

−

( − )
K

Y

v

3

2 1
 (2)

where v and Y are the Poisson’s ratio and Young’s modulus 

of the FM ilm. λ is the magnetostriction constant, about 

40   ±   5 ppm. The compressive strain ɛ created along (1 0 0) 

is estimated to be 2000 ppm [29]. Therefore, the E-ield-

induced anisotropy energy is positive along (1 0 0) and thus 

anisotropy energy increases when applying the E-ield, which 

consequently deters magnetization alignment along the (1 0 0) 

direction, i.e. the magnetic hard axis, and vice versa the ten-

sile strain ɛ created along (0 1   −  1) induces negative anisot-

ropy energy, which favors magnetization alignment along the 

(0 1   −  1) direction, i.e. the magnetic easy axis. The change of 

magnetic remanence ratio (Mr/Ms) induced by the E-ield of 

9 kV cm−1 is greatly enhanced from 46% to 95% by reducing 

the thickness of the CoFe layer from 100 nm to 65 nm, as 

shown in igure  3(f). However, when the CoFe layer thick-

ness is further reduced to 45 nm and 30 nm, the maximum 

changes of Mr/Ms are induced at the E-ields of 3 kV cm−1 

and 2 kV cm−1, respectively. For both thinner CoFe layers, 

when the E-ields increase further, the coercive ields (Hc) are 

increased signiicantly. As shown in igure 3(e), the changes 

of Hc (ΔHc) are up to 11.5 kA m−1 (144 Oe) and11 kA m−1 

(138 Oe) at the E-ields of 5 kV cm−1 and 3 kV cm−1 for CoFe 

layers 45 nm thick and 30 nm thick, respectively. Also, Hc 

increases as the E-ield continues to increase. ΔHc achieves a 

maximum of 17.5 kA m−1 (220 Oe) at the E-ield of 7 kV cm−1 

in the 45 nm thick sample, which is ive times larger than the 

Hc of 3.5 kA m−1 (44 Oe) without E-ield. The value of ΔHc is 

also much larger than the 3.5 Oe and 22.93 Oe reported previ-

ously in the CoFe/PZT system [30] and CoFeB/SiO2/PMN–
PT system [31], respectively.

The ME coupling constant α can be deined as α = μ0 ΔMr/E, 

where μ0 is the permeability of free space [32]. The value 

of ΔMr is estimated from the experimental result of E-ield 

induced Mr/Ms change (ΔMr/Ms) and saturated magnetization 

Ms (~1900 emu cm−3) taken from [22, 33]. For example, for 

Figure 2. (a), (b) Cross-sectional HRTEM image (a) and TEM 
image (b) of the CoFe/PMN–PT heterostructure. (c) Cross-sectional 
HRTEM image of CoFe/Si heterostucture. (c) inset, (d) SAED 
patterns of PMN–PT and CoFe ilm, respectively.
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a CoFe layer thickness of 65 nm, the ME coupling constant  

α = μ0 ΔMr/E = 4π  ×  10−7  ×  (1900 emu cm−3)  ×  0.95/(9 kV cm−1) 

= 2.5   ×   10−6 s m−1. To understand the effect of magnetic layer 

thickness on α, it is described as [17]

α μ ε ε μ ε ε

ε ε λλ

= Δ = ( ) × ( Δ ) × ( )

= × ( ) × ×

M E M E

n d

/ / / /

/ ij

0 r FM FE 0 r FM FE

FM FE

 (3)

where ɛFM and ɛFE represent strains of the FM and FE layers, 

respectively. dij is the in-plane piezoelectric constant of the 

FE layer and n is a constant. The experimental magnetostric-

tion constant λ remains almost constant at about 40   ±   5 ppm 

for these bulk-like ilms (>20 nm), such that λ is 29   ±   7 ppm, 

35   ±   3 ppm and 40   ±   3 ppm for the thickness 30 nm, 35 nm 

and 65 nm respectively, which is almost consistent with the λ 

of 47   ±   4 ppm reported for a 50 nm CoFe ilm [21]. The trends 

show that the value of λ gradually approaches that of bulk, as 

shown in the formula λ = λb + λi/t above, due to the reduction 

in the interfacial contribution with increasing ilm thickness 

[19]. The last term of equation  (3), dij, is also constant due 

to the same PMN–PT substrates being used. Therefore, α is 

eventually determined by the term ɛFM/ɛFE, which increases 

as FM layer thickness reduces due to the reduced relaxation 

of ɛFM in the thin FM layer. In igure 3(f), α increases from 

1.2   ×   10−6 s m−1 to 2.5   ×   10−6 s m−1 at 9 kV cm−1 when CoFe 

thickness reduces from 100 nm to 65 nm, which is consistent 

with equation (3). When CoFe thickness continues to reduce to 

45 nm and 30 nm, α increases only at a lower E-ield strength 

of 3 kV cm−1 and 2 kV cm−1, respectively. The reason for this 

is that the giant ɛFM in the thinner CoFe layers created by the 

FE layer results in domain wall pinning [34], which causes a 

signiicant increase in Hc.

Figure 3. (a)–(d) Electric dependence of magnetic hysteresis loops in CoFe/(0 1 1)PMN–PT heterostructure on thickness of CoFe layer. 
The insets show easy and hard axis loops of as-grown samples without the E-ield. (e) Absolute values of coercive ield (Hc) changes with 
CoFe thickness (f) Absolute values of remanence ratios (Mr/Ms) and ME constant (α) changes with CoFe thickness.
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In this study, α is two orders of magnitude larger than 

the 6   ×   10−8 s m−1 in the epitaxial La0.67Sr0.33 MO3/(0 0 1) 

PMN–PT system [35]. However, some large ME coupling 

constants α of 8   ×   10−7 s m−1 and 4.55   ×   10−7 s m−1 were 

recently reported in a CoPd/PMN–PT system [17] and Fe-Ga/

PMN–PT system [11], respectively. The giant coupling con-

stant is attributed to the combination of a few crucial proper-

ties: a small ilm thickness (⩽100 nm), large magnetostriction 

constant, saturation magnetization and Mr/Ms in our sputtered 

Co50Fe50 ilm and the high in-plane piezoelectric coeficient 

PMN–PT substrate with smooth surface, which provides an 

effective elastic coupling at the interface between the CoFe 

ilm and the PMN–PT substrate.

Figure 4 shows the detailed variation in Mr/Ms, Hk and Hc 

taken from the magnetic hysteresis loops measured along the 

(1 0 0) direction of the PMN–PT at each applied E-ield in 

the 65 nm CoFe/PMN–PT heterostructure. Both positive and 

negative E-ields were applied through the substrate thickness. 

The changes in the magnetic properties and magnetic anisot-

ropy induced by the positive and negative E-ields were sim-

ilar, which indicates an almost symmetric piezoelectric strain 

variation against the E-ield. With increasing E-ield strength 

from 0 kV cm−1 to 9 kV cm−1, Mr/Ms is reduced from 95.5% 

to 0.5%, while the saturation ield (Hk) is increased from 

25.5 kA m−1 to 63.7 kA m−1. The compressive strain is created 

along (1 0 0) because of the negative piezoelectric coeficient 

(d31 =  −1500 to  −2000 pC N−1), which causes the increase in 

Hk due to the positive magnetostriction constant of CoFe. The 

increased Hk forces the in-plane magnetization to rotate from 

the direction of (1 0 0) to (0 1   −  1) and thus leads the reduction 

of Mr/Ms along (1 0 0). Interestingly, Hk changed almost lin-

early with E-ield, while Mr/Ms and Hc changed signiicantly 

from 6 kV cm−1 to 8 kV cm−1, which was attributed to a high 

transverse strain from the orthorhombic to rhombohedral (R) 

phase transition induced by the E-ield [24]. To further inves-

tigate the converse ME coupling effect, the E-ield-controlled 

magnetization change is shown in igure 5 at magnetic ield H 

= 0 kA m−1. In the MOKE system, the Kerr signal measured is 

linearly proportional to the Kerr effect and thus the magneti-

zation of the ilm. Therefore, the Kerr signal is used to repre-

sent the magnitude of magnetization in the ilm. A signiicant 

change in Kerr signal is observed with variation of the E-ield, 

which provides great opportunities for E-ield-independent 

controlled magnetization. The Kerr signal change is up to 

96% from  −0.525   ±   0.003 V to  −1.027   ±   0.01 V when the 

E-ield of 9 kV cm−1 is applied, which is consistent with the 

change of 95% taken from Mr measurement.

For such strong strain-mediated magnetization, the origin 

from the large magnetostriction effect is widely reported now 

for a thick monolayer metal ilm on a FE substrate (PMN–
PT). However, there may be another potential contribution 

from the strain effect on interfacial coupling [36] in a system 

based on orbital hybridization. In the CoFe/PMN–PT hetero-

structure, a large lattice mismatch (~28.9%) exists due to the 

distinct in-plane lattice parameters of aCoFe = 2.858 Å [37] and 

aPMN–PT = 4.021 Å [36]. The polycrystalline CoFe ilms grown 

on PMN–PT are likely to be under weak tensile strain. When 

the compressive strain induced by the E-ield is applied it will 

partly release the tensile strain, which may result in stronger 

orbital hybridization between the atoms and thus stronger 

interfacial coupling [36]. For example, d orbital hybridization 

between Ti and Fe reported in the Fe/BaTiO3 system [38] was 

enhanced when the E-ield was applied. This was due to the 

displacements of atoms at the interface created by FE insta-

bility, which changed the overlap between atomic orbitals at 

Figure 4. The normalized remanent magnetization (Mr/Ms) (a), 
saturation ield (Hk) (b) and coercive ield (Hc) (c) measured along 
the (1 0 0) direction as a function of applied E-ield in the 65 nm 
CoFe/PMN–PT heterostructure.

Figure 5. The Kerr signal variation as a function of the applied  
E-ield at magnetic ield H = 0 kA m−1.

J. Phys. D: Appl. Phys. 00 (2015) 000000
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the interface and thus changed the interfacial magnetization 

[38]. However, in most cases, the strain effects on the inter-

facial coupling mechanism are used to explain an epitaxial 

ultrathin magnetic ilm system (<5 nm) because the interfacial 

contribution to the magnetization is known to be very weak in 

bulk-like ilms. More work on the strain effect on the interfa-

cial coupling mechanism in polycrystalline thick ilm systems 

remains to be done.

4. Conclusion

In conclusion, we have demonstrated a record high remanence 

ratio (Mr/Ms) tunability of 95%, with a corresponding giant 

ME constant α of 2.5   ×   10−6 s m−1 in a CoFe/PMN–PT multi-

ferroic composite at a maximum applied E-ield of 9 kV cm−1. 

The ME constant α has been obviously improved by reducing 

the magnetic layer thickness in MF heterostructures. Such MF 

composites provide great opportunities for E-ield-controlled 

multifunctional devices.
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