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Abstract:

A heterogeneous or multi-material object is one made from different materials

which are distributed continuously or discontinuously and where its properties can be

adjusted by controlling the material composition, microstructure and geometry of the

object. The development of manufacturing technologies such as rapid prototyping can

eliminate the high cost of tooling and can offer the possibility to make multi-materials

structures. However the ability to design them is not a trivial task and requires the

development or modifications of optimization algorithms to take into consideration the

different aspects of these problems. This article presents an enhancement to the ITD
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algorithm which allows it to obtain multi-material designs. Four examples of the

topology design of 2D continuum structures are presented to demonstrate that the ITD

algorithm is an efficient and reliable method to carry out the layout optimization of multi-

material continuum structures.

1 INTRODUCTION

In the past, the intuition and experience of designers played a key role in structural

design. The last few decades have seen remarkable advances made in topology

optimization, which provides conceptual layouts for a given design space and specified

boundary conditions. There are a lot of methods, but these can be divided into one of

two types: 1) Those with a mathematical basis (Homogenization and Solid Isotropic

Microstructure with Penalization (SIMP), Level set method (LSM); and 2) those based

on heuristics (Soft Kill (SK), Hard Kill (HK), Evolutionary Structural Optimization (ESO),

Additive ESO (AESO), Bidirectional ESO (BESO), Reverse Adaptivity (RA), etc). The

aim of these methods is to support the intuition and the experience of a designer. In

addition, most of these methods are focused on the optimization of traditional

structures consisting of one material.

A heterogeneous or multi-material object is referred to as a solid object made of

different materials distributed continuously or discontinuously and its properties can be

adjusted by controlling the material composition, microstructure and the geometry of

the object (Jadayil 2011).

In many applications, the object should have certain characteristics to be able to

develop its function as: Heat resistance, anti-oxidation properties, high yield stress or

ultimate tensile strength, etc. Such properties may not be obtained by using single or

homogeneous material.
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The development of new manufacturing technologies such as rapid prototyping

(Bhashyam et al. 2000) or solid free form fabrication (Beaman et al. 1997, Jakubenas

et al. 1998), and the use of new materials like composites (Blasques and Stolpe 2012)

requires new optimization techniques. These emerging manufacturing technologies

eliminate the high cost of tooling and design changes or material substitution and offer

the possibility to achieve multi-materials structures. However, this makes it much more

difficult to design objects just by intuition. Hence, new optimization algorithms are

needed to provide designs which take into account all the different aspects of such a

problem (König and Fadel 1999).

Objects with varying properties across spatial domain are commonly used in

aerospace, biomedical, civil, geophysical and nano-scale structures. In these

applications, the performance objectives are reached due to the capability of varying

material properties globally and locally across the design domain.

Thomsen (1992) maximized the integral stiffness of a structures composed of one

or two isotropic materials using the homogenization technique. Material was modelled

by a second rank composite using the concentration and orientation of the composite

as design variables.

Sigmund and Torquato (1997) presented a topology optimization method to design

material microstructures with extreme thermoelastic properties. The method consists in

finding the distribution of material phases that optimizes the isotropic thermal

expansion (i.e. the sum of the thermal strain coefficients in the horizontal and the

vertical directions) subjected to constraints, such as elastic symmetry or volume

fractions of the constituent phases, within a periodic base cell. The effective properties

of the material structures were found using the homogenization method.
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Sigmund (2001) demonstrated that topology optimization can be used as a

systematic tool for the design of two-material MicroElectroMechanical Systems

(MEMS). The topology optimization method was extended to multiple materials by

introducing two design variables per element. One variable determines whether there is

material in the element or not and the other variable determines the type of material.

The interpolation of the material properties was made using a hybrid scheme, where

the power-law approach was used to interpolate between void and material and a

weighted average of the upper and lower Hashin-Shtrikhman bounds (Hashin and

Shtrikman 1963) were used to interpolate between the material types.

Yin and Ananthasuresh (2001) proposed a new material interpolation model, called

the peak function model. By using the peak function and the optimality criteria method,

they synthesized compliant mechanisms with multiple materials with and without the

material resource constraint.

Saxena (2002) discussed the discrete density parameterization with multiple-

material handling in topology optimization of compliant mechanisms. Genetic algorithm

was the search algorithm using fitness function values to guide a probabilistic search

towards a possible global optimum.

Yulin and Xiaoming (2004) applied LSM to a general optimization problem with

multi-materials and multi-constraints, such as a stiff structure design, a compliant

mechanism design or a material design by using the different material representation

models.

Wang and Wang (2004) addressed the problem of structural shape and topology

optimization in a multi-material domain. The LSM was used as an alternative approach

to the homogenization method of rule of mixtures for multi-material modelling.
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Jung and Gea (2006) proposed a new multi-material model to formulate the

topology optimization problem for energy absorption. A three-phase material model for

topology optimization was derived to accommodate two conflicting design objectives: 1)

Minimize the mean compliance; and 2) Maximize the strain energy for energy

absorption.

Zhou and Wang (2007) introduced a phase field model for the optimization of

multi-material structural topology based a modified Cahn-Hilliard theory. They treated

the problem of minimizing the mean compliance of a multi-material structure as a

thermodynamic system with mass concentration as phase field variable.

Huang and Xie (2009) developed a new and generalized BESO method with a

penalization parameter for continuum structures with one or multiple materials utilizing

a material interpolation scheme.

Gao et al. (2010) investigated the topology optimization problem of multiple

materials with mass constraint. Two types of material interpolation schemes named

Generalized Solid Isotropic Material with Penalization (GSIMP) and Uniform

Interpolation Model (UIM) were considered.

Ramani (2010) presented an algorithm which uses material as a discrete variable

in multi-material topology optimization and thus provides an alternative to traditional

methods using material interpolation and level-set approaches. The algorithm

computes pseudo-sensitivities of the objective and constraint functions to discrete

material changes. These are used to rank elements, based on which fraction of the

elements are selected for material ID modification during the optimization iteration.

Subsequently, a heuristic approach to handle strength constraints based on the

material failure criteria in multi-material was also introduced by Ramani (2011).



Osvaldo M. Querin, Mariano Victoria, Concepción Díaz, and Pascual Martí

6

Luo et al. (2012) presented a topology optimization methodology considering non-

probabilistic reliability for the design of two-material continuum structures whose

objective was to distribute a given amount of two candidate materials into the design

domain for acquiring the maximum stiffness while satisfying the reliability requirements.

Blasques and Stolpe (2012) introduced a novel approach for the simultaneous

optimization of the topology and laminate properties in the structural design of

laminated composite beam cross sections. The optimization is based on a multi-

material topology optimization model in which the design variables represent the

amount of the given materials in the cross section. Existing material interpolation,

penalization, and filtering schemes were extended to accommodate any number of

anisotropic materials.

This article presents the extension of the Isolines Topology Design (ITD) algorithm

(Victoria et al. 2009) to the desig multi-material structures. The method of determining

the isolines is given, together with four examples to show the effectiveness of the

algorithm. The results show the usefulness of ITD to provide quality solutions with very

detailed shapes, without the need to interpret the design.

2 TOPOLOGY DESIGN WITH MULTI-MATERIALS TECHNIQUES

Currently, the most used techniques for topology design of continuum structures

using heterogeneous or multiple materials are: 1) Material interpolation schemes (Yin

and Ananthasuresh 2001, Huang and Xie 2009, Gao et al. 2010, Luo et al. 2012,

Blasques and Stolpe 2012,); 2) Level-set models (Yulin and Xiaoming 2004, Wang and

Wang 2004, Zhuang et al. 2007); and 3) Phase-field schemes (Bourdin and Chambolle

2000, Jung and Gea 2006, Zhou and Wang 2007).
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In material interpolation schemes, the overall mechanical properties of a multi-

material object are commonly obtained using a “rule of mixture”. For the three-phase

material design with two solid materials and void, the following power-law interpolation

scheme is commonly used to obtain an artificial elasticity modulus  E as

    
2212121

1, EEE ppp   (1)

where
1

E and
2

E are the moduli of the solid material phases,  1,0
1
 and  1,0

2


are the design density variables, and 1p is the penalization parameter for the

intermediate densities. Others interpolation schemes are also in use, such as the

Halpin-Tsai composite model (Suresh and Mortensen 1988), Voigt-Reuss (Swan and

Kosaka 1997) and Hashin-Shtrikman (Sigmund 2001).

To model more than two phases using the LSM one may consider using multi-level

set functions to partition the whole material domain of the structure with each level set

representing a distinct material phase (Zhao et al. 1998, Tsai et al. 2001).

Wang and Wang (2004) proposed a new multi-material model based on multi-

phase level-set scheme developed by Vese and Chan (2002).

They considered m level-set functions

   miRDxi ,,1:  (2)

where D is the design domain.

Instead of using each level set to represent each distinct material phase as in the

partitioning level-set scheme, they allowed the interior regions of the zero-level sets of

these functions   0:  xx ii  to overlap. They then defined the union of these

zero-level sets   0:  xx ii  to represent the boundaries of the multi-phase
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material regions and denoted the disjointed but connected regions formed by these

boundaries  
n

i i1
 by kw , Eq. (3).

lkwwwD
n

k lkk 
 1

,0and (3)

where n is the number of materials.

To illustrate this, an example of four material phases  4n and two level-set

functions  2m is depicted in Fig. 1.

Phase field schemes have for a long time been used as a practicable scheme for

interpreting a wide variety of material phenomena like diffusion and solidification. The

material may be solid or liquid of two or more phases. The usual problem is to

characterize the stability of such a system and to describe the interface between the

phases while the system undergoes a physical process to reach its stability (Zhou and

Wang 2007). In spite of the fact that there is a clear relationship between the problem

of topology optimization of a solid multi-material structure and a phase transition

system of material phases, the use of these schemes has not yet become popular.

Hence, there are few approaches in the literature Wang and Zhou (2004), Burger and

Stainko (2006), and Takezawa et al. (2010).

Fig. 1. Four material phases (w1, w2, w3, w4) are represented by two-level set functions (1, 2).
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3 FIXED GRID FINITE ELEMENT ANALYSIS

The Fixed Grid (FG) method was first introduced by Garcia and Steven (1999) as a 

tool for numerical estimation of two-dimensional (2D) elasticity problems, and was

extended to three-dimensional (3D) structures like Garcia et al. (2004, 2005), etc. The

benefits of using FG-Finite Element Analysis (FEA) over conventional FEA in this work 

are that: 1) FG does not need a fitted mesh to discretize the analysis domain; 2) The 

boundary of the design is disassociated from the mesh (Garcia and Steven 1999); 3)

Designs using FG-FEA do not contain checkerboard patterns, making the design more

reliable for manufacture (Maan et al. 2007); and 4) Solution time is significantly 

reduced (Garcia and Steven 2000). In FG-FEA, the elements are in a fixed position and 

have the real design superimposed on them. This means that there are elements which

lie Inside (I), Outside (O), or on the Boundary (B) of the design.

The elemental stiffness matrix  e
K is given by Eq. (4).

 















10if1

0if

1if

OIB

O

I

eee

e

e

e







KKK

K

K

K (4)

where e is the design fraction inside the element,
I

K is the element stiffness matrix

for an element inside,
O

K is the element stiffness matrix for an element outside, and

B
K for an element boundary. Normally

I

6

O
10 KK  

.

In this work, the criterion value in each element  e is calculated using Eq. (5)





GG n

k

k

n

k

e

kk

e
ww

11

 (5)
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where Gn is the number of the Gauss points in the element, and w is the weighting

factor for each Gauss point.

The criterion value at the i node of an element
n

i is determined by Eq. (6)

N
N

e

e

n

n

i i



1

 (6)

where i is the i th node number of an element,
e

ni
 is the nodal criterion value at node

i for each element surrounding that node, and N is the number of elements

connected to that node. The nodal value is determined from the criterion values at each

Gauss point extrapolated to the nodes using the shape functions of the element.

4 MULTI-MATERIAL DESIGN WITH ISOLINES

The use of isolines/isosurfaces in 2D/3D respectively to obtain the optimum design

of structures has been used in several studies (Woon et al. 2003, Cui et al. 2003,

Koguchi and Kikuchi 2006). The ITD is an iterative algorithm which redistributes (adds

and removes) material inside of a design domain until it reaches a desired volume

fraction. The redistribution process consists of the following four steps: 1) Obtain the

design criterion distribution within the design domain; 2) Determine the Minimum

Criterion Level (MCL), where its intersection with the design criterion distribution

produces the new structural boundary, shown for a 2D continuum in Fig. 2; 3) Remove

all regions from the design domain where the criterion distribution is lower than the

MCL; and 4) This design modification requires the re-evaluation of the remaining 

structure in order to recalculate the design criterion distribution.
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The MCL is calculated in each iteration and depends on both the distribution of the

design criterion and the volume of the design domain in that iteration given by Eq. (7)

















 


i

f

i

i
i

n

i
V

n

in
VV

0 (7)

where iV is the design volume in the i
th

iteration, in is the total number of iterations,
0

V

is the initial volume, and fV is the final volume of the optimized structure.

Once the criterion has been calculated for each element in the design domain,

these are arranged in decreasing order of criterion value. An element by element

volume summation of the ordered list is carried out until a volume is reached which is

as close as possible to the target volume given by Eq. (7), where the error level

Fig. 2. Structural boundary is defined by the intersection of the MCL with the criterion distribution.
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between the summed and target volume depends on the size of the elements. The

criterion value of the next element in the ordered list is then used as the value for the

MCL.

4.1 Optimization problem

The optimization problem (Eq. 8 and 9) consisted of minimizing the difference

between the structure volume and a target volume subject to: 1) Structural equilibrium;

and 2) An inequality condition which must be satisfied by all the nodes of the structure.

Minimize:

f0
VV  (8)

Subject to:

0

0

MCL




iσσ
PKu

(9)

where:

K is the structure stiffness matrix

u is structure displacement vector

P is the nodal load vector

MCL
σ is the value of the minimum criterion level

i i th node which lies inside or on the boundary of the structure

iσ is the value of the design criterion in the i th node

4.2 Criterion selection

The design criterion  e used in this work was the von Mises stress  
vM

 , which

for a two-dimensional continuum domain is calculated using Eq. (10).

222

vM
3 xyyxyx   (10)

where x , y and xy are the axial and shear stresses, respectively.
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4.3 Solid phase distribution to produce multi-material design

The idea to obtain multi-material stiff designs using the ITD algorithm is

straightforward; the high values of the design criterion must be supported by the solid

phases with the highest stiffness and vice versa. This is achieved by the 5 steps given

below:

1. Determine the volume  iV of the design domain in the current i th iteration

using Eq. (7) and obtain the MCL value  
MCL

 associated with iV .

2. Arrange the j-material types  nj ,,1 in decreasing order of stiffness

value using the Young’s moduli. The greatest value of the Young’s modulus

is termed
1

E and the smallest value is termed nE .

3. Calculate the volume for every solid phase  
jV in the current i th iteration,

using Eq. (11)

1
1








n

j

j

ijj VV





(11)

where j is the volume control weighting factor. Its value is initially proposed

by the designer.

4. Calculate the MCL for each solid phase jMCL,
 associated with jiV

,
by Eq.

(12), see Fig. 3.





j

j

jji VV
1

, (12)
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5. Use the design fraction inside the element  e and the minimum criterion

level for each phase  
j,MCL

 to determine material properties for every

element  eE by Eq. (13), see Fig. 3.





 


otherwise

0if
e

0

j

e

E

E
E



nEE  6

0
10


















1MCL,MCL,

MCL,1MCL,22

MCL,11

if

if

if

n

e

nn

e

e

j

E

E

E

E








(13)

where:

0
E is the Young’s modulus for void phase

nE is the Young’s modulus for n-material (i.e. the weakest material)

jE is the Young’s modulus of the j th material
e is the elemental value of the criterion

4.4 Minimum criterion level extraction

The procedure to generate the structural boundary depends on the determination

of the MCL isoline. In order to determine the line segments that produce the profile of

Fig. 3. Schematic diagram for distribution of j-materials.
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the boundary, the contouring subroutine called Marching Triangles (MT) algorithm

(Hinton and Illingworth 1997) was implemented, since there are not ambiguities and the

isolines constructed are smooth.

The MT algorithm uses a divide-and-conquer approach, treating each finite

element independently as a triangular cell. In the case where the element shape is

quadrilateral, the element is divided into four triangular cells by introducing a point at

the centroid of the element. The criterion value of the central point is obtained by

calculating the average values from the four nodes of the original element. The basic

assumption of this algorithm is that a contour can only pass through a triangular cell in

a limited number of ways. This algorithm requires the value of the MCL together with

the value of the criterion at each corner of the cell, and consists of two steps: 1) Identify

from Fig. 4 the topological state of each cell; and 2) Determine the shape of the contour

of the MCL isoline through each cell. The interaction of an isoline through a triangular

cell can have a maximum of four different topological states, Fig. 4. The value (1) at a

corner means that its criterion value is greater than the MCL whereas a value of (0) at

a corner means that its criterion value is less than the MCL. When the corner in an

edge of a cell has different values (0 and 1 or vice versa) it indicates that the MCL

isoline intersects that edge, which is the case for topological states shown in Fig. 4b

and 4c. To find that intersection point, linear interpolation can be used. The shape of

the MCL isoline through the cell is then obtained by connecting these intersecting

points between the opposite edges as shown in Fig. 4b and 4c.

(a) (b) (c) (d)

Fig. 4. Look-up table for the MT algorithm showing the four different topological states.
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4.5 Structural boundary stabilization

When the MCL is modified, the structural boundary changes and this affects the

criterion distribution. Therefore, before the next iteration is started, an iterative process

of reanalysis and material redistribution is carried out until the change in the domain

volume between successive boundary adjustments is less than a minimum volume

change limit  V , given by Eq. (14). Typical values of the minimum volume change

limit are around   %1% V .

  1001%

1











i

i

V

V
V (14)

5 THE ITD ALGORITHM FOR MULTI-MATERIAL DESIGNS

The modified ITD algorithm to carry out the layout optimization of multi-material

designs consists of the following eleven steps, a schematic representation of which is

given in Fig. 5.

1. Define the structure: design and non-design domains, total number of

materials  n , material properties for every material  
jE , loads and supports.

2. Specify the finite element mesh characteristics.

3. Specify the ITD parameters: design criterion   , volume control weighting

factor  
j , final design volume  

fV , total number of iterations  
in , and

minimum volume change limit   %V .

4. Carry out a FG-FEA.

5. Determine the target volume for every material type  
jiV

,
.

6. Calculate the MCL value for every material type  
j,MCL

 .
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7. Extract the boundary of the structure and distribute the different materials.

8. If the percentage volume change is greater than the minimum volume

change limit   %V , go to step 9, otherwise go to step 10.

9. Carry out a FG-FEA of the design domain and go to step 7.

10. If the total number of iterations  
in has been reached, go to step 11,

otherwise update the design volume, increment the iteration number  i by 1

and go to step 4.

11. Stop the design process.
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6 EXAMPLES

To illustrate the ITD algorithm, four structures were studied and are presented here:

1) A short cantilever loaded at the lower free end; 2) A short cantilever loaded at the

middle free end; 3) A beam with a roller support; 4) A metallic insert. The FE used for

the examples is the four-node plane stress quadrilateral element with four Gauss

Fig. 5. Flow chart of the ITD algorithm applied to the multi-material topology design.
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integration points. Table 1 shows the colour legend used to represent the resulting

multi-material designs.

Table 1. Colour legend for multi-material designs

Total number of material
Material code number

Void
1 2 3

2 Black Grey - White

3 Black Grey Light grey White

6.1 Short cantilever loaded at the lower free end

The first example is a short cantilever as is showed in Fig. 6. The design domain is

a rectangular area of 16×10 m and the thickness is 0.05 m. The mesh used for the

discretization of the design domain has 144×90 elements, fully clamped along the left

edge. A vertical load of 200 kN is applied at the lower free end in the downward

direction. Two materials were used with the Young’s moduli of GPa200
1
E

and GPa100
2
E and the same Poisson’s ratio 3.0 . The ITD parameters for this

example were the total number of iterations 100in ; final volume

fraction 1.0
0
VV f and the minimum volume change   %1% V . To examine the

effect of the volume control weighting factor
1
 on the final design, eight cases were

investigated: 
1
 0.2; 0.3; 0.4; 0.5; 0.6; 0.66; 0.7; and 0.8.

Fig. 6. Design domain for the short cantilever loaded at the lower free end.
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Fig. 7 shows the resulting final topologies for each
1
 value. This has shown that

the optimal topologies (which suggest a four-bar truss design) are not affect

significantly by volume control weighting factor, except 8.0
1
 (which suggest a six-

bar truss design). The resulting multi-material design depicted in Fig. 7f is in good

agreement with that obtained by Luo et al. (2012).

(a) (b)

(c) (d)

(e) (f)
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6.2 Short cantilever loaded at the middle free end

The design domain, support conditions, and mesh characteristics used in this

example are the same with the first example. A vertical load of 200 kN is applied at the

middle free end in the downward direction (Fig. 8). The ITD parameters were the total

number of iterations 100in , final volume fraction 1.0
0
VV f , the minimum volume

change   %1% V and the volume control weighting factor 5.0
1
 . To examine the

effect of the material properties on the final design, four cases were investigated E1 =

200 GPa with E2 = 150, 100, 50 and 20 GPa. The same Poisson’s ratio of 0.3 was

used.

(g) (h)

Fig. 7. Final designs for two-material scheme. Effect of different
1
 on final design: (a) 0.2 (b)

0.3 (c) 0.4 (d) 0.5; (e) 0.6; (f) 0.66; (g) 0.7; (h) 0.8.

Fig. 8. Design domain for the short cantilever loaded at the middle free end.
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The resulting multi-material designs are depicted in Fig. 9. The resulting topologies

are not sensitive to the Young’s modulus value  
2

E , although it can be observed

considerable differences between the final shape designs. The obtained designs are in

good agreement with those obtained by Wang and Wang (2005).

6.3 Beam with a roller support

The size of the beam is 24 m long by 4 m high with a thickness of 0.05 m (Fig. 10).

It has a fixed support in the bottom left-hand corner and a roller support on the bottom-

right corner. A vertical load of 200 kN in downward direction is applied at the centre of

the bottom edge. The mesh used has 360×60 elements. The ITD parameters used

were the total number of iterations 100in , final volume fraction 1.0
0
VV f , and the

minimum volume change   %1% V . In this example, the influence of the material

number was investigated for two cases: 1) A two-material scheme, with GPa1
1
E

(a) (b)

(c) (d)

Fig. 9. Final designs for two-material scheme. Effect of different Young’s modulus
2

E values on

final design: (a) 150 GPa; (b) 100 GPa; (c) 50 GPa; (d) 20 GPa.
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and GPa1.0
2
E , and a volume control weighting factor 375.0

1
 ; and 2) A three-

material scheme, with GPa1
1
E ; GPa5.0

2
E and GPa1.0

3
E . The second case

was studied for four different volume control weighting factors ://
321

 (a)

0.2/0.4/0.4; (b) 0.2/0.6/0.2; (c) 0.4/0.2/0.4 and (d) 0.6/0.2/0.2. The same Poisson’s ratio

of 0.3 was used in both cases.

The final design for two-material scheme is shown in Fig. 11. The resulting design

depicts a sandwich structure with a stiff skin manufactured using material No.1 and a

soft truss core made in material No. 2. Note that, the resulting topology shows great

agreement with the work of Huang and Xie (2009).

Fig. 10. Design domain for the beam with a roller support.

Fig. 11. Final design for two-material scheme.
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As for the two-material case, the optimal designs obtained using the three-material

scheme are similar to the sandwich structure of (Fig. 11). The topology and shape of

the resulting designs are significantly sensitive to weighting factor combinations. Note

that, when material number increases the use of advanced technologies to

manufacture these designs plays a crucial role.

(a)

(b)

(c)
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6.4 Metallic insert

A theoretical and experimental investigation by Nilsson (1989) on increasing the

bearing strength of composite bolted joints showed that by bonding a 2 mm circular

metallic insert in the hole, the compressive stresses at the hole boundary were reduced

by 50% and the failure load was increased by up to 55%. The purpose of this example

is to optimize the shape of the insert by an optimized material distribution using ITD

algorithm.

The geometric dimensions together with the loading and support conditions are

shown in Fig. 13a. Due to the symmetry conditions, the analysis was made using only

top-half of the domain using a regular rectangle mesh (Rispler and Steven 1995). The

mesh features were 93,956 elements, 94,605 nodes, 189,210 degrees of freedoms. To

ensure that the internal diameter remains unchanged in order to allow usage of

currently available fasteners the nearest region around the hole boundary is defined as

non-design domain. The bolt hole loading was represented by a linear pressure

distribution (Fig.13b). The ITD parameters for this example were the total number of

iterations 5in , final volume fraction 1
0
VV f and the minimum volume change

  %1% V . The material properties used for the material No. 1 (aluminium) were

(d)

Fig. 12. Final designs for three-material scheme. Effect of different weighting factor

combinations
321

//  on design: (a) 0.2/0.4/0.4; (b) 0.2/0.6/0.2; (c) 0.4/0.2/0.4; (d)

0.6/0.2/0.2
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GPa71
1
E and 3.0

1
 , and for the material No. 2 (composite) were GPa2.52

2
E

and 33.0
2
 . Six area ratios of material No.1 (A1) with respect to hole area (AH)were

investigated: A1/AH = 0.25:1, 0.5:1, 0.75:1, 1:1, 2:1 and 3:1.

The resulting solutions are shown in Fig.14. In order to achieve a clearer designs

the black colour represents the aluminium material, the grey colour stands for the non-

design domain, and the composite material was not depicted. The obtained shape of

the inserts agrees with the solutions obtained by Rispler and Steven 1995.

(a) (b)

Fig. 13. Design domain for the metallic insert: (a) General dimensions and support conditions;

(b) Detailed view of the loading.

(a) (b)
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7 CONCLUSIONS

This article presents an enhancement to the ITD algorithm which allows it to obtain

multi-material designs. The ITD is an iterative process, where the generation of new

contours allow the removal and redistribution of material. It allows for important

topology changes during the design process. The placement of the multiple materials

into the design is determined by the distribution of the design criterion (i.e. von Mises

stress) following the concept that the material of highest stiffness must support the

regions of the design with the highest design criterion.

Four examples of topology design of 2D continuum structures are presented to

demonstrate the applicability and effectiveness of the ITD algorithm. The main

conclusion of this work is that the ITD algorithm is an efficient and reliable method to

carry out the layout optimization of multi-material continuum structures.

(c) (d)

(e) (f)

Fig. 14. Final insert (full detail view) for different area ratios of material No. 1 (in black) with

respect to hole area (A1/AH): (a)0.25:1, (b) 0.5:1, (c) 0.75:1, (d) 1:1, (e) 2:1 and (f) 3:1. The non-

design domain is shown in grey.
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