
Simulations of three-dimensional dendritic growth using a coupled thermo-solutal
phase-field model
P. C. Bollada, C. E. Goodyer, P. K. Jimack, and A. M. Mullis 
 
Citation: Applied Physics Letters 107, 053108 (2015); doi: 10.1063/1.4928487 
View online: http://dx.doi.org/10.1063/1.4928487 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/107/5?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Spontaneous deterministic side-branching behavior in phase-field simulations of equiaxed dendritic growth 
J. Appl. Phys. 117, 114305 (2015); 10.1063/1.4915278 
 
Liquid phase separation and rapid dendritic growth of highly undercooled ternary Fe62.5Cu27.5Sn10 alloy 
J. Appl. Phys. 117, 054901 (2015); 10.1063/1.4907214 
 
Phase-field modeling of two-dimensional solute precipitation/dissolution: Solid fingers and diffusion-limited
precipitation 
J. Chem. Phys. 134, 044137 (2011); 10.1063/1.3537973 
 
Dynamic process of dendrite fragmentation in solidification from undercooled Si melt using time-resolved x-ray
diffraction 
Appl. Phys. Lett. 91, 061916 (2007); 10.1063/1.2764114 
 
Remarkable solute trapping within rapidly growing dendrites 
Appl. Phys. Lett. 89, 201905 (2006); 10.1063/1.2387971 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  129.11.22.19

On: Wed, 19 Aug 2015 10:51:42

http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1613261058/x01/AIP-PT/APL_ArticleDL_0815/AIP-APL_Photonics_Launch_1640x440_general_PDF_ad.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=P.+C.+Bollada&option1=author
http://scitation.aip.org/search?value1=C.+E.+Goodyer&option1=author
http://scitation.aip.org/search?value1=P.+K.+Jimack&option1=author
http://scitation.aip.org/search?value1=A.+M.+Mullis&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4928487
http://scitation.aip.org/content/aip/journal/apl/107/5?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/117/11/10.1063/1.4915278?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/117/5/10.1063/1.4907214?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/134/4/10.1063/1.3537973?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/134/4/10.1063/1.3537973?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/91/6/10.1063/1.2764114?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/91/6/10.1063/1.2764114?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/89/20/10.1063/1.2387971?ver=pdfcov


Simulations of three-dimensional dendritic growth using a coupled
thermo-solutal phase-field model

P. C. Bollada,1,a) C. E. Goodyer,2 P. K. Jimack,1 and A. M. Mullis3

1School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
2Numerical Algorithms Group, Oxford OX2 8DR, United Kingdom
3Institute for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom

(Received 1 June 2015; accepted 31 July 2015; published online 7 August 2015)

Using a phase field model, which fully couples the thermal and solute concentration field, we

present simulation results in three dimensions of the rapid dendritic solidification of a class of

dilute alloys at the meso scale. The key results are the prediction of steady state tip velocity and

radius at varying undercooling and thermal diffusivities. Less computationally demanding 2-

dimensional results are directly compared with the corresponding 3-dimensional results, where sig-

nificant quantitative differences emerge. The simulations provide quantitative predictions for the

range of thermal and solutal diffusivities considered and show the effectiveness and potential of the

computational techniques employed. These results thus provide benchmark 3-dimensional compu-

tations, allow direct comparison with underlying analytical theory, and pave the way for further

quantitative results. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928487]

There are some problems within science that, due to

their complexity, intrinsic interest, and/or practical applica-

tion, endure for many years or even decades. One such is

dendritic growth, this being one of the prime examples in na-

ture of spontaneous pattern formation in a diffusively con-

trolled system. Even the seemingly simple question of

making quantitative prediction of the characteristic length

scale for a growing dendrite has been proved to be beyond

all orders of perturbation theory.1

The origins of the problem can be traced back to the pio-

neering work of Ivantsov,2 who showed that in the absence

of surface energy the shape preserving solution for a solid

growing into its undercooled (or supersaturated) parent liq-

uid is a paraboloid of revolution. However, the Ivantsov so-

lution is degenerate in which it relates the product of the

growth velocity, V, and the tip radius, q, to the undercooling

of the parent melt, via the Peclet number, Pe� qV/(2D),

where D is the diffusivity in the melt. Specifically, the under-

cooling is related to the Peclet number by the complimentary

error function in 2-dimensions and the exponential integral

function in 3-dimensions. In contrast, it is always observed

experimentally that, for a given physical system, unique val-

ues of V and q can be associated with given values of the

undercooling. Numerous models have subsequently been

proposed to break the degeneracy, including growth at the

extremum3 and various models based upon the stability of

the growing dendrite,4 giving rise to theory of growth at mar-

ginal stability.5

Marginal stability theory makes a number of predictions

that have become the “received wisdom” in solidification

theory, including that with increasing undercooling the ra-

dius of curvature at the tip of an alloy dendrite first passes

through a local minimum (as growth moves from solutal

control at high solute Peclet number to thermal control at

low thermal Peclet number), and then it passes through a

local maximum at high thermal Peclet number. However, it

has been shown using boundary integral methods that it is

the surface energy and specifically the anisotropy in the sur-

face energy that breaks this degeneracy.6 In fact, the growth

of dendrites is not possible in isotropic media, contrary to

the predictions of marginal stability theory in which anisot-

ropy is absent. These boundary integral methods have subse-

quently been developed by a number of authors (e.g., Refs. 1

and 7) into microscopic solvability theory, whereby analyti-

cal solutions can be obtained for dendrites growing under the

control of a single diffusing species (either heat or solute). In

tandem with this has been the development of numerical

methods for simulating dendritic morphologies, particularly

phase-field methods. Consequently, computational simula-

tion of dendrites under thermal8 or solute-only control9 is

now a routine, as is the quantitative prediction of characteris-

tic length scales and growth velocities. However, for den-

drites growing under coupled thermo-solutal control, as will

occur in alloy systems unless the solidification rate is vanish-

ingly small, computational results are sparse.

Quantitative phase-field methods for the coupled

thermo-solutal problem have been developed by Ramirez

and co-workers,10,11 but such simulations are computation-

ally challenging due to the multi-scale nature of the problem.

Consequently, the simulations presented in Refs. 9 and 12

were restricted to 2-dimensions and for the most part to

Lewis number, Le¼ 40. Here, the Lewis number is the ratio

of thermal to solutal diffusivity and defines the multi-scale

nature of the problem. In contrast, for most metals, which

are the most common material to display dendritic solidifica-

tion, Le is typically around 10 000. By applying a range of

advanced numerical techniques, Rosam et al.13 were able to

extend the applicability of the model demonstrating that sim-

ulations at Le of order 10 000 were feasible14 in 2-

dimensions. However, it is well known that 2-dimensional

solidification is quantitatively different from 3-dimensional

solidification. Moreover, experimental determination ofa)Email: p.c.bollada@leeds.ac.uk
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dendrite growth velocities under coupled thermo-solutal

(rapid solidification) conditions is feasible only in bulk (i.e.,

3-dimensional) samples. For such bulk samples, a number of

containerless processing methods exist for measuring den-

drite growth velocities in undercooled metallic alloys, see

Refs. 15 and 16, and numerous such datasets exist. For these

reasons, we have recently extended the methodology devel-

oped in Ref. 12 to 3-dimensions,17 opening up the feasibility

of direct comparison between dendrite growth velocities

computed via phase-field simulations with those measured in

undercooled liquid metals. Here, we present the first com-

plete data sets for such coupled thermo-solutal simulations

of 3-dimensional rapid dendritic growth.

The model we use, along with the computational meth-

ods employed, is discussed in detail in Ref. 17. Briefly, non-

equilibrium thermodynamic modelling of alloy solidification

exploits the quantitative phase field model as developed in

Ref. 10, which optimally minimises the total free energy in

time whilst conserving solute concentration. Heat flow is

modelled by a temperature diffusion equation with a heat

source at the solidifying liquid-solid interface. The “thin-

interface” formulation12 is used wherein quantitative valid

results, independent of the interface width, are obtained. To

give a concise description of the model, we define the dimen-

sionless energy functional

F /;U; h½ � ¼
ð

X

1

2
jAr/j2 þ f /ð Þ þ g /;U; hð Þ

� �
d3x; (1)

with a double well potential f ð/Þ � 1
2
/2 þ 1

4
/4, bulk forcing

term,

g /;U; hð Þ � k /� 2

3
/3 þ 1

5
/5

� �
hþMc1Uð Þ (2)

and cubic anisotropy A � ½1� 3�þ 4�ðn4
x þ n4

y þ n4
z Þ�,

where ½nx; ny; nz� � r/=jr/j. Then the field equations we

use, derived in Ref. 10, are given by

s/
_/ ¼ � dF

d/
; (3)

sU
_U ¼ r � Dc

1� /
2
rU þ jffiffiffi

2
p n

� �
þ j; (4)

_h ¼ Dhr2hþ 1

2
_/; (5)

with the functions used above are given by

j � 1

2
1þ 1� kEð ÞU½ � _/; (6)

s/ � A2 1

Le
þMc1 1þ 1� kEð ÞUð �;

�
(7)

sU �
1þ kE

2
� 1� kE

2
/

� �
: (8)

Initial and boundary conditions are given in Ref. 17 as is the

efficient evaluation of Eq. (3).

The phase / 2 ½�1; 1� represents bulk liquid at / ¼ �1

and bulk solid at / ¼ 1; and thus, the solidification front is

defined by the 2-dimensional surface in the 3-dimensional

domain where / ¼ 0. Physical temperature and alloy con-

centration are recovered, respectively, from

h ¼ T � TM � mc1
L=Cp

; (9)

U ¼

2c=c1
1þ kE � 1� kEð Þ/

� �
� 1

1� kE
: (10)

The material constants introduced in the above are

the equilibrium partition coefficient, kE� cS/cL and Mc1
� �mc1ð1� kEÞ=ðL=CPÞ. The product, Mc1, represents the

scaled concentration of the starting alloy in the liquid state.

In the simulations presented below, we use Mc1¼ 0.05, cor-

responding to a relatively dilute alloy. As an example, if we

were to consider the Ni-Cu system, which displays a single-

phase solid solution over the whole composition range

and has therefore been the subject of numerous experimental

undercooling studies,16,18 Mc1¼ 0.05 corresponds to

c� 17 wt. % Cu at the Ni-rich end (with jmj ¼ 2:5 K=wt:%
at this concentration) or c� 6 wt. % Ni at the Cu-rich end

(with jmj ¼ 6:0 K=wt:% at this concentration).

Table I defines values used in the simulations and Table II

gives a glossary of symbols not defined in the text.

In the absence of existing published data on coupled

thermo-solutal simulations in 3-dimensions, the following

validation regime has been adopted: (i) The code has been

reduced to 2-dimensions and the results are validated against

published data of Ref. 19; (ii) In Ref. 20, reduced 3-

dimensional thermal only results were validated against the

model of Karma and Rappel,21 based upon an explicit imple-

mentation described in Ref. 22; (iii) In Ref. 23, reduced 3-

dimensional solute only results were validated against the 3-

dimensional model developed by Dantzig and co-workers.24

As a means of further validation, the phase-field solu-

tions may be compared against the Ivantsov model in the fol-

lowing manner. For known Peclet number, the Ivantsov

undercooling, DIv, may be recovered from [see, e.g., Eq. (5)

in Ref. 11]: DIv ¼ Iv Pe
Le

� �
þ Mc1IvðPeÞ
ð1�ð1�kEÞÞIvðPeÞ þ

nð1�15�Þ
q , where

n¼ 1 in 2D and 2 in 3D. Comparing DIv with the input

undercooling to the phase-field simulations, D, we find that

DIv typically recovers around 85%–101% of D, irrespective

of whether this is in 2- or 3-dimensions. However, as

explained in Ref. 11, care needs to be exercised in selecting

the appropriate value of q when calculating Pe, with the

TABLE I. Parameter values used for the simulations.

Physical property Symbol Value

Anisotropy � 0.02

Boundary concentration Mc1 0.05

Equilibrium partition coefficient jE 0.3

Dimensionless interface width k 2

Solute diffusivity D 1.2534

Lewis number Le 40 and 100

Undercooling D 0.25–0.80

Initial nuclear radius R0 5.0
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parabolic radius of curvature, qpara (i.e., the radius of curva-

ture of a parabola fitted to the downstream region of the den-

drite), being considered more appropriate for this purpose.

As qpara is always larger than q, for �¼ 0.02, typically by

25%–30% (Ref. 25), the higher values of Pe resulting from

using qpara lead to significantly better agreement between D
and DIv.

Having validated our simulation capability, we now

present a comparison of 2D and 3D results for different

Lewis numbers and undercooling.

Figures 1 and 2 show the growth velocity, V, and radius

of curvature, q, at the tip as a function of undercooling,

D¼ (T� TM)/(L/Cp), for a dendrite growing in 3-dimensions

at Le¼ 40 and Le¼ 100. For comparison, the equivalent

results for a dendrite growing in 2-dimensions are also

shown and data for 2-dimensional growth up to Le¼ 500 are

given in Refs. 19 and 26.

We used a mesh size of Dx¼ 0.39 on an eighth domain

of size 4003. The discrepancy between Dx¼ 0.39 and

Dx¼ 0.195 is included in the error bars in Figs. 1 and 2 and

hence the mesh, Dx¼ 0.39, as shown in is sufficiently small.

Also included in the error bars for tip radius in Fig. 1 for the

3-dimensional simulations (solid and dotted) is an estimate

based upon the final convergence rate. The error was largest

for D¼ 0.25, Le¼ 40, for which q converged in time very

slowly.

The simulations follow, as would be broadly expected

from comparison of the analytical solutions for 2- and 3-

dimensional growth for a single diffusing species, a more

rapid 3-dimensional growth. Similarly, from 2-dimensional

simulations, as expected, the 3-dimensional growth velocity

also increases with increasing Le. Experimentally

determined dendrite growth velocities tend to follow a

power-law of the form V / Db, where b is typically in the

range of 1.8–4.0, as in these results, but note from Fig. 2, the

3-dimensional cases here exhibit significantly lower values

of b than in 2 dimensions.

In 2 dimensions, the tip radius, q, displays a minimum

with increasing undercooling, a feature which is also

observed in the 3-dimensional simulations. With increasing

Lewis number, the minimum value of q increases while the

position of the minimum moves to lower undercooling, a

behaviour that is apparent in both the 2- and 3-dimensional

datasets. In a similar fashion, if we compare the 2- and 3-

dimensional datasets at fixed Lewis number, the minimum

value of q increases and the position of the minimum moves

to lower undercooling. Despite these qualitative similarities

in behaviour, the 2- and 3-dimensional data sets are suffi-

ciently different that there does not appear to be any simple

way of quantitatively estimating the velocity or tip radius for

a dendrite growing in 3 dimensions from a 2-dimensional

simulation, necessitating the use of a full 3-dimensional sim-

ulation to determine these quantities. In compensation, the 3-

dimensional domain is smaller due to the reduced tempera-

ture boundary layer. Also, a particular qualitative feature,

found in 3-dimensions, is that q as a function of time

achieves just one maximum before settling to a minimum at

steady state, see Ref. 17. This is contrasted at low undercool-

ings in 2-dimensions (D< 0.4, at both Lewis numbers),

where q exhibits a second maximum appearing much later

than the minimum (with consequent substantial 2-

dimensional simulation time).

Although both the 2- and 3-dimensional datasets show a

minimum with increasing undercooling, neither shows a

maximum. This observation has previously been noted with

some surprise in relation to the 2-dimensional data13 given

its prediction by marginal stability5 and its accepted status

within solidification theory. The fact that this trend is now

seen to be reproduced for 3-dimensional growth, albeit at

still rather modest Le, perhaps makes it more likely that the

occurrence of a local maximum in q with increasing under-

cooling is not as ubiquitous as suggested by marginal stabil-

ity theory.

In discussing the breaking of the degeneracy in the solu-

tion for dendritic growth and the prediction of the dendrite

tip radius, another parameter is often introduced: the stability

parameter, r*� d0/(qPe). Knowledge of r*, together with

Pe, which can be calculated analytically, allows the unique

TABLE II. Glossary of terms not defined in the text.

Physical property Symbol

Temperature field T

Melting temperature TM

Solute concentration c

Solute concentration at boundary c1
Latent heat L

Heat capacity Cp

Liquidus gradient m

Capillary length d0

Equilibrium concentration on the solidus (liquidus) cS(cL)

FIG. 1. Relationship between q against D.

FIG. 2. Relationship between steady state V against D.
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determination of V and q. In marginal stability theory,4,5 r*

is assumed to be constant wherein, as discussed above, the

occurrence of both a local minimum and a local maximum in

q with increasing undercooling is predicted. In contrast, mi-

croscopic solvability theory1,7 reveals that in the limit of

vanishing Peclet number an equation similar to that arising

from stability arguments is recovered, but with a radius

selection parameter, r*, that varies as �7=4. Furthermore, it

has also been shown11,19 that r* for alloy systems varies

with both undercooling and alloy concentration, c, with the

available experimental evidence tending to confirm the lat-

ter,27 and a good agreement with analytical solutions being

found in the limits Le ! 1 and c ! 0. The variation of r*

for the simulations reported in this work is shown in Fig. 3,

although here we have plotted this as a function of Pe, rather

than D, wherein an approximate exponentially decreasing

trend is revealed.

It is this decrease of r* with increasing Pe (or equiva-

lently D) that prevents a local maximum in q being observed.

However, the feature which is most readily apparent from

the figure is the very clear distinction between the 2- and 3-

dimensional data. This reinforces the view that quantitative

2-dimensional data are likely to be a very poor model for 3-

dimensional behaviour and that full 3-dimensional simula-

tions are therefore likely to be needed to obtain quantitative

information about dendritic growth in 3-dimensions.

However, the variation of r* with either Le or D appears

relatively predictable, meaning that interpolation of results,

in any given dimension, between computed undercoolings

(or Lewis numbers) may be feasible as it is generally possi-

ble to estimate the Peclet number from the undercooling via

the exponential integral (or, in 2-dimensions, the compli-

mentary error function). This in turn means that relatively

small numbers of computationally intensive simulations may

be required, even where large experimental data sets are

being fitted.
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