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ABSTRACT: The significance of the study on uplifting and evolution of the Lüliang 

Mountain lies in its importance to reconstruct the eastern sedimentary boundary of the 

Ordos basin, as well as its implication for revealing the evolution and breakup of the 

North China Craton (NCC). The thoughts to research on reformed basin and basin- 

mountain coupling are followed in this paper. Based on systematic sampling for fission 

track analysis, it is suggested that the obvious uplifting activities of the Lüliang 

Mountain occurred since late Early Cretaceous. Three evolution stages namely slowly 

uplifting (120Ma- 65Ma), accelerated uplifting (65Ma- 23Ma), and intensive uplifting 

(23Ma to date) can be identified further, among which the uplifting activity since 

Cenozoic is the major lifting period. The lifting activity exhibits non-equilibrium in 

temporal and spatial aspects. The middle and northern parts uplifted earlier than the 

southern part of Lüliang Mountain area. The intensive uplifting activity especially since 

Miocene had the genetic coupling relationship with the eastern neighboring Shanxi 

Cenozoic graben system. The uplifting and evolution processes of the Lüliang 

Mountain area since late Early Cretaceous share an unified regional geodynamic setting, 

accompanied with lifting and dying out of the Mesozoic Ordos basin and development 

of neighboring Cenozoic faulted grabens, are mainly related to the far field effects of 

both compression sourced from southwestern Tibet Plateau and westward subduction of 

the Pacific block in Cenozoic.  

 

KEY WORDS: Uplifting; fission track analysis; basin-mountain coupling; the Lüliang 

mountain; the Ordos basin; North China Craton 

 

1 INTRODUCTION 

The Lüliang Mountain is located in the middle part of North China Craton (NCC). It 

appears as a large-scale uplift approximately along NNE-SSW orientation, stretching about 

400km long from north to south and with an altitude ranged from 1500m to 2831m. As one of 

the major mountains in the NCC, the Lüliang Mountain adjoins the Cenozoic Shanxi Graben 

to its eastern boundary; neighbors to the Ordos Basin along the Lishi Faults Zone (Fig. 1).  

The discussions about the original sedimentary boundary of Ordos Basin during Mesozoic are 

existed for decades. For lack of constraint on the uplifting timing of the Lüliang Mountain, 

the eastern sedimentary extent of the Ordos Basin is still controversial (Ye et al., 1983; Zhang et 

al.,1983; Li et al,1992; Sun et al.,1985; Liu et al., 2008; Cheng et al., 1997; Wang and Zhang, 1999; Zhang  
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et al., 2008; Zhao et al., 2006; Yang et al., 2012). In addition, the study about the uplifting time 

and evolution processes of the Lüliang Mountain is a key scientific issue contributed to 

further clarify the structural framework, tectonic setting and destruction process of the central 

NCC, as well as helpful to understand the basin attribution of the Mesozoic Ningwu-Jingle, 

Datong coal-bearing basins in and around the Lüliang Mountain area.  

The existed study about the Lüliang Mountains area mainly focused on the geological 

events about pre-Cambrian, establishment of chronology framework (Shen et al., 1963; Geng 

et al.,2000; Xu et al., 2008) and the early evolution of the NCC (Zhao et al,1990; Timothy and 

Li, 2003; Zhao et al.,2008). The uplifting time and its evolution process began to be 

concerned in recent years. Based on sedimentology and 4 suites of fission track data analysis, 

Zhao et al. (2009) initially 

revealed the possible uplifting 

timing which is from the end of 

Mesozoic to early Cenozoic. 

According to analysis on the 

distribution and 

magnetostratigraphy dating of 

Neogene red clay in the 

Lüliang Mountain area, Li 

Jianxing identified an uplifting 

event episode happened during 

late Pliocene (Li et al, 2009; Li 

et al., 2013). Limited by sparse 

dating samples, previous 

studies only provided partial 

information about the Lüliang 

Mountain. There still is a lack 

of further detailed evidence 

about the time, evolution 

process and spatial-temporal 

differentiation in the Lüliang 

Mountain area. Furthermore, 

the relationship between the 

Lüliang Mountain and its 

adjacent Ordos basin during 

Mesozoic to Cenozoic is still 

scarce. Some related scientific 

problems are blocked to further 

discussion as a result. 

Fission-track analysis is an 

effective method of 

thermochronology, which 

based on annealing behavior of 

spontaneous fission tracks of 

 

Fig.1 Pre-Cenozoic geological map of the Lüliang Mountain 

area and samples location 

1- samples location in this study; 2- published samples location by 

the author; 3- main faults 
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some
 238

U bearing minerals such as apatite, zircon during geological span, which is widely 

employed to analyze the multiple periods’ uplifting, denudation process and mechanics of 

various mountains at home and abroad (Peter, 2005; Donelick et al., 2005). Lots of case 

studies and a series of successful explanations are achieved in the last decades. Honestly, 

there are some limitations and suit conditions about this method. For instance, if the samples 

experienced complex thermal history or partial annealing, their thermal history are difficult to 

recover. For those samples experienced cooling process less than 60� (above apatite 

annealing belt), represented late Neogene uplifting event, there is a lack of qualified constraint. 

Combined the features of fission track analysis method and the actual geological background 

of studied area, the thought on basin-mountain coupling (Liu et al., 2005; Wang and Li, 2003; 

Zhang et al., 2006; Liu et al., 2009) are adopted, fission-track thermochronology analysis is 

specially employed, combined with analysis of stratigraphy and depositional record responses, 

integrated profiling, the uplifting time and detailed evolution process of the Lüliang Mountain 

during Mesozoic-Cenozoic are discussed in this paper. 

2 GEOLOGICAL BACKGROUND 

According to current tectonic deformation appearance, the Lüliang Mountains area can be 

divided into several sub-structural units, including Lüliang compound anticline, Luya 

Mountain compound anticline, Ningwu-Jingle compound syncline 
(Zhao, 1990).  

The Ningwu- Jingle area located in the north is a compound syncline structure comprised 

of the Jurassic, Triassic and Carboniferous-Permian strata. To the central part, Loufan and 

Fang Mountain area make up of the core of Lüliang compound anticline, exposed 

metamorphic rocks and intrusive rocks of Archaeozoic and Proterozoic. To the south, it 

exhibits as compound syncline and anticline structures made up of Upper Paleozoic and 

Lower Paleozoic strata. Previous studies suggest that the Lüliang Mountains area is located at 

the conjunctive position of the final cratonization between the eastern block and the western 

block of NCC as a result of their collision and matching from New Archaean era to Middle 

Proterozoic Era (Timothy and Li, 2003; Zhao et al.,2008). During the early Paleozoic, the 

Lüliang Mountain area exhibited as an inherited ancient land originally, then suffered erosion 

and gradually disappeared processes. The conglomerate bed appears at the bottom of 

Cambrian System in Lishi area, which shows unconformable contact relationship with its 

underlying Archean gneiss, was the product of erosion from neighboring ancient land and 

accumulated around the provenance area. The paleo-uplift submerged gradually accompanied 

with enhanced transgressive process during Middle to Late Cambrian 
(Wang, 1995). The 

Lüliang Mountains area along with central part of Shanxi province accepted lagoon or 

carbonate deposition in Ordovician period. The Ordovician strata mainly comprised of 

dolomite and limestone rock with a thickness of 500~600m (Feng, 1990). 

The Upper Paleozoic is widely developed in and around the Lüliang Mountain area with a 

thickness of about 1200m. There experienced a sedimentary environment evolution from 

lagoon, tidal flat, carbonate platform to delta and fluvial system and so on (Shang, 1997; Fu et 

al., 2003).  

As far as the west of NCC in the late Paleozoic, their priority provenance area is sourced 

from the northern Inner Mongolia-Yin Mountain. There isn’t a paleo-uplift structure existed in 

the Lüliang Mountain area which could provide sedimentary source and separate the NCC 
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into two parts. 

A fluvial- lacustrine clastic dominated succession deposited in the western NCC during 

Late Triassic-Middle Jurassic. Residual Triassic and Jurassic strata still existed in and aound 

the Lüliang Mountain area, such as the Ninwu-Jingle basin, south west Taiyuan city and 

Qinshui basin and so on. Furthermore, it exhibits a gradual transitional relationship with the 

residual Ordos basin in respects of lithofacies and its association (Cheng et al., 1997; Liu et al., 

2008; Zhao et al., 2010).  

After the late Jurassic tectonic compression and denudation, there accepted a widespread 

fluvial-aeolian succession in the western NCC in early Cretaceous. Erosion strata thickness 

restoration suggests that the Lower Cretaceous strata deposition should be extended to the 

Lüliang Mountain area (Weng et al., 2009). During the late Cretaceous, there have no 

sedimentary records both in the Lüliang Mountain area and the Ordos basin. Finally, Pliocene 

red clay layer and Quaternary loess both originated from aeolian transportation widely spread 

in the Lüliang Mountain area and its neighboring Ordos basin. The Shanxi Grabens located to 

the east of Lüliang Mountains subsided in succession since Neogene period. 

3 SAMPLES AND ANALYSIS METHOD 

In order to comprehensively depict the differentiation of uplifting time and evolution 

process in spatial and temporal aspects, three sampling sections are designed from the north to 

the south in the Lüliang Mountain area, with 22 suites of samples are selected for fission track 

analysis. Because of the main sampled rock type in the middle and south sections are 

Cambrian-Ordocician limestone and dolomite, which are lack of enough apatite grains. 10 

suites of samples are failed to achieve enough mineral grains. As a result, we obtained 12 

suites of AFT data in north and middle sampling sections totally as well as 4 suites of ZFT 

data in middle sampling section. 

The collected rock samples were crushed and abraded after primary separation, the apatite 

and zircon were concentrated using heavy liquid and magnetic separation. Apatite grains 

using epoxy resin ground and polished to an optical finish to expose the internal grain surface. 

The analysis of fission track adopted the external detector method. Spontaneous tracks were 

etched to exposing by 7% HNO3 for 30s at 25�. Muscovite was used as an external detector 

which was etched after irradiation in 40% HF for 20s at 25�. Neutron fluency was monitored 

using CN5 uranium dosimeter glass. Fission track was measured using high accuracy optical 

microscope. Fission track densities in both natural and induced fission track populations were 

measured and only those crystals with prismatic sections parallel to the c-crystallographic axis 

were accepted for analysis as these crystals have high etching efficiency. Lengths of 

horizontally confined fission tracks were measured using the routine which proposed by 

Green (Gleadow et al., 1986; Green, 1986). Age values were calculated using the 

IUGS-recommended constant and the equation of calibration fission track approach (Hurford 

and Green, 1982). The analysis of the samples was completed in Institute of High Energy 

Physics, Chinese Academy of Sciences. The results of test list in Table 1. 

4 EXPERIMENTAL RESULTS 

4.1 The Experimental Results of Apatite Fission Track (AFT) 
The achieved 12 suites of AFT data show younger apparent ages relative to their hosting 
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Table 1 The fission track analysis results of apatite and zircon samples in the Lüliang mountain area 

Sampling 

Section 

Sample 

No. 

Latitude 

N 

Longitude 

E 

Elevation

(m) 

Hosted Rock 

type Mineral Times
Number of 

grains(n) 

ȡs (105/cm2)

(Ns) 

ȡi (105/cm2) 

(Ni) 

ȡd (105/cm2)

(N) 

P(Ȥ2) 

(%) 

Central 

age (Ma) 

(±1ı) 

Pooled 

Age (Ma)

(±1ı) 

L(ȝm) 

(N) 

North 

NW01 38° 51' 18.20" 112° 11 '2.5" 1759 Sandstone Apatite T 29 1.904 

(669) 

9.886 

(3474) 

20.841 

(9117) 

24.1 70 

±5 

71 

±5 

12.6±2.0 

(66) 

NW02 38°45' 24.77" 112°12'20.51" 1575 Sandstone Apatite J2t 28 3.757 

(733) 

17.978 

(3508) 

20.575 

(9117) 

96.0 75 

±5 

75 

±5 

12.8±2.0 

(81) 

NW03 38°43'55.41" 112°15' 

26.59" 

1610 Sandstone Apatite J2t 28 2.286 

(1039) 

11.636 

(5289) 

20.308 

(9117) 

0.7 70 

±5 

70 

±4 

12.7±2.5 

(75) 

     Zircon J2t 24 93.027 

(4490) 

89.982 

(4343) 

28.264 

(13124) 

0 130 

±11 

124 

±6 

 

NW05 38°40' 29.85" 112°20' 

30.72" 

1725 Granite Apatite PP 28 1.826 

(518) 

6.881 

(1952) 

20.13 

(9117) 

28.5 94 

±7 

94 

±7 

13.2±1.8 

(92) 

NW07 38°40' 28.80" 112°21' 13.7" 1745 Granite Apatite PP 28 4.139 

(789) 

12.817 

(2443) 

19.774 

(9117) 

29.4 111 

±8 

112 

±7 

12.9±2.0 

(103) 

NW09 38° 51' 34.20" 112°04' 

46.22" 

1713 Monzonite Apatite PP 28 1.283 

(406) 

8.985 

(2844) 

19.596 

(9117) 

88.0 49 

±4 

49 

±4 

13.1±2.1 

(101) 

NW10 38° 54' 8.70" 111°55' 23.31" 2108 Mudstone Apatite 䳲-O 12 12.816 

(1576) 

35.406 

(4354) 

19.418 

(9117) 

0.1 126 

±9 

  123 

±7 

 

12ˊ6±2.0 

(79) 

NW11 38° 53' 34.46" 111°53' 

18.86" 

1554 Monzonite Apatite PP 24 10.446 

(4778) 

28.645 

(13102) 

19.241 

(9117) 

0 120 

±8 

  123 

±7 

 

12.9±1.8 

(124) 

Middle 

LF01 38° 01' 15.68" 111°40' 18.37" 1300  Diabase Apatite MP 28 1.745 

(117) 

4.818 

(323) 

18.974 

(9117) 

100.0 120 

±14 

120 

±14 

12.3±2.0 

(11) 

LF03 38° 0' 38.16" 111°21' 43.2" 1323  Granite Apatite PP 28 7.268 

(1116) 

21.251 

(3263) 

18.707 

(9117) 

8.3 111 

±7 

112 

±7 

12.8±2.1 

(104) 

LF05 37° 56' 43.62" 111°47' 0.03" 1629  Diabase Apatite PP 28 4.65 

(895) 

13.716 

(2640) 

18.529 

(9117) 

63.0 110 

±7 

110 

±7 

13.4±1.7 

(80) 

LF06 37° 57' 12.51" 112°04' 

15.62" 

1042  Sandstone Apatite P 28 1.653 

(1091) 

12.516 

(8259) 

18.351 

(9117) 

28.1 42 

±3 

43 

±3 

13.5±2.0 

(101) 

     Zircon P 25 105.924 

(4217) 

68.523 

(2728) 

28.103 

(13124) 

0 184 

±15 

183 

±10 

 

South FY03 37° 31' 05.00 111°06' 45.00" 930 Sandstone Zircon P 24 89.453 

(5188) 

82.59 

(4790) 

27.889 

(13124) 

86.3 128 

±7 

128 

±7 

 

 

Notes: ȡs, ȡi, and ȡd are spontaneous track density, induced track density (track number over area), and standard track density respectively; Ns, Ni, and Nd are 

numbers of spontaneous track, induced track, and standard track respectively; L is mean track length (±ı); P(Ȥ2
) is Ȥ2 

test value. 
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Figure 2 Radial plot, histogram and their frequency curves of single apatite grain ages,12 samples in 
total. legend are given at the last row of the figure. 



 7

strata or rock mass forming time. It demonstrated that the samples have experienced 

completely annealing and could be used to analyze their uplifting process (Tab. 1, Fig. 2). 

There are 8 suites of data obtained in the north sampling section, among it 6 suites of data 

have Ȥ2
 values more than 5%. Single-grain age histograms present typical single-peak 

distributions. The distributive histograms of the track length mainly were single-peak too, 

which indicates the feature of controlling by single thermal event and shows definite 

geological thermal meaning. The remaining 2 samples have Ȥ2
 values less than 5%, 

single-grain ages histograms show double peaks (NW-10) or multimodal (NW-11), and the 

distribution of fission track length show single-peak. All these features demonstrated that they 

experienced relative complex thermal history process. The mean track lengths for all the 8 

samples range from 12.6±2.0ȝm to 13.20±1.8ȝm and it indicated the samples experienced 

nearly unanimous thermal evolution background (Fig. 3). The Gauss fitting method is 

employed to decompose the mixed fission track age of samples NW-10 and NW-11. As a 

result the younger ages namely 115Ma and 108 Ma are obtained individually to analyze the 

uplifting history.  

There Ȥ2
 values of the 4 samples selected from the middle section were >5%. Single-grain 

age histograms show wider (LF01, LF03 and LF05) or narrower (LF06) single-peak 

distribution, which indicates single thermal history evolution. The distribution of fission track 

lengths of the LF03, LF05 and LF06 were single-peak. While the track length distribution of 

LF01 was bimodal, possible related to limited number of confined fission track in this sample. 

The mean track lengths for the 4 samples range from 12.3±2.0ȝm to 13.50±2.0ȝm (Fig. 3). 

 

 

 

Figure 3  Histograms of the fission track length distribution 
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4.2 The Experimental Results of Zircon Fission Track (ZFT) 
Three suites of ZFT data are achieved in this study. The NW03 sampled from the north 

section and LF06 sampled from the middle section hosted in the Middle Jurassic Tianchihe 

Fm. and Upper Paleozoic Shanxi Fm. individually. Their Ȥ2 
values were <5%, single-grain age 

histograms was single-peak, the elder group of age data were exceed their hosted rock age, 

which demonstrated these samples experienced incomplete annealing process. Based on the 

Gauss fitting decomposing, younger age data namely 110Ma and 148 Ma are obtained from 

the samples NW03 and LF06 individually. The FY03 from south sampling section hosted in 

Permian feldspar quartz sandstone has a Ȥ2 
value of 86.3%, with a single peak distribution in 

single-grain age histogram. The central age of FY03 is 128±7Ma, which is far younger than 

its hosted strata, and demonstrated entirely annealing process. 

5 THE RECONSTRUCTION OF THE UPLIFTING HISTORY 

5.1 The Implication for Uplifting Timi ng and Processes Recorded by AFT 
The histogram of the apatite 

fission track age (including 2 

data published by the author 

previously (Zhao et al., 2009)) 

shows, fourteen AFT age data in 

the study area centered into three 

distinct periods: Early 

Cretaceous-Late Cretaceous, 

Late Cretaceous-Paleogene and 

Early Eocene, which reflecting 

feature of multiple phases’ 

uplifting process(Fig. 4). All age 

data sampled along the northern 

section (NW01, NW02, NW03 

and NW09) located in the central 

part of the Ningwu- Jingle 

syncline is younger than the data 

come from either synclinal flank 

(NW5, NW10 and NW11), 

indicating that synclinal flank 

uplifted prior to the core part. 

The 4 age data at the middle 

sampled section show a trend of 

increasing to the compound 

anticline core, indicating the 

earliest uplifting happened in the 

center part of the compound 

anticline. According to the theory 

of fission track annealing, if it 

was an uniform uplift as a whole, 

 

Figure 4 Histograms of the apatites fission track ages 

distribution for all samples 
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Figure 5 Diagram of the elevation- fission rack age from the 

 Lüliang Mountain  
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the higher elevation, the smaller fission track age. From the Fig. 5, we can see that the fission 

track age for samples from different host rocks in the study area is negatively corrected with 

sample elevation, which illustrates that the relationship of strata superposition has been 

changed before uplifting and cooling, that is, the fold deformation of strata has occurred 

before large-scale uplifting. Based on the samples collected from Precambrian basement, the 

early fold processes with compressive settings occurred between the Early Cretaceous and the 

Late Cretaceous. 

Apatite fission track age records the geologic time of when the host rocks for samples 

escaped partial annealing zone. Seven data sampled from northern and middle sections in the 

study area record a widespread compression and uplifting event happened during Early 

Cretaceous to Late Cretaceous. the uplift processes got the Proterozoic basement lifted upon 

the partial annealing zone. Based on the ancient geothermal gradient of 30�/km, the ancient 

surface temperature of 20�/km, Proterozoic rocks were buried to ≥2000m before the uplift in 

Early Cretaceous. The overlying sedimentary covers are Paleozoic-Mesozoic sedimentary 

strata. Three data sampled in northern section located in Ningwu- Jingle syncline record the 

uplifting event during the Late cretaceous-Early Paleogene. In other words, the Jurassic strata 

in Ningwu- Jingle syncline was still at the depth of 2000m or so in Early Paleogene. So it’s 

assumed that there should have been thicker lower Cretaceous deposits overlying the Jurassic 

strata. The age data of the sample NW09 collected from the west flank of Ningwu- Jingle 

syncline is 49Ma, younger than adjacent data. It may attribute to its location in the transition 

parts of the syncline and the compound anticline where the thrust faults developed, possibly 

records the time of fault activity. The Permian strata hosted sample LF06 located in West hill 

to Taiyuan city, with the fission track age of 45Ma, indicating an early uplift processes of the 

eastern flank of Lüliang compound anticline.  

Previous studies revealed that Early Cretaceous sedimentary extent of the Ordos basin 

shrinking westward compared with Triassic-Jurassic periods. Study based on strata thickness 

recovery suggests that the eastern margin of the original sedimentary boundary could be to the 

east of present Yellow River (Weng et al, 2009). Due to the analysis on the fission track age of 

Ningwu-Jingle syncline and Lüliang compound anticline, it can be deduced that in the Early 

Cretaceous (about 145~120Ma), it was still receiving deposits in the Lüliang mountains area, 

but since the late Early Cretaceous, due to the regional compression in the central and 

northern Lüliang mountains area, the strata experienced deformation, resulting in the uplifted 

regions being the earliest to lift out of the partial annealing zone. Since the Late Cretaceous, 

the overall uplift of the Ordos basin, Lüliang mountain area also lasted uplifting, resulting in 

the center of the compound anticline suffering a strong uplifting and denudation , while the 

center of the Northern syncline uplifted slowly, so it suffered less damage. Until 70-60Ma, the 

central strata in Ningwu-Jingle syncline uplifted out of the partial annealing zone, the Lower 

Cretaceous strata was the earliest to suffer from denudation. 

The characteristics of the cooling history for samples can also be indicated by the apatite 

fission track length distribution. Shorter track peaks in the histogram formed inside of the 

partial annealing zone or near it, while longer track peaks formed after the cooling event. The 

fission-track length distributions in the study area are generally unimodal, suggesting an 

obvious controlling by uplifting and cooling processes. At the same time, the track length 

distributions for samples from the center of Ningwu-Jingle syncline show a trend of gentle to 
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left side, and steeper to right side, as well as more shorter tracks (Fig. 3). It suggests that these 

samples have experienced a relatively long-term lingering in the partial annealing zone. 

Previous studies shows that widespread uplifting processes occurred since 23±3Ma (Zhao 

et al, 2009; Li et al., 2013), but we haven’t obtain the age data in this study. It is likely that the 

samples recording the time in the middle and north sections haven’t exhumed to the surface. 

Widespread extensional rifting has occurred around the Ordos basin since Paleogene. Weihe 

basin was the earliest to experience rifting and subsiding since Eocene. The Sangganhe basin 

and the Yuncheng basin located to the north and south of Shanxi graben individually began to 

subside during Oligocene and Miocene respectively. In the adjacent Lüliang mountain, there 

are AFT age data recording the correlative uplifting event near the graben (Liu et al., 2008; Li 

et al., 2013). The uplift of the Lüliang mountain and the subsidence of the neighboring 

grabens in the same period more likely related to tectonic transition of Tibetan Plateau during 

the Late Oligocene-Early Miocene (20±2~4Ma) as well as the far field effect of the activity 

around west Pacific tectonic domain
 
(Liu et al, 2009). 

5.2 The Geological Information Recorded by ZFT 
Three fission track age data of zircon derived from northern, central and southern sections 

are 110Ma, 148Ma and 128±7Ma respectively. These ages are consistent with the early 

regional compression and uplift event that the apatite fission track age revealed, also there is 

possible superposition of Late Jurassic-Early Cretaceous regional thermo-tectonic event (Sun 

et al., 1997; Ren et al.,2006)ˊ 

5.3 Thermal History Modeling 
Using computer technology to simulate the thermal history, and then revealing the 

continuous burial and uplift process of samples, is a crucial means of fission track 

thermochronology in recent years (Yuan et al., 2011; Ketcham, 2005). In this paper, we 

employed Ketcham et al.’s annealing model (Ketcham, 2005), as well as Monte Carlo method. 

The initial conditions of modeling are determined by the factors that related to the fission 

track method and the basic geological characteristics. The constraints of the modeling 

temperature are from the bottom temperatures (120ć) of fission track annealing zone to the 

present surface temperatures (20ć). The time of the model is from the early Cretaceous to the 

present. (Fig. 6) The bold line in each plot represents the best-fit thermal history model, the 

dark grey regions delineate the good-fit thermal history models, and the light grey regions 

mark the statistically acceptable models. The factors of Kolmogorov-Smirnov test (K-S test) 

which compared the measurement between actual fission track length to the modeling are 

between 0.75~0.93, and the goodness-of-fit (GOF) factors are between 0.74~0.98, which all 

represent a good fit.  

The measured fission track ages from samples NW10 and NW11 along the northern 

section and samples LF01, LF03 and LF05 along middle section range from 108Ma to 120Ma, 

which show a consistent cooling path, thus the uplifting process could be divided into three 

stages. The first stage occurred between 120Ma and 70Ma, during which the Lüliang 

Mountain was in a slow uplifting process, and the cooling rate was 0.13ć/Ma to 0.29ć/Ma. 

The second stage involved a rapid uplifting process from 70Ma to 20Ma, and the cooling rate 

was about 0.70ć/Ma. The last stage occurred from 20Ma until now, and involved a strong 

uplifting process during which the cooling rate was 0.75ć/Ma. The three fission track ages of 

measured samples (70Ma~75Ma) from Ningwu-Jingle syncline in northern section (NW01, 
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NW02 and NW03) showed a more consistent cooling path, which could also be divided into 

three stages, the slow uplifting (100Ma~65Ma), the accelerated up lifting (65Ma~12Ma), and 

the intensive uplifting (12Ma until now). 

As we mentioned earlier, about 23±3Ma, there was a widespread uplifting event in larger 

region including the southern part of Lüliang Mountain and the eastern Ordos Basin (Zhao et 

al., 2009; Li et al., 2013), which was accompanied by the subsidence of Cenozoic Shanxi 

grabens. Especially the Taiyuan Basin and Linfen Basin, located to the east of Lüliang 

Mountain, which began to rift subsidence and accept deposits until the Pliocene. The 

Cenozoic strata in Taiyuan Basin show a trend of thicker in the east and thinner in the west, 

and the thickest strata developed in the western piedmont, ranged from 1000m to 3800 m, 

show distinct controlling by piedmont fault along the Lüliang Mountain (Xing et al., 2005). 

The lower interval of Pliocene Jinzhong group, which represent the oldest Cenozoic deposits 

in Jinzhong Basin, are mainly consist of conglomerate, sandstone along with other rough 

clasts, and the upper interval changed to lacustrine mudstone and other fine clastic rock. The 

rapid subsidence of the graben basins and the intensive uplifting along the mountain rim 

occurred simultaneously, synchronous growth and decline, thus indicating a rapid uplifting 

process in the Pliocene of Lüliang Mountain. In the late Miocene (about 10-8Ma), Lüliang 

Mountain piedmont (east and west sides) accumulated an alluvial fan deposits, Known as 

Luzigou Formation, mainly composed of conglomerate, which suggests a strong uplifting 

activities during this period in Luliang Mountain area (Li et al., 2013).  

 

 

Figure 6 Modeling sketch of time-temperature paths from the Lüliang Mountain 

Combined the thermal history modeling of the AFT samples, analysis of the statistic data 

of the fission track ages data and regional geological evolution history, the uplifting process  
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Figure 7 Models illustrating the uplifting and evolution processes of the Lüliang Mountain (taken the 

north sampling section as an example) 

of Lüliang Mountain could be divided into three stages synthetically. (Fig.7) The first stage is 

slow uplifting (about120Ma~65Ma), in this period, the studied area was forced by regional 

compressive stress, and led to folded deformation involved the basement strata. The strata in 

the core of compound anticline occurred relatively strong uplift and erosion, made the 

Precambian basement lifted from the bottom of the annealing zone to the top as a result, but 

the uplifting of the core of synclines was not obvious. The second stage is the accelerating 

uplifting (about 65Ma ~23Ma), during this period the uplift process strengthened obviously 
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and had regional integrity. There was a unified regional dynamic background among the 

Lüliang Mountain, Ordos Basin and neighboring areas. The last stage is intensive uplifting 

(about 23Ma to date), which led to the basement rocks of the core of the compound anticline 

begin to exhumate and uplift to 2000 meters altitude, as well as the Jurassic strata in the core 

of Ningwu-Jingle syncline uplifted to 2000 meters altitude and suffered denudation (Fig. 7). 

Uplifting process was further intensified in Pleistocene, which led to the accumulation of 

gravels along piedmont, which also had the genetic coupling relationship with the eastern 

neighboring Shanxi Cenozoic graben system. 

6 CONCLUSIONS 

(1) Fission track analysis based on middle and northern sampling sections suggests that 

the uplifting activity of the Lüliang Mountain mainly occurred after late Early Cretaceous. 

Three evolution stages namely slowly uplifting (120Ma- 65Ma), accelerated uplifting (65Ma- 

23Ma), and intensive uplifting (23Ma to date) can be identified, among which the uplifting 

activity since Cenozoic is the major lifting period. Taken the Lüliang Mountain area as a 

whole, the lifting activity exhibits non-equilibrium in temporal and spatial aspects. The 

middle and northern parts of Lüliang Mountain area uplifted after late Early Cretaceous, 

earlier than the southern part, which is mainly lifted since Miocene. The conclusion based on 

fission track analysis is consistent with the strata record in the Lüliang Mountain area and 

neighboring Cenozoic faulted basins. 

(2) From Middle Triassic to Early Cretaceous, the Lüliang Mountain area is a part of the 

large scale Ordos basin. They experienced synchronous subsidence- uplifting processes 

together. Their evolution differentiation happened since late Early Cretaceous. The intensive 

uplifting activity especially since Miocene had the genetic coupling relationship with the 

eastern neighboring Shanxi Cenozoic graben system. Generally, the uplifting and evolution 

processes of the Lüliang Mountain area since late Early Cretaceous share an unified regional 

geodynamic setting, accompanied with lifting and dying out of the Mesozoic Ordos basin and 

development of neighboring Cenozoic faulted grabens, are mainly related to the far field 

effects of both compression sourced from southwestern Tibet plateau and westward 

subduction of the Pacific block in Cenozoic.  
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