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Fig. 1. Singular fibers of the tangle cube function f(x,y,z) = (—x* — y* — z* +5(x> +y* +z2) — 10,z) after interactive perturbation. The
domain view on the left visualizes isosurfaces of individual axis function in yellow and green with their intersection along the current
fiber in red. In the center, the range view shows a cross mark at the function value defining the current fiber. Critical function values
are shown in different colors according to the topological types of their fibers. Arranged around this view are thumbnails of the domain
space that pop up when a value is selected. The Reeb space view shows the connectivity of connected components in the fiber,
constructed by using a 3D layout of the Joint Contour Net.

Abstract— Scalar topology in the form of Morse theory has provided computational tools that analyze and visualize data from sci-
entific and engineering tasks. Contracting isocontours to single points encapsulates variations in isocontour connectivity in the Reeb
graph. For multivariate data, isocontours generalize to fibers—inverse images of points in the range, and this area is therefore known
as fiber topology. However, fiber topology is less fully developed than Morse theory, and current efforts rely on manual visualiza-
tions. This paper presents how to accelerate and semi-automate this task through an interface for visualizing fiber singularities of
multivariate functions R> — R?. This interface exploits existing conventions of fiber topology, but also introduces a 3D view based
on the extension of Reeb graphs to Reeb spaces. Using the Joint Contour Net, a quantized approximation of the Reeb space, this
accelerates topological visualization and permits online perturbation to reduce or remove degeneracies in functions under study. Val-
idation of the interface is performed by assessing whether the interface supports the mathematical workflow both of experts and of

less experienced mathematicians.

Index Terms—Singular fibers, fiber topology, mathematical visualization, design study.
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1 INTRODUCTION

It is often assumed that mathematics supports visualization with con-
cepts and equations to build upon. Yet there are also problems where
computation can support the development of mathematics. Many
mathematicians construct visual representations by hand, which can
be time-consuming and difficult, even for experts, especially in higher
dimensions. Where the mathematical field is used to develop tools for
analysis and visualization, there is therefore double value in building
specialized tools for mathematical visualization.

One field where this is true is fiber topology—the multi-field coun-
terpart of scalar Morse theory. Like in Morse theory, mathematicians
study the relations between a function and the singularity of its fibers
(i.e. inverse images) even for multi-fields, in order to form the singular
fiber theory. In the advancements of this theory, manual visualization
has supported obtaining and communicating significant results. Thus,
semi-automation of this task further facilitates both experts and learn-
ers to investigate phenomena that are too complex for manual visual-
ization. As with the scalar case, topology of fibers in multi-fields is
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Fig. 2. Singular fiber of a function f: R® — R? (on the left) with its Reeb
space (on the right). Isosurfaces of temperature are horizontal planes,
while isosurfaces of pressure are curved sheets perpendicular to the
planes. Fibers (i.e. inverse images) of the function are curves obtained
as intersections between isosurfaces of temperature and pressure. The
Reeb space represents the connectivity of such fibers in terms of tem-
perature and pressure.

now being applied to data analysis and visualization [6]. Here again,
manual visualization helps communicate the mathematical results to
non-specialists, and develop the intuition of novices to the field. This
suggests that there exists considerable advantage in developing visu-
alization systems for that task.

Although work exists on extracting topological features from multi-
fields, an effective visualization system for supporting the mathemat-
ical study is yet challenging to develop. Indeed, such topological fea-
tures are more complex than those in the scalar case, even for the sim-
plest case where 3-manifolds are transformed to 2-manifolds.

This paper therefore reports a user interface (Figure 1) developed
in collaboration with a leading expert in fiber topology. Here, rather
than deploying novel techniques for general-purpose data, the primary
focus is on supporting existing mathematical workflow and conven-
tions, with departures from these conventions deliberately limited. The
user interface visualizes the complex topology of fibers for the class of
functions f : R® — R?. Interestingly enough, the available Reeb space
analysis [6], which is the extension of the familiar Reeb graph to multi-
fields, provides necessary information about the fiber topology. Our
technical contribution is firstly to bridge the gap between the mathe-
matical basement presented in [30] and the associated computational
algorithm. For that purpose, we will describe the algorithmic details
here in this paper. In addition, we let the user perturb the function in-
tuitively to resolve duplicated singularities into simple ones. Another
contribution lies in the visualization of Reeb space in 3D.

We start with the mathematical preliminaries in Section 2. Section 3
then discusses the relevant prior results in the visualization literature.
Then Section 4 characterizes the mathematical workflow in singular
fiber theory, and identifies bottlenecks where machine visualization
can accelerate tasks. Section 5 discusses the design of the applica-
tion, and Section 6 the new techniques required. Finally, Section 7
gives some implementation details, Section 8 discusses the use of the
interface, and Section 9 summarizes and discusses future directions.

2 SINGULAR FIBERS

Singular fiber theory [29] studies mappings from manifolds of arbi-
trary dimension to other manifolds of dimension less than the domain,
often exactly one dimension less than the domain. We consider a com-
mon case in multi-field data analysis: simple manifolds, with small
dimensions of functions f : R®> — R?, as this is challenging, but can
still be displayed in a 3D interface, and develops intuition for higher-
dimensional cases. Readers can refer to [30] for a formal introduction
to the mathematical backgrounds.

We assume a function f : R> — R® where f consists of 2 scalar
functions f| and f. The function value f(x) refers to the vector
(fi(x), f2(x)). For any point ¢ in R?, the fiber of f at ¢ is defined
as the inverse image f~! (¢). A fiber component refers to a connected
component of a fiber.

As an example, consider Figure 2. Here, the planes are isosur-
faces of temperature, while the stacked curves belong to isosurfaces
of pressure. For a particular pressure and temperature, we find the
fiber as intersections between the pressure isosurface and temperature
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Fig. 3. A typical hand-drawn fiber visualization: red and blue curves
indicate singular values in the range. The topological shapes of fiber
components changes as one walks through the dashed path. At the
blue curve, a fiber component splits into two. At the red curve, one
fiber component becomes a point and then disappears. The topological
shapes of fibers are represented by icons.

isosurface. Since these isosurfaces are 2-manifolds, most fibers are
1-manifolds embedded in R3, and we will see similarities to familiar
contour lines. Indeed, readers familiar with 2D time-varying scalar
field may regard it as a special case where f5 is the time axis.

Exploring the example in Figure 2, each non-empty fiber consists
of one or more disjoint components. In this example, most fiber com-
ponents are arcs or loops: arcs intersect the boundary twice, and are
called boundary fiber components, while loops are in the interior of
domain and are called interior fiber components. We refer to this dis-
tinction as the ropological shape of the fiber component.

Fiber components whose topological shape is not an arc or loop are
said to be singular, and fibers with any singular component are also
singular. Figure 2 indicates such singular fiber components in red and
blue, and Figure 4 lists more examples. Any fiber consisting only of
arcs or loops is called regular.

As with isocontours, different range values give fibers with different
topological shape, and singular fibers are found at values where topo-
logical shape changes. In the scalar case, one intuitively understood
the topological changes while sweeping through the 1D range. A simi-
lar view can be employed to understand the multi-field. As in Figure 3,
consider a path in the range. The topological shape evolves smoothly
along the path, while changing from a single loop to two loops at a sin-
gular value on the blue curve where the fiber takes on a figure-8 shape,
and then into a single loop again through the red curve where one fiber
component shrinks to a point. Here, the types of these singular fibers
correspond to type V and type I in Figure 4, respectively.

Returning briefly to scalar fields, we see that the critical values di-
vide the range interval into a set of intervals with different topology.
We can track components separately, using overlapping intervals cor-
responding to edges of the Reeb graph. This has been formalized in [9]
by defining edges to be the equivalence class of topologically similar
contours that are adjacent to each other.

Applying the same logic here (shown in Figure 3), a region where
all topological shapes consist of one loop must necessarily be divided
from a region with two loops by a curve, along which singular fibers
of figure-8 shape occur (shown in blue) and by a curve along which
one of the loops disappears (shown in red). This is again similar to the
Reeb graph: at a critical point, one contour may break into two, and the
critical point is the border between the one contour and two contours.
At some higher isovalue, the two contours may either reconnect, or
one may disappear entirely at a local maximum. In Figure 3, the red
curve carries the semantics of a local extremum (i.e. extinction), while
the blue curve carries the semantics of a saddle point (separation).

We note that the set of singular points is the Jacobi set of a func-
tion [12]. As described earlier, in scalar fields, the connectivity of
fiber components across different function values was represented as
the Reeb graph. This can be naturally extended to the Reeb space in
the multi-field case, which is defined as a quotient space by identifying
each fiber component with a point. It provides an intuitive representa-
tion of the connectivity of fibers, as in Figure 2. We also note that the
Joint Contour Net (JCN) [6] is a discrete representation of the Reeb
space, and we will employ this representation in our approach.

Singular fiber theory [29] classifies singular fibers, and this classi-
fication gives the possible topological shapes in a fiber. In the past,
singular fiber theory has assumed a function defined over the infinite
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Fig. 4. Topology of non-degenerate fiber components, after Saeki and Yamamoto [31]. For f: R* — R?, topological changes to fibers must be one
of these possibilities or their converses, barring degeneracy. These are the same changes as for isolines in f : R> — R' —i.e. scalar critical points
in a scalar field. However, since there are two range variables, these changes occur across one dimensional boundaries in the range rather than in

a strict linear sequence, as shown in Figure 3.

domain without boundary, and it is only recently that it has been ex-
tended to deal with behavior at the boundary of a finite domain [31].
This is accomplished by classifying the topological shape not only of
a fiber, but also of its restriction to the boundary of the finite domain,
and was developed in part to support the application we describe, but
the proof is beyond the scope of this current paper.

This classification is shown in Figure 4, and is the basis of our clas-
sification of singular fibers for visual display. Excluding degeneracies
and cases involving boundaries, there are in fact two possibilities: birth
and split. This is analogous to contours in the scalar case.

As with scalar analysis (Morse theory), the singular fiber theory as-
sumes the functions to be stable, i.e. the topology of their fibers does
not alter even if a small perturbation is applied. Therefore, if the func-
tion is not stable, the topology of fibers can be different from those
classified in [29, 31], and such fiber components are said to be degen-
erate. In particular, more than two fiber components can merge to one
at a function value. An example is given in Figure 5.

The list in Figure 4 is not always easy to interpret in practice, as
multiple topological changes can occur in a single fiber, especially in
degenerate cases. As a result, plotting a function of any complex-
ity can lead to topological boundaries overlapping visually, requiring
skilled interpretation of the interactions. We do not claim to resolve
such situations, merely to accelerate the process of identifying them
and manually resolving them through perturbation in order to visual-
ize the mathematical classification of fibers.

3 RELATED WORK

In scientific visualization, topological analysis was introduced through
the use of the contour tree as a graph representing the topological com-
plexity of isosurfaces [2]. Later, contour trees were used for semantic
segmentation of the entire 3D scalar field [8]. Kettner et al. [22] ex-
tended it to portray topological complexity in a time-varying dataset by
counting connected components as isovalue and time varied, and then
presented the information as a color map for visual analysis. While
their interface were based on analyzing the number of fiber compo-
nents, we identify and visualize the singularities in fiber topology. Ac-
tually, a time-varying scalar field [10, 22, 13] becomes a multi-field
by choosing the time as an auxiliary function, and the visualization
community obtained a classification of fibers [10] similar to Figure 4.

More generally, algorithms have been reported for constructing
contour trees [9] and Reeb graphs [28]. These were then enhanced
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Fig. 5. A degenerate fiber in a Reeb space. On the left, topological
shapes of fibers shown in the range. On the right, the Reeb space,
expanded along a virtual dimension z for the visual clarity. Above, three
fiber components merge simultaneously at three singular points, along
the singular values indicated by the blue line. Below, a perturbation to
the function resolves the component to non-degenerate ones.

with additional information such as isosurface genus [27] and spa-
tial embeddings [35], and employed as visual metaphors of the given
datasets [36]. Moreover, these approaches have also been used to
reduce very high dimensional data to two or three for visualiza-
tion [34, 26, 17].

Multi-fields are usually more difficult to analyze than scalar fields,
so fewer effective techniques are known [16]. Bachthaler and
Weiskopf [1] extended conventional scatterplots to the continuous ver-
sion, projecting smooth density within the domain space onto the
range space. Lehmann and Theisel [23] extended this work by iden-
tifying discontinuities as important features, and it is now clear that
these features contains the singular values of multi-fields. Alterna-
tively, Huettenberger et al. [20, 21] extended scalar topology analysis
to multi-fields by adapting the concept of Pareto optimality. In prac-
tice, the optimal points form a subset of the Jacobi set [20]. Another
effective visualization technique is the fiber surface [7], which extracts
a set of fibers as surfaces, allowing the user to specify it as curves in
the range.

An alternate approach to multi-fields analyzes contour trees of indi-
vidual fields, then compares the features of each [32], but this is not the
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Fig. 6. A typical workflow for studying singular fibers using manual
visualization. A mathematician poses a question on a function, then in-
vestigates the function by manual analysis (e.g. transforming equations)
and sketching. The function is perturbed if degeneracies are found. The
investigation continues until the function has been explored, and then a
new function is selected, often by modifying the previous function. The
process then iterates.

same as analyzing the Reeb space. Equally, Edelsbrunner et al. [12]
extracted the Jacobi set from discrete samples of two scalar field func-
tions, but did not extract the entire Reeb space. Instead, the Reeb space
was formulated later [14], and can now be seen to be identical to the
Stein factorization [24]: in neither case was a practical computation
given.

The Jacobi set has since been simplified [4, 33] and applied to ridge-
valley extraction [25]. However, in these cases, the Jacobi set is illus-
trated in the R> — R? case, where the Jacobi set divides the domain
into regions. For higher dimensions, the region is actually separated
into regions by the singular fibers which pass through points of the Ja-
cobi set. In the R? — R case, the Jacobi set is the set of critical points
(extrema and saddles), but the critical contours are needed to iden-
tify features of uniform topological behavior. Correspondingly, in the
R® — R? case we are considering, the Jacobi set is a set of 1-manifold
structures, as can be seen in Bremer et al. [5, Fig. 5(a)]. It then follows
that the Reeb space, not just the Jacobi set, needs to be computed to
support the mathematical workflow.

More recently, Carr and Duke approximated the Reeb space with
the Joint Contour Net [6]. Here, each dimension of the range space
is partitioned into intervals of fixed height and width (i.e. pixels) and
projected onto the graph of the function. This means that each pixel
corresponds to a quantized approximation of a fiber, and this permits
extraction of the fiber components and their relationships.

The advantage of the JCN is that it explicitly encodes the connec-
tivity of fiber components as a graph structure, albeit approximately.
In our approach, we employ it to extract the fiber topology of the func-
tion R> — R? within the original finite 3D domain and separately for
the restriction to the boundary.

Visually, Duke et al. [11] arranged JCNs aesthetically in 3D space
for arbitrary dimension of the range space, and applied it to analyzing
real datasets. In our case, however, it is better to keep the connection
with the range, and this requires a new layout algorithm (Section 6).

4 TASKS FOR STUDYING SINGULAR FIBERS

With the mathematical preliminaries out of the way, we now turn to
the question of how to support mathematical development of singular
fiber theory. As with any application, this requires understanding the
workflow into which the application will fit, as shown in Figure 6.

Characteristically, this workflow starts when a mathematician poses
a question about the topological structure of a function, then investi-
gates the function using manual visualization. As shown in Figure 6,
this starts with synthesizing a suitable function, and posing a question.
Such a question can be how a degenerate singular fiber component can
be topologically resolved to non-degenerate ones when the function is
perturbed.

The mathematician then chooses some fibers of interest and
sketches them in space. Viewing these fibers then gives insight into
the topological changes in the function, and allows selection of new
fibers. These are in turn sketched, and the mathematician gradually
fills in a sketch similar to that shown in Figure 3, until they are satis-
fied that they have adequately explored the function’s topology.

A new function is then selected and the process starts over, gradu-
ally building up an understanding of the complete set of possible topo-
logical behavior. In practice, however, new functions are chosen by
modifying an existing function slightly, either by perturbation or in
some other fashion.

While this process is well understood, it has several difficulties.
First, without a great deal of experience, manual visualization of the
topology is laborious. Second, the functions chosen are normally poly-
nomials, as these are simpler to analyze. This leads to exploration of
a subset of the full space of possible functions, since not all functions
are polynomial, and polynomials over degree four cannot be solved
in closed form. Third, the functions chosen are characteristically an-
alytical and have relatively few topological features, both due to their
polynomial definitions and the need to restrict the complexity: in com-
parison, data-driven problems may have tens of thousands of topolog-
ical features.

As a result, computational tools for analysis and visualization have
the potential to accelerate the process of mathematical discovery, and
to supplement existing manual visualizations with additional informa-
tion not currently exploited.

In particular, the tasks that need to be supported are:

e Drawing the fibers
e Perturbing the function

In the following subsections, we explain these tasks and how machine-
based visualization can help.

4.1 Drawing the Fibers

As shown in Figure 3, manual visualization of topological shapes is
based on plotting the characteristics of the fibers in the range of the
function, to help understand the configuration of fibers. In addition,
isosurfaces of the two scalar functions are sometimes drawn, in order
to get insight into fiber changes with respect to the function values.

These steps, however, are non-trivial, as they require solving for
roots of a polynomial function. Moreover, by conceptualizing and vi-
sualizing single points in the function space, the mathematician is in
effect sampling the space. Thus, while the topological shape of a fiber
may be apparent, the relationship with nearby fibers depends on un-
derstanding which loops or components map to other components.

In short, this analysis depends on understanding the Reeb space [24,
14].  Although singular fiber theorists have considered the con-
cept [19], sketching the topology has not been a common strategy
when understanding a function. Part of the reason for this is that the
Reeb space is itself difficult to visualize and analyze, especially for
complex data. Since recent work has enabled computational approx-
imation of the Reeb space [6], we have added to the application the
ability to visualize the Reeb space directly, as well as its relationship
to the conventional range diagram.

4.2 Perturbing the Function

As noted above, singular fiber theory, like Morse theory, is the most
straightforward if no degenerate fiber components exist, and this is
usually handled by adding small perturbations to the function to de-
stroy the degeneracies. Importantly, functions without degeneracies
still approximate those with degeneracies, making perturbation a com-
mon strategy in studying fiber topology. In practice, perturbation tasks
occur frequently since polynomials with complex behavior are rela-
tively easy to define, but polynomials with multiple roots commonly
have degenerate fibers. As a result, the first iteration of the workflow
commonly starts with a polynomial with degenerate fibers which is
progressively edited until the degeneracies are eliminated.



Given that the functions studied are usually polynomials, the nor-
mal strategy for perturbation is to add another polynomial to the orig-
inal function, so that the new function is slightly different from the
original one. Unfortunately, it is hard in practice to find a suitable
additive polynomial that destroys degeneracies but does not otherwise
alter the function significantly. As a result, degeneracies are difficult
to eliminate systematically. Thus a considerable amount of trial and
error is required in practice.

One of the key features of any application for this branch of math-
ematics is the ability to apply perturbations to the data and show the
resulting topology immediately, with the option of removing the per-
turbation and trying again.

5 THE USER INTERFACE

As we have seen in the previous sections, while mathematical develop-
ment of singular fiber theory is well advanced, it is strongly dependent
on manual visualization of functions, and these manual visualizations
are the bottleneck in terms of time. This motivates the development
of visualization interfaces which accelerate and improve this process,
but these interfaces must support the workflow of the mathematician,
in particular the iterative examination and perturbation of functions,
using the existing conventions of range-based visualizations.

The principal design decision, therefore, is that at least one view
must show the conventional range diagram: i.e. a 2D rendering of the
fibers and the singular values. Secondly, since interpreting this dia-
gram relies on being able to understand the relationship between the
fibers and the function, a view is required in which the fibers are drawn
in the domain. And thirdly, since comprehension of the Reeb space is
at the heart of the mathematicians’ task, a third view should show the
Reeb space. We will call these views the range view, the domain view,
and the Reeb space view, respectively, as shown in Figure 1.

We start with the domain view, as it is the simplest, and then the
range view and Reeb space view, while omitting discussion of function
perturbation until the basic role of each window has been covered.

5.1 The Domain View

Mathematical exploration of multivariate topology depends on being
able to see the topology of individual fibers, and the domain view is
present for this purpose. As described in Section 2, a fiber may conve-
niently be described as the intersection of isosurfaces of two different
functions, and this approach is commonly used already.

The first view, therefore, shows a single fiber by displaying one
transparent isosurface for each of the two functions in contrasting col-
ors, and showing their intersection in a third color. In Figure 1 these
colors are yellow, green, and red respectively, but these choices are
arbitrary and other possibilities could be chosen.

As usual for renderings of 3D data, this view can be zoomed and
rotated, but this should primarily be understood as a passive view in
which the results of choices made in the range view are displayed. For
convenience, a pop-up menu is provided in this view so that the user
can among other things perform screen captures of any view.

5.2 The Range View

Since mathematicians already depict fiber topology in the range space,
this view is the heart of the application. Ideally, this view would be
identical to the diagram shown in Figure 3, with boundaries between
regions of different topological shape, and each region or boundary
neatly labelled with an iconic representation of the topology. In prac-
tice, however, once functions become arbitrarily complex (as shown in
Figure 5), it is easy to overload the visual representation. Moreover,
if boundaries overlap each other, it can become difficult to identify
which icon belongs to which boundary.

Instead, we choose to represent the topological changes along the
boundaries with the color coding shown in Figure 4, by providing inset
windows showing the fibers in the domain view at a particular pixel,
and by allowing the user to select such a pixel to be investigated. Thus,
by interacting with the range view, the user can understand topological
changes directly, by seeing how the fiber topology changes across a
boundary directly.

Secondly, while color coding is generally to be avoided unless there
are only a few distinct colors, in this case, there are exactly seven pos-
sible topological changes (Figure 4), making color coding a viable op-
tion. Moreover, the topological change across a boundary is consistent
along the length of the boundary, meaning that a uniformly colored
line gives reliable information to the user.

Once the choice has been made to represent topological changes
(i.e. singular fibers) with color, the remaining pixels must be
monochrome, but intensity can still be used to represent further in-
formation, and here we choose to use intensity to represent the mul-
tiplicity of the function—i.e. the number of distinct fiber components
that make up a fiber. Thus, black indicates regions with no fibers, dark
grey corresponds to one fiber component (i.e. a simple arc or a loop),
and lighter grey indicates regions of greater topological complexity.

Since it is only possible to show a single fiber at a time in the do-
main view, the range view also acts as a selection panel in which the
parameters of the fiber are chosen, and the currently selected fiber is
shown as a cross in the view. Interestingly, this view can now be seen
as a projection of the graph of the function akin to that used in the
work on continuous scatterplots [1].

While the range plot can extend to the boundaries of the view, a
further refinement was added: inset views. In essence, the iconic rep-
resentations in Figure 3 are thumbnail sketches of representative fibers,
and are used as visual anchors for mathematical reasoning. Since these
images are generated for the domain view, it is straightforward to com-
pute thumbnails for any desired choice and pin them to the window for
reference, as shown in Figure 1, using menu commands on a pop-up
menu. To avoid having too much visual complexity, these are placed
inside the boundary of the range window, with lines indicating their
location in the range. Inset placement will be discussed in Section 6.3.

5.3 The Reeb Space View

In addition to the range view, the Reeb space view is also provided, to
allow the user to see the relationships between the sheets whose over-
lap is displayed in the range. Although the range view can be seen as
a simple projection of the Reeb space view, there are two reasons why
it should not be subsumed into the Reeb space view. First, the range
view reproduces the existing mathematical convention for reference.
Second, the range view is also used to choose fibers to display in the
domain view, a task that would be needlessly complicated if there were
free-form rotation.

Against this, it is clear that the Reeb space view gives additional
information beyond that represented in the range view. As with the
domain view, zooming and rotation is supported.

5.4 Function Perturbation

While the views so far described provide the functionality of drawing
the singular fiber topology, the task of perturbing the function needs
to be added, and at this point a problem arises: in which view should
function perturbation (i.e. visual editing) be performed? To see why
this is a problem, consider a degenerate fiber in which three loops
occur. Eliminating one of these loops implies editing function values
along the loop, i.e. changing values according to where they are in the
domain. Moreover, values near the loop will also need to be changed
to ensure continuity.

Logically, therefore, function perturbation belongs in the domain
view, and this requires a choice of how to edit fibers. Since the goal
is to shift the values on a fiber which lies along the intersection of two
isosurfaces, a simple approach is to move either isosurface to destroy
the fiber. This is achieved by letting the user select a control point on
either isosurface and drag it along the normal of the isosurface at that
point. Once the user is confident that sufficient perturbation has been
performed, the function values are updated as described in Section 6.5
and the topology of the function is recomputed and redrawn.

6 TECHNIQUES

In order to support the mathematical workflow, we would ideally com-
pute the Reeb space of the function together with all of the singular
fibers. Note here that a fiber component is equivalent to a point in
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Fig. 7. Decision tree for identifying singular fibers in the JCN, based on Figure 4. We identify not only the non-degenerate singular fiber components
(shown by icons), but also the degenerate ones (with double lines). Birth/split detection is illustrated in Figure 8.

the Reeb space. Unfortunately, no practical algorithm has yet been
reported for correct computation of the Reeb space, although an algo-
rithm was reported for computing the Jacobi set [12].

Instead of this, we therefore approximate the topology of fibers
by computing the Joint Contour Net (JCN) [6], as discussed in Sec-
tion 6.1. Although the JCN can be used to approximate the Reeb space,
it does not identify the singular fibers, nor classify their topological
shapes. We therefore implement an approximate classification based
on local relationships of nodes in the JCN, as described in Section 6.2.

Other tasks required include placement of the insets in the range
view (Section 6.3), rendering the isosurfaces and fibers in the domain
view (Section 6.4), editing the function in the domain view to remove
degeneracies (Section 6.5), and laying the JCN out in the Reeb space
view (Section 6.6).

6.1

Recall that the JCN approximates the Reeb space by quantizing the
function values. Each node in it corresponds to a class of fibers defined
by the Euclidean product of intervals in the range. In the R’ - R?
case, these are rectangles in the range: i.e. pixels, and the JCN can be
computed using rasterization algorithms [6]. An intuitive description
with the connection to formal mathematics is found in literature [30].

In the present application, the function is sampled at a domain reso-
lution of 50 x 50 x 50, although this can easily be varied. The resulting
cubic lattice is then subdivided into six tetrahedra per cell and raster-
ized to compute the JCN, using RGBA channels in the frame buffer to
represent pixels in the range.

Representing Fibers with the Joint Contour Net

6.2

As seen in Section 2, the key task in singular fiber theory is to iden-
tify singular fibers and the topological changes that occur at them, as
shown in Figure 4. We observe that each regular fiber component is
represented by a single point in the Reeb space that is locally homeo-
morphic to a disk.

In the JCN, a node corresponding to a regular fiber component will
be adjacent to exactly four other nodes: one each above, below, to the
left and to the right, in the R? range. Any node that does not have
exactly these four neighbors is therefore presumed to be singular.

Even further, the shape of each singular fiber component is deduced.
Inspired by the classification in Figure 4, we refer to the changes in
the numbers of fiber components and endpoints in the fiber. Notice
that we can determine whether a fiber component (i.e. a node in the
JCN) has a split/merge or birth/death, as shown in Figure 8. More

Identifying Singular Fibers

precisely, a fiber component where a split/merge occurs will have at
least two neighbors in one direction, while a fiber at which a new
component appears/disappears will have no neighbors. To discrimi-
nate the topological changes on the boundary of the domain, we con-
struct not only the JCN for the entire domain (the interior JCN), but
also the JCN of the function restricted to the boundary (the boundary
JCN). Following the original rasterization algorithm [6], we construct
the interior JCN by rasterizing all of the triangles that constitute the
overall tetrahedral tessellation. If two triangle fragments in the same
pixel belongs to a common tetrahedron, they are grouped together to
form a JCN node. In other words, each JCN node can be regarded
as a set of triangles. Likewise, the boundary JCN is constructed by
rasterizing all the triangles on the boundary. Each node in the inte-
rior/boundary JCNs then corresponds to a slab, which is defined to
be a set of tetrahedra/triangles that encloses a fiber component in the
domain/boundary. Consider a node of the interior JCN and a set of
tetrahedra that encloses the corresponding fiber. The topology of the
fiber on the boundary can be obtained by extracting nodes from the
boundary JCN in such a way that their associated triangles are con-
tained in the aforementioned set of tetrahedra.

We iterate through the interior JCN nodes to determine the topolog-
ical shape of each fiber component by consulting the decision tree in
Figure 7. The idea of the tree is to classify fiber components to three
categories: singular ones with/without singular points on boundary,
and regular ones. The singular fiber components are further classified
into “birth,” “split,” and their mixture. This allows us to classify any
non-degenerate singular fiber component with a pattern in Figure 4.

More complex non-degenerate singular fibers can still be born or
merged at multiple singular points. Discriminating these cases against
those in Figure 4 was not achieved yet, as this requires investigating
the number of singular points. This eventually leads to a separate
work, since no singular point extraction algorithm is consistent with
the approximation in the JCN. In practice, however, our classification
algorithm satisfied the users as described later in Section 8.

6.3 Placing Inset Views

We saw in Section 5.2 the need for insets of fibers in the range view.
As the session continues, however, multiple insets accumulate, and it
is necessary to keep them organized. We reserve the outer border of
the range view for insets, and use the center for the actual range. Then,
where should the insets be placed for maximum clarity?

We note that insets are just labels, reducing the problem to a ques-
tion of label placement. For this, we apply a standard technique [3],
which arranges large annotation labels outside a central content area



A | 2 |

B ~<O+— N ~<O+—
1 | I | 1 I
» J1, » K11,
(a) (b)
Fig. 8. Identifying topological change (in red) from the JCN. (a)

Split/merge of a fiber component. (b) Birth/death of a fiber component.

with minimal overlap. Once these insets have been placed, a leader
line is drawn from each inset to its range value. Since the leader lines
are hard to distinguish from singular fiber curves, we show each inset
with an optional black boundary as seen in Figures 1 and 10.

6.4 Extracting Isosurfaces and Fibers

Rendering the domain view is straightforward, as what is required is
to draw isosurfaces of the two scalar functions, plus the fiber at their
intersection. The latter is identified by extracting the level set of f>
from the patches of marching tetrahedra for fi.

6.5 Perturbing the Function

As we have seen, one of the key tasks in visualizing singular fibers is
to perturb the existing function to remove degeneracies. Doing so re-
quires identifying fibers where multiple topological changes occur si-
multaneously, and changing the function slightly so that these changes
are spread out over multiple fibers. In practice, what this implies is
choosing one fiber component in the domain view, and modifying it so
that any topological change to it occurs at different function values.

For this, we observe that the change must be localized in space so as
not to affect the other components in the fiber. While it is theoretically
possible to select a fiber and adjust neighboring values automatically, a
simpler approach adds or subtracts a small function with limited spa-
tial support. If this is performed at a singular point in the domain
where two components are in touch, the singular point will have its
value changed and will instead occur at another values.

More specifically, it is not necessary to displace the singular point
with respect to both functions. Instead, it suffices to do so for a single
function, i.e., we just need to locally displace one of the isosurfaces
that contain the corresponding singular fiber.

Once the problem is stated in this way, the solution is straightfor-
ward. We allow the user to select any point on either isosurface and
drag it inwards or outwards, for example, along the normal to the iso-
surface. Here, the change is accomplished by adding a small radial
basis function (RBF), the amplitude of which is governed by the dis-
tance of the mouse pointer, and the radius of which is a small distance
chosen as an initial parameter: half of the size of the domain by de-
fault in our implementation. Our experiment showed that the radius
was large enough for avoiding too small perturbations to the topology.

6.6 3D Layout of the Reeb space

In the Reeb space view (Section 5.3), we show the Reeb space in 3D
to allow the user to understand the relationships between fiber compo-
nents. Ideally, this would involve a canonical layout algorithm for the
nodes of the JCN. Note here that we focus on the visualization of the
interior JCN only because it clearly designates how the fiber evolves
in terms of the two function values. Unfortunately, configurations ex-
ist in which we inevitably incur self-intersections of the Reeb space,
making a canonical crossing-free algorithm impossible.

Since this exact problem arose in work on the contour tree, and
required separate work to resolve [18], we can identify that this is a
subtask beyond the scope of the present paper. Thus, like the solution
used by Duke et al. [11], a heuristic layout is called for, based on a
spring layout algorithm, shown in Figure 9. The popular force-directed
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Fig. 9.  For controlling the 3D layout of the interior JCN in the Reeb
space view, each node in the JCN moves vertically along the z axis. The
motion is controlled with the repulsive forces from other nodes having
the same quantized (f1, f>) value (in red), and the attracting forces from
the adjacent nodes (in green).

graph layout algorithm [15] in 2D works fine for the 3D layout of
the Reeb space in our experiments, but with a few modifications. We
constrain (x,y) coordinates of each JCN node to be fixed at the two
function values, while leaving the z coordinate available to the layout
algorithm. Let us denote by a sheet, the cluster of nodes that belongs
to the same connected component in a regular fiber. The z values of the
JCN nodes are equalized if they constitute the same sheet, and spaced
evenly along the z axis if multiple sheet exists at the corresponding
(x,y) coordinates. Note that we set the z value of the other nodes to
the mean of those of the adjacent nodes.

As illustrated in Figure 9, we apply to a node i the summa-
tion of attractive forces F, exerted by its adjacent nodes, and re-
pulsive forces F, by nodes that share the same (x;,y;) coordi-
nates as i. Here, F,(d;) = dy> /ki where d, is the distance from
an adjacent node, and F.(d,) = —k,-z/d, where d, is the distance
from the node that shares (x;,y;). Moreover, control parameter k;
is empirically set as k; = C x (#{nodes at (x;,y;)})~"/2, and C =
#{nodes in sheet(i) } / max ;{#{nodes in sheet(/)} }, where sheet(i) in-
dicates the sheet containing i. Notice that each node moves along the
z axis only and its displacement is bounded by some constant U that
gradually decreases during the iteration to avoid any local minimum.

7 IMPLEMENTATION

We have implemented our system in C++ using Qt for the interface,
CGAL for tessellating the domain space, Boost Graph Library for han-
dling graphs, OpenGL for rendering mathematical objects and raster-
izing the tessellated domain space for JCN construction.

Although performance is not the principal concern in this imple-
mentation, we give some typical figures for computation times. The
computation for the sampling, rasterization, and JCN construction in
total took 123 seconds for Figure 1, 255 seconds for Figure 10 (top),
and 89 seconds for Figure 10 (middle). These times were recorded on
a desktop PC with Intel Xeon E5 CPU with 6 cores (3.5 GHz, 256 KB
L2 Cache per core and 12 MB L3 Cache), 32GB RAM, and an AMD
Dual FirePro D500 GPU (3GB VRAM x 2).

We report that errors in fiber type detection can be found: this how-
ever was expected given the quantization implicit in the JCN. Addi-
tional errors might result from calculation errors in the function val-
ues, creating small singularities in the domain. In practice, however,
these merely change the local structure of the JCN, and that of the
Reeb space visualization, without a significant impact on the global
structure. Even such errors were topologically consistent: e.g. simul-
taneous birth and split of a fiber in a pixel were sometimes separated
to a sequence of birth and split fibers in neighboring 2 pixels. In the
following experiments, the errors did not affect the users’ task.

8 OUTCOMES

More important than the computational speed is the question of
whether the interface supports the desired interactions by the user. We
assess this by illustrating how the application supported a user’s tasks
in Section 8.1, and by reporting feedback provided by some indicative
users in Section 8.2.

It is the nature of this type of application that the initial target au-
dience is small and highly specialized, and thus the participants of our
user study include a research group headed by one of the co-authors.



Moreover, although tasks have been defined in Section 4, they are not
readily fit to quantitative assessment, and it is more important to under-
stand whether the target group feels that the application is successful
in supporting their research. We therefore recruited 2 graduate stu-
dents and 4 experienced researchers. Of the latter, 2 were co-authors,
1 a member in a co-author’s group. We demonstrated the application
to them, and collected their feedback when done.

8.1 Task Support

As a demonstration of how the application supports the desired
tasks, professional mathematician, who participated outside of our
group, used the interface to understand fibers in a particular function:
f(x,y,2) = (x2,y* +z?). He employed this function as an example for
understanding new results on fiber topology of boundaries [31]. We
asked him to focus on the two principal tasks from Section 4: drawing
the fibers and perturbing the function.

As shown in Figure 10, he firstly tracked the fiber topology of the
function by dragging the cross-mark in the range view, which corre-
sponds to the isosurfaces and fiber in the domain view. He then moved
on to the second task, which was to perturb the function. His intention
was to explore the possible deformations that resolve specific types of
degeneracies, which leads to meaningful insights into many unsolved
problems in mathematics. He began by using the traditional technique:
perturbing the function with equation. He altered the input equation to
f(x,y,2) = (x2,y*> + 2% +x), and then moved the cross-mark around in
the range to understand the configurations of the fibers in the domain.
After that, he interacted with the proposed RBF perturbation. In con-
trast to the traditional perturbation on equations, the RBF perturbation
immediately showed how the fibers can be modified.

When drawing the fibers, he also placed inset views to remind him-
self of the topology. He reported that interactions in the domain view
with other two views are significantly more intuitive, compared to tra-
ditional techniques.

The interface has let the user quickly understand the fiber topology
of f(x,y,z) = (x2,y* +z°), and he found a few new topological defor-
mations to the fibers. He reported that the visual indication provided
was indeed useful since the task had been difficult to do manually. He
also mentioned that the 3D Reeb space view was useful for under-
standing the connectivity of the fiber components and compensated
for missing information in the range view. To demonstrate practical
usages, a prototype version of our interface visually verified a hypoth-
esis in mathematics [30, Fig. 17].

8.2 Observations

As in Section 8.1, we asked the participants to draw fibers and per-
turb functions. All participants agreed that the interface successfully
provided an intuitive means of analyzing the singular fibers.

The graduate students commented that the domain was useful in
elucidating cases where the fibers were knotted, as well as for under-
standing complicated merging/splitting of fibers. The experienced re-
searchers felt that the rapid display of the overall configuration of the
range was beneficial in understanding the global features of a func-
tion. The experienced researcher in Section 8.1 again reported that
the Reeb space view helped understand the connectivity of the fiber
components. When the Reeb space view contains multi-layered sheets
with respect to the function values, however, the users often prefer the
range view to identify the connectivity between fiber components.

Solving degeneracies also attracted considerable attention from the
users. The graduate students reported that our interface allowed them
to imagine various ways of solving a degeneracy. In contrast, the prin-
cipal researcher supported the use of the interface for three reasons.
First, it simplifies understanding the topological shape of a degenerate
fiber by showing the decomposed non-degenerate singular fibers. Sec-
ondly, also as a classic visualization task, generating specific examples
for illustrations becomes considerably easier. Finally, he expects the
interface to be useful in studying singularity theory, where it is often
important to guess how a perturbation changes the singular points.

The users also felt that while the application was useful, they
wanted us to enhance the usabilities. In particular, the users found

that the interaction in the RBF perturbation should be more intuitive.
Moreover, as a minor update, the users demanded the manual specifi-
cation of function values in the range view, instead of mouse click in
the window. Notwithstanding this, they felt that the application would
reduce the difficulty of their study.

In summary, both experienced and relatively novice users found the
interface of value, albeit in different ways. Since the intent was to
support both analytic and learning tasks, the feedback confirmed the
value of the application, while identifying directions for further devel-
opment.

8.3 Limitations

Our visualization has been implemented at the cost of two major lim-
itations. The first limitation arises from the Reeb space representation
for visualizing the fiber topology and the second is caused by the man-
ual perturbation.

The former poses a problem since the Reeb space inherently com-
poses a multi-layered structure and cannot be embedded in a 2D space.
This limits the complexity of input functions. Interactions between
dozens of fiber components are impossible to be investigated with our
interface. Especially, real world datasets have even more of them.
Note that, however, this does not degrade the value of our work, be-
cause the examples in this paper are already challenging to investigate
without our interface. On top of this, the JCN quantizes the function
values, hiding the small deviations of the values. In other words, users
cannot find small-scale topological transitions of fibers. On the other
hand, it is still true that the approximate representation of Reeb space
facilitates us to explore the global behavior of the targeted multi-fields,
which is often preferable in the context of mathematical visualization.

As the second limitation, our manual perturbation interface gives
no guarantee to decompose the specified degenerate singularity into
non-degenerate ones and to keep a specific way of decomposing it.
Nevertheless, this simultaneously provides enough degrees of freedom
to investigate all the possibilities to resolve the degeneracy, especially
for domain experts in the field. In practice, our users told us that such
functionality also exhibits mathematical value, as in the scenario of
Figure 10. Preparing interactions for more systematic perturbation re-
mains to be tackled in collaboration with expert mathematicians.

9 CONCLUSION

This paper has presented a mathematical framework and a compu-
tational application for interactively visualizing fiber singularities of
analytic multivariate functions R — R2. This involved constructing
JCNss for both the domain and its boundary, then using the connectiv-
ity of both to identify the types of singular fibers, and rendering the
result in the range, domain, and Reeb space. Finally, the interface also
supported online perturbation of the function to resolve degeneracies
in the singular fibers.

In the future, we would like to design an easy-to-use interaction in
RBF perturbation for users unfamiliar with 3D interactions, suppress
artifacts arising from the approximate representations of Reeb space
using JCNs. We also would like to let the user analyze the relation-
ships between global and local topological properties. Further work on
adaptive sampling of the JCN is under consideration, as is the develop-
ment of perturbations that allow local updates to the JCN rather than
global recomputation. To address the limitations described in Sec-
tion 8.3, we would like to support various forms of analysis, including
that for real world data. As an example, the approach may be extended
for analyzing a time-varying scalar field by setting f| to the scalar
value and f> to the time. In this case, the singular fiber components
of birth/death correspond to local extrema and those of merge/split to
saddles. Finally, it is our intention to build upon this interface to sup-
port analysis of higher-dimensional cases such as functions of the form
R* - R
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Fig. 10. The scenario described in Section 8.1. The expert used the interface to investigate how a perturbation can alter the given function,
f(x,y,2) = (x*,y* +2%) (top), changed the equation to f(x,y,z) = (x2,y> + 2> +x) to conduct the perturbation as the traditional technique in the field
(middle), and ended up perturbing the function directly by deforming the isosurface with the RBF interface (bottom).
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