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Summary 20 

The channel forming activity of a family of small, hydrophobic integral membrane proteins termed ͞ǀŝƌŽƉŽƌŝŶƐ͟ 21 

is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant 22 

interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic 23 

structure and can perform multiple functions during the virus life-cycle, including those distinct to their role as 24 

oligomeric membrane channels. Recent progress has seen an explosion in both the identification and 25 

understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton 26 

channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug 27 

target. This review attempts to summarise our current understanding of the channel forming functions for key 28 

members of this growing family, including recent progress in structural studies and drug discovery research, as 29 

well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. 30 

Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the 31 

therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges 32 

to human and animal health. 33 

 34 

(200 words) 35 

36 
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Introduction 37 

Amantadine was one of the first antiviral agents to be licensed for the treatment of influenza A virus (IAV) in 38 

the 1960s (1969; Couch, 1969; Davies et al., 1964; Dawkins et al., 1968; Sabin, 1967; Togo et al., 1968; 39 

Wingfield et al., 1969)͕ ǇĞƚ ŝƚ ǁĂƐŶ͛ƚ ƵŶƚŝů ƚŚĞ ŵŝĚ-1980s when the target for its mode of action was discovered 40 

to be the M2 protein (Hay et al., 1985). Even then, it was several more years until the channel forming activity 41 

of M2 was demonstrated (Pinto et al., 1992) and the mechanisms underpinning how its proton channel activity 42 

related to the requirement for M2 function at early, and in some strains, late stages of the virus life cycle 43 

became apparent. The identification of M2 as a virus-coded proton channel explained observations made many 44 

years previously whereby virus infection increased cell membrane permeability to both ionic flux as well as a 45 

variety of small molecules (Carrasco, 1978).  46 

The 1990s saw rapid expansion of the viroporin family to include proteins encoded by many significant human 47 

pathogens, including human immunodeficiency virus type 1 (HIV-1) (Ewart et al., 1996), picornaviruses (Aldabe 48 

et al., 1996; Barco & Carrasco, 1995; Doedens & Kirkegaard, 1995; Lama & Carrasco, 1992; van Kuppeveld et 49 

al., 1997), alphaviruses (Melton et al., 2002; Sanz et al., 1994) and paramyxoviruses (Perez et al., 1997). More 50 

recently, viroporins have been identified in numerous other RNA viruses and this family has expanded to 51 

include DNA virus proteins (Suzuki et al., 2010; Wetherill et al., 2012) (Table 1). Whilst several viroporins 52 

functionally resemble M2 in mediating virus entry/exit, many do so via distinct mechanisms and, as the family 53 

grows, new and diverse viroporin functions continue to be identified. However, one unifying characteristic for 54 

viroporins is that their function is almost universally essential to the virus life cycle, making them ideal drug 55 

targets.  56 

 57 

The majority of viroporins are small (~100 amino acids or less) and comprise one, two or three potential trans-58 

membrane domains (TMD), often based on computer predictions. This requires that they oligomerise to form 59 
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an intact pore across the membrane, a process mediated in the main by hydrophobic interactions between 60 

TMDs. Examples ranging from tetrameric (e.g. IAV M2, (Sakaguchi et al., 1997)) up to heptameric (e.g. hepatitis 61 

C virus (HCV) p7, (Clarke et al., 2006)) assemblages have been reported, generating membrane bundles 62 

predicted to contain up to eighteen alpha helical domains (e.g. hexameric human papillomavirus type 16 (HPV-63 

16) E5 protein, containing three predicted TMDs, (Wetherill et al., 2012)). Combined with its early 64 

identification, it is therefore perhaps unsurprising that the majority of high resolution structural information 65 

relates to the most simple of viroporin assemblages, namely peptides representing M2 single-TMD tetramers 66 

(reviewed in (Cross et al., 2012)). However, recent progress has extended to the structural characterisation of 67 

hexameric two-TMD HCV p7 channels (OuYang et al., 2013). The number and orientation of TMDs has been 68 

proposed as a means of classifying viroporins, where class I/II refers to the number of TMDs, and a/b 69 

subclasses nominate proteins with either lumenal or cytosolic N-termini respectively (Nieva et al., 2012). Whilst 70 

useful in many respects, viroporins predicted to possess three TMDs need to be included and this system does 71 

not account for the fact that structurally related viroporins rarely perform the same function within the 72 

infected cell. Furthermore, examples of 2-TMD viroporins have been shown to flip their C-terminal domains 73 

across the membrane when expressed under certain conditions (Isherwood & Patel, 2005). Nevertheless, in the 74 

absence of sufficient data in many cases to allow functional classification of viroporins, this currently 75 

represents the best means of cataloguing this diverse group of proteins. 76 

In addition to their diverse structures and functions, the primitive nature of these virus-coded channel proteins 77 

leads many of them to exhibit a channel-pore dualism, i.e. lacking the highly regulated gating behaviour of 78 

many cellular ion channels. Thus, conflicting data from separate investigations often makes it difficult to assign 79 

the ion specificity, and by inference the biological function, of many viroporins. Furthermore, functional 80 

redundancy common to small RNA and DNA virus proteins means that many viroporins perform additional 81 

roles distinct from their channel forming activity, which may be equally important during the virus life cycle. 82 

Consequently, mutagenesis studies are often confounded by ambiguity concerning which biological functions 83 
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are disrupted, particularly where viroporins are produced in the context of viral polyproteins. Combined with a 84 

limited chemical toolbox of specific viroporin small molecule inhibitors (Table 2) and examples of strain-specific 85 

functional differences, the challenges associated with the study of viroporins are manifold. This review 86 

attempts to summarise the wide-ranging and often contradictory nature of the viroporin literature, with the 87 

overarching aim of highlighting channel-specific viroporin functions and their current and future potential as 88 

targets for antiviral therapy. 89 

 90 

General Viroporin characteristics 91 

͞SŝŵƉůŝƐƚŝĐ͟ ŝŽŶ ĐŚĂŶŶĞůƐ ĞǆŚŝďŝƚŝŶŐ ĐŚĂŶŶĞů-pore dualism 92 

Viroporins rarely behave as classical voltage- or ligand-gated channels and lack the highly exclusive ion 93 

specificity displayed by cellular proteins. This is likely due to their inherent simplicity and the limited coding 94 

capacity of viruses, but has also led to scepticism concerning whether viroporins form true channels or merely 95 

non-specific pores across membranes. Often, weak ion selectivity and/or indeterminate gating behaviour are 96 

evident in vitro or model cell systems, and ionic preferences are difficult to determine using standard 97 

electrophysiological techniques. Nevertheless, most viroporins do display at least a degree of selectivity, such 98 

as the IAV M2 proton channel where numerous structural and biophysical investigations have defined its gating 99 

mechanism based on the ionisation of a conserved His37 residue (Wang et al., 1995). However, M2 channels 100 

will also conduct potassium ions in vitro (Duff & Ashley, 1992) and render liposomes (Atkins et al., 2014) and 101 

bacterial cells (Guinea & Carrasco, 1994) permeable to fluorescent dyes and antibiotics respectively. Other, less 102 

well characterised viroporins often reliably display preferences for e.g. cations over anions (or vice versa) in 103 

artificial bilayers (e.g. HIV-1 Vpu, HCV p7), although defining the functionally relevant ionic species usually 104 

requires additional cell-based corroboration.  105 
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As such, viroporins can generally be thought of as membrane ionophores possessing selectivity filters with a 106 

spectrum of both efficiency and selectivity, which allow the passage of ions/solutes through their lumen along 107 

pre-existing electrochemical gradientƐ ƵŶƚŝů ĞƋƵŝůŝďƌŝƵŵ ŝƐ ƌĞĂĐŚĞĚ͘ Aƚ ŽŶĞ ĞŶĚ ŽĨ ƚŚĞ ƐƉĞĐƚƌƵŵ͕ ŵŽƌĞ ͞ĐŚĂŶŶĞů-108 

ůŝŬĞ͟ ǀŝƌŽƉŽƌŝŶƐ ƐƵĐŚ ĂƐ MϮ ĚŝƐplay discrete single channel events in artificial bilayers, reminiscent of cellular ion 109 

channels (Duff & Ashley, 1992). Further along the spectrum towards a pore, HCV p7 has been shown to adopt 110 

ďŽƚŚ ƐŝŶŐůĞ ĐŚĂŶŶĞů ĂŶĚ ͞ďƵƌƐƚ-ĂĐƚŝǀŝƚǇ͟ ďĞŚĂǀŝŽƵƌ ŝŶ bilayers, with single channel activity also comprising more 111 

than one conductance state (Chew et al., 2009; Clarke et al., 2006; Griffin et al., 2003; Pavlovic et al., 2003; 112 

Premkumar et al., 2004; Whitfield et al., 2011). This may reflect p7 behaviour whilst conducting a non-113 

preferred ionic substrate, although p7 activity also differentially modulated by several factors, including virus 114 

genotype (Atkins et al., 2014), the formation of different oligomers (Clarke et al., 2006; Luik et al., 2009) and 115 

membrane composition (Whitfield et al., 2011), all of which may influence the meta-stable nature of channel 116 

complexes (Chandler et al., 2012).  117 

However, the simplicity of viroporins and their channel-pore dualism can be exploited through the use of 118 

indirect channel formation assays to expedite drug discovery research. This was exemplified by the use of 119 

liposome dye release assays to conduct a high throughput screen of potential HCV p7 small molecule inhibitors 120 

(Gervais et al., 2011). Indeed, many viroporins with variable structures and functions have been shown to 121 

conduct diverse small molecules in addition to ionic species. Such substrates include antibiotics such as 122 

hygromycin B (hygB), fluorescent dyes such as carboxyfluorescein, or other small molecules including 8-123 

aminonapthalene-1,3,6 trisulfonic acid (ANTS)/p-xylene-bis-pyridinium bromide (DPX). Conductance of such 124 

molecules may, at first glance, argue against selective channel properties, and is likely indicative of channel-125 

pore dualism and the plasticity inherent to viroporin channel structures. However, indirect substrates often 126 

ƉŽƐƐĞƐƐ ƌĞůĂƚŝǀĞůǇ ƐŵĂůů “ƚŽŬĞƐ͛ ƌĂĚŝŝ ;Ğ͘Ő͘ Ϭ͘ϰ-0.6 nm for carboxyfluorescein), consistent with their being able to 127 

pass through the lumenal apertures of many viroporins, based upon structural data and/or computer models. 128 

Thus, whilst clearly an indirect measure of channel activity, such indirect assays conducted upon multiple 129 
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channels (e.g. M2, HCV p7, CSFV p7, HPV E5, RSV SH and Picornavirus 2B) have provided important insights into 130 

their activity as well as their inhibition by small molecules, with results generally consistent with those 131 

observed in culture (Agirre et al., 2002; Aldabe et al., 1996; Atkins et al., 2014; Carter et al., 2010; Gladue et al., 132 

2012; Guinea & Carrasco, 1994; Lama & Carrasco, 1992; Perez et al., 1997; Sanz et al., 1994; StGelais et al., 133 

2007; Wetherill et al., 2012; Wozniak et al., 2010). 134 

 135 

Effects of viroporin channel activity on cellular homeostasis 136 

The maintenance of membrane gradients and seclusion of ionic species within defined organelle compartments 137 

is integral to cellular homeostasis. Unsurprisingly, perturbation of these systems through expression of 138 

viroporins can have profound effects on multiple processes, including trafficking, signalling and the induction of 139 

cell death by apoptosis or other mechanisms. Perhaps the most striking example is that of the rotavirus NSp4 140 

protein, which both causes the release of Ca2+ ions from intracellular stores during infection to promote the 141 

formation of viroplasms and expedite virus release (Browne et al., 2000; Dong et al., 1997; Hyser et al., 2010; 142 

Hyser et al., 2013; Newton et al., 1997; Tian et al., 1996), but which is also secreted via a Golgi-independent, 143 

microtubule-driven mechanism and acts directly as an enterotoxin when applied to the enteric tract, inducing 144 

diarrhoeal symptoms synonymous with rotaviral disease (Einerhand, 1998; Halaihel et al., 2000; Horie et al., 145 

1999; Morris et al., 1999; Tafazoli et al., 2001). Picornavirus 2B channel activity also increases cytosolic Ca2+ by 146 

releasing it from the Golgi and mitochondria, which is thought to specifically increase viral IRES-mediated 147 

translation at early times during infection and drive membrane instability to expedite the release of viral 148 

progeny at late times (Campanella et al., 2004; de Jong et al., 2006; de Jong et al., 2003; Sandoval & Carrasco, 149 

1997; van Kuppeveld et al., 1997; van Kuppeveld et al., 2002). 2B expression also alters cellular trafficking, 150 

evidenced by effects on the passage of vesicular stomatitis virus G glycoprotein to the cell surface (Doedens & 151 

Kirkegaard, 1995). Expression of both IAV M2 (Ciampor et al., 1992a; Ciampor et al., 1995; Ciampor et al., 152 
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1992b; Sakaguchi et al., 1996; Takeuchi & Lamb, 1994; Takeuchi et al., 1994) and HCV p7 (Griffin et al., 2004; 153 

Wozniak et al., 2010) has been shown to induce a monensin-like de-acidification of the trans-Golgi/endosomal 154 

system, which serves to protect acid-labile proteins/particles during egress. This effect is highly likely to 155 

dysregulate cellular trafficking and the resultant surface expression of various proteins. Expression of M2 and 156 

p7 in isolation has also been shown to induce apoptosis via distinct mechanisms, although the relevance of this 157 

in the context of full infectious virus culture is currently unclear (Aweya et al., 2013). 158 

Disruption of cellular ionic gradients through viroporin activity also appears to comprise a novel pathogen 159 

recognition pathway. Several examples of viroporins have been shown to activate the inflammasome via Nodd-160 

like receptor NLRP3, leading to cytokine production including IL-1 and IL-18. Viroporins showing such activity 161 

include IAV M2 (Ichinohe et al.), respiratory syncytial virus SH (Triantafilou et al., 2013), encephalomyocarditis 162 

virus (EMCV) 2B (Ito et al., 2012) and HCV p7 (Shrivastava et al., 2013). Inflammasome activation occurs 163 

primarily following disruption of intracellular K+ gradients, presumably as an indirect effect of viroporin activity. 164 

However, these effects have primarily been documented within immune cells, which ĂƌĞŶ͛ƚ ŐĞŶĞƌĂůůǇ ŝŶĨĞĐƚĞĚ 165 

by those viruses identified above. Nevertheless, given the number of viruses now recognised to encode 166 

viroporins, it follows that the immune response would evolve to counter such a common viral replication 167 

strategy. 168 

Lastly, as discussed above, expression of a variety of viroporins has been shown to induce generalised cellular 169 

permeability to a variety of small molecules, most notably hygB, to which cells are otherwise impermeant 170 

(Gonzalez & Carrasco, 1998; Guinea & Carrasco, 1994; Lama & Carrasco, 1992; Perez et al., 1997; Sanz et al., 171 

1994). Whether or not such permeability has functional relevance to the virus life cycle, again this allows 172 

indirect assessment of viroporin function through hygB effects on translation. Indeed, this phenomenon was 173 

the first indication of viroporin-like function discovered in the 1970s, and was initially targeted as a means of 174 

utilising antibiotics to kill virus-infected cells (Carrasco, 1978). 175 



9 

 

 176 

Viroporins encoded by RNA viruses 177 

Viroporins were first identified in RNA viruses following the description of channel activity for IAV M2. There 178 

followed a rapid expansion that now sees viroporins identified in multiple virus families, including the 179 

Flaviviridae, Picornaviridae, Togaviridae, Coronaviridae, Paramyxoviridae, Orthomyxoviridae, Reoviridae and 180 

Retroviridae. M2 remains the best characterised viroporin, but HIV-1 Vpu, HCV p7 and Picornavirus 2B proteins 181 

retain a substantial knowledge base, plus new viroporins are continuously identified. Here, we discuss key 182 

examples of viroporins in detail, as well as selected proteins from other families. 183 

 184 

Influenza A virus M2 185 

The function of M2 channel activity during the IAV life cycle 186 

Amantadine was licensed for the treatment of IAV in the 60s (Baker et al., 1969; Davies et al., 1964; Sabin, 187 

1967; Togo et al., 1968; Wingfield et al., 1969), yet its target and mode of action remained unknown until the 188 

mid-1980s; selection of resistance to amantadine-mediated inhibition of virus entry identified mutations 189 

clustering within the M2 open reading frame, located on segment seven of the IAV genome (Hay et al., 1985). 190 

In addition, some IAV strains with amantadine sensitivity at a late stage of their life cycle were shown to be 191 

influenced by the origin of the haemagglutinin (HA) envelope glycoprotein (Hay et al., 1985). Thus, amantadine 192 

was initially proposed to disrupt a putative interaction between these two viral proteins. However, M2 was 193 

subsequently shown to form disulphide-linked tetramers (Holsinger & Lamb, 1991; Sugrue & Hay, 1991) and to 194 

raise Golgi/endosomal pH (Ciampor et al., 1992a; Ciampor et al., 1992b; Takeuchi & Lamb, 1994; Takeuchi et 195 

al., 1994), providing the first clues to its role as an ion channel. Seminal studies in Xenopus laevis oocytes then 196 

confirmed channel activity, where an amantadine-sensitive current was induced in cells in response to reduced 197 

external pH (Pinto et al., 1992). Channel activity was also recapitulated in vitro using M2 peptides 198 
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corresponding to the minimal predicted trans-membrane (TM) region of the protein (amino acids 22-46) (Duff 199 

& Ashley, 1992). 200 

Several studies then confirmed that M2 displayed selectivity for protons, with activity activated by external 201 

acidic pH and dependent on a highly conserved His37 residue (Shimbo et al., 1996; Wang et al., 1994; 1995; 202 

Wang et al., 1993). The major role of M2 during entry is ubiquitous amongst IAV strains, whereby acidification 203 

of the virion interior destabilises interactions between the ribonucleoproteins and the matrix (M1) protein, 204 

promoting efficient uncoating (Wharton et al., 1994). Strains with late-stage amantadine sensitivity underwent 205 

intracellular cleavage of the HA0 precursor by virtue of a multi-basic furin cleavage site, generating acid-206 

sensitive mature glycoproteins; M2 channels exerted a monensin-like activity on the TGN/endosomes in such 207 

strains, thereby preserving HA in a functional state as it trafficked to the cell surface (Ciampor et al., 1992a; 208 

Ciampor et al., 1992b; Takeuchi & Lamb, 1994; Takeuchi et al., 1994).  209 

 210 

Structure and Gating of M2 proton channels 211 

M2 is a 97 amino acid protein with a single TMD which forms disulphide-linked tetramers in membranes 212 

(Holsinger & Lamb, 1991; Sugrue & Hay, 1991). The N-terminal 25 residues are located on the surface of the 213 

plasma/virion membrane and are highly conserved; considerable efforts have been focused on this region as a 214 

pan-influenza vaccine strategy (Neirynck et al., 1999; Shim et al., 2011). The TMD (aa 25-46) is followed by an 215 

amphipathic helix (aa 47-62) and the remaining cytosolic domain. Channel activity can be recapitulated by a 216 

minimal ͞TM͟ domain including the TMD (aa 22-ϰϲͿ͕ ĂůƚŚŽƵŐŚ Ă ůŽŶŐĞƌ ͞ĐŽŶĚƵĐƚĂŶĐĞ ĚŽŵĂŝŶ͟ ;CDͿ͕ including 217 

the amphipathic helices (aa 18-60 or 22-62, depending on the study) displays enhanced channel properties in 218 

oocytes (Ma et al., 2009). Finally, the C-terminus of the protein interacts with the M1 matrix protein during the 219 

formation of the virus particle (Chen et al., 2008). 220 
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M2 TM domains in mammalian cell membranes showed a 10-fold preference for protons over monovalent 221 

cations (Chizhmakov et al., 1996). Slow conductance (~200 H+/sec) and a lack of alkali metal ion conductivity 222 

pointed to the presence of a selectivity filter, which was highly likely to involve protonation of ionisable 223 

residues based upon the induction of activity by reduced external pH (Lin & Schroeder, 2001; Mould et al., 224 

2000). The highly conserved His37 residue within the TMD was shown by mutagenesis to govern M2 selectivity, 225 

although His37 mutants retained amantadine sensitivity (Chizhmakov et al., 1996; Wang et al., 1995). Another 226 

highly conserved Trp41 ͞ŐĂƚĞ͟ ƌĞƐŝĚƵĞ ĐŽŵďŝŶĞƐ ǁŝƚŚ HŝƐϯϳ ƚŽ ĨŽƌŵ Ă ŶŽǁ ǁĞůů-accepted functional HxxxW 227 

tetrad in all M2 proteins, supported by numerous structural and functional studies. However, the precise 228 

mechanism by which protonation induces channel opening remains a matter of debate. His37 protonation 229 

stabilises M2 tetramers and also occurs at much higher pH compared with His in free solution (Hu et al., 2006), 230 

supporting a ͞ĚŝŵĞƌ ŽĨ ĚŝŵĞƌƐ͟ ŵŽĚel for the His37 tetrad where each pair shares a single proton (Sharma et 231 

al., 2010). This allows one His of each pair to interact with adjacent Trp41, whereupon a third protonation 232 

event induces channel opening via alteration of the helical bundle and opening the Tryp41 gate (Chizhmakov et 233 

al., 1996; Pielak & Chou, 2010). However, alternative models for M2 gating are also proposed including a 234 

͞ƐŚƵƚƚůĞ͟ ŵĞĐŚĂŶŝƐŵ ŽĨ ƉƌŽƚŽŶ ĐŽŶĚƵĐƚĂŶĐĞ͕ whereby exchange of protons between His37 and water residues 235 

are facilitated by imidazole ring reorientations (Hong & DeGrado, 2012; Hu et al., 2010; Khurana et al., 2009; 236 

Phongphanphanee et al., 2010). Thus, despite its apparent simplicity compared with cellular ion channels and a 237 

wealth of structural information, the fundamental properties of this viroporin paradigm remain a topic of 238 

considerable debate. 239 

Whilst a structure for the complete M2 protein remains elusive, numerous atomic structures have been solved 240 

for peptide tetramers representing the TM region, and more recently the CD, in membrane-mimetic 241 

environments (Figure 1). In all cases, M2 forms a left-handed four-helix bundle with a defined lumen containing 242 

both His37 and Trp41 tetrads. M2 structures from multiple influenza A strains have been solved using X-ray 243 

crystallography, solid-state sold-state and solution NMR (ssNMR, sNMR). Structures encompass a range of pH 244 
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conditions in the presence or absence of adamantane inhibitors (amantadine, rimantadine and other 245 

derivatives). Indeed, conflicting structures of drug-bound M2 have generated considerable controversy over 246 

the nature of M2 drug inhibition over recent years (see below). Perhaps the most biologically relevant M2 247 

structure comprises CD peptides in a DOPC/DOPE bilayer at pH 7.5 (pdb: 2LOJ) (Sharma et al., 2010), although 248 

no drug molecule was bound. Recent drug-bound studies include a ssNMR structure in DMPC bilayers with 249 

amantadine bound to the channel lumen (pdb: 2KQT) (Cady et al., 2009; Cady et al., 2010), as well as solution 250 

structures of CD peptides in detergent micelles with four rimantadine molecules bound to a peripheral, 251 

membrane-exposed binding site (pdb: 2RLF) (Schnell & Chou, 2008). Generally, solution structures show more 252 

compacted lumenal domains and a varied orientation of the C-terminal basic helices compared with solid state 253 

structures. Thus, consensus over the precise conformation of the M2 channel region has not yet been 254 

achieved, despite many years of intense activity, and this may not be resolved until solutions for the complete 255 

97 amino acid protein in bilayers are available. 256 

 257 

M2 inhibition and drug resistance 258 

The use of adamantane M2 inhibitors for the treatment of influenza A virus has now effectively halted due to 259 

the majority of circulating strains possessing resistance polymorphisms. Whilst direct evidence implicating 260 

adamantane monotherapy in selecting these variants is limited, resistance certainly emerged concomitant with 261 

their use, both in humans and through unsolicited dosing of domestic chicken feed supplements in some 262 

countries. The most common resistance mutations comprise L26F, L28F, V27A, A30T, S31N and G34E, with N31 263 

ďĞŝŶŐ ŵŽƐƚ ƉƌĞǀĂůĞŶƚ͘ TŚŝƐ ƉŽůǇŵŽƌƉŚŝƐŵ ŽĐĐƵƌƐ ŝŶ ŚƵŵĂŶ ƉĂŶĚĞŵŝĐ HϭNϭ ͞ƐǁŝŶĞ͟ ŝŶĨůƵĞŶǌĂ ĂƐ well as highly 264 

pathogenic avian strains such as H5N1 and H7N9, which infect humans with often lethal consequences. 265 

Several adamantane-resistant variants occur within the channel lumen, consistent with the majority of 266 

structural studies that place a single adamantane moiety at this position, physically occluding the channel 267 
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(Cady et al., 2010; Duff et al., 1994; Hu et al., 2007; Stouffer et al., 2008; Wang et al., 2001). However, in 2008 a 268 

drug-bound M2 CD solution structure identified rimantadine molecules bound at four membrane-exposed sites 269 

defined by Asp44 on the channel periphery (Schnell & Chou, 2008). Binding at this site was proposed to 270 

allosterically stabilise the closed form of the channel and correlated with the non-lumenal positioning of 271 

mutations such as L26F, L28F and S31N. Consistently, S31N was shown to destabilise the M2 complex in vitro, 272 

reducing potential drug binding to the allosteric site (Pielak et al., 2009). Multiple functional, structural and 273 

biophysical studies have followed in an attempt to resolve this controversy, with the lumenal site emerging as 274 

the consensus in the majority of cases. Nevertheless, binding to the peripheral site has been modelled, and 275 

documented in vitro following saturation of the lipid phase with drug molecules, albeit with reduced efficiency 276 

compared with the lumen (Cady et al., 2010; Du et al., 2009; Rosenberg & Casarotto, 2010). Interestingly, in 277 

vivo partitioning of adamantanes into membranes is poorly characterised, yet presumably must occur in order 278 

for the drug to reach the surface of respiratory epithelia. Furthermore, many biophysical studies comprise TM, 279 

rather than CD peptides, the former lacking the majority of the predicted peripheral site. However, recent 280 

functional and structural studies lend further support to lumenal adamantane binding, including those on 281 

chimeric influenza A/influenza B M2, where the lumenal domain originates from the drug-sensitive AM2, and 282 

the peripheral domain from the resistant BM2 (Ohigashi et al., 2009; Pielak et al., 2011). Adamantanes bound 283 

to the lumen in all cases where inhibition occurred, and lumenal binding has also been documented for novel 284 

adamantane derivatives shown to inhibit amantadine-resistant S31N mutant M2 channels (Wang et al., 2013a; 285 

Wang et al., 2013c; Williams et al., 2013; Wu et al., 2014).  286 

The 2009 H1N1 pandemic combined with the potential for avian viruses to traverse the species barrier and 287 

cause sustainable human infection has prompted renewed interest in discovering M2 inhibitors capable of 288 

blocking amantadine-resistant strains. The majority of novel inhibitors identified to date involve either 289 

derivatisation of amantadine, or another M2-ŝŶŚŝďŝƚŽƌǇ ĐŽŵƉŽƵŶĚ ͞BL-1743͕͟ ǁŚŝĐŚ ǁĂƐ ŝĚĞŶƚŝĨŝĞĚ ĨƌŽŵ Ă 290 

yeast-based M2 screen (Duque et al., 2011; Kurtz et al., 1995; Rey-Carrizo et al., 2014; Rey-Carrizo et al., 2013; 291 
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Tu et al., 1996; Wang et al., 2009; Wang et al., 2011a; Wang et al., 2011b; Wang et al., 2013a; Wang et al., 292 

2013b; Wu et al., 2014). Effective inhibitors of several drug-resistant variants have been identified by this 293 

approach, although far fewer hits capable of blocking N31 channels have arisen. Recent efforts have included 294 

extended structural modification of these prototypes, as well as the expansion of the aforementioned yeast 295 

screen to include more substantive compound libraries incorporating additional chemotypes (Balgi et al., 296 

2013). Exciting preliminary hits support the notion that M2 could be revisited as a viable influenza target in 297 

coming years. 298 

 299 

HIV-1 Vpu 300 

The uncertain role of Vpu channel activity during the HIV-1 life cycle 301 

HIV-1 and related simian viruses (chimpanzee lineage) encode the Vpu accessory protein (Cohen et al., 1988; 302 

Strebel et al., 1988). This small, multifunctional protein is not a virion component, yet plays a pivotal role in the 303 

release of infectious virions. This comprises well understood roles for Vpu in promoting the degradation of CD4 304 

(Willey et al., 1992a; b) and antagonising the restriction factor, Tetherin (Neil et al., 2008). However, Vpu 305 

induces channel activity in oocytes (Schubert et al., 1996b), plus N-terminal Vpu peptides displayed channel 306 

activity in vitro with selectivity for Na+ and K+ compared with Cl- (Ewart et al., 1996). Furthermore, a bacterial 307 

cross-feeding assay linking nutritional requirements to ionic gradients supported a preference for Na+ (Ewart et 308 

al., 1996), although oocyte experiments also showed partial permeability to divalent cations (Schubert et al., 309 

1996b). Vpu peptides displayed sensitivity to amiloride derivatives, but not amiloride itself or amantadine, and 310 

these same compounds inhibited the release of HIV-1 virus-like particles from HeLa cells, implying a role for 311 

Vpu channel activity during egress (Ewart et al., 2002). In addition to its ability to conduct ions, inducible Vpu 312 

expression has been attributed to increasing membrane permeability to a variety of molecules, including 313 



15 

 

nucleotides and ONPG in prokaryotic cells and hygromycin B and neurobotin in mammalian cells (Gonzalez & 314 

Carrasco, 1998) (ref Gonzalez). 315 

Studies showing that membrane depolarisation enhances HIV-1 particle release provided a potential 316 

mechanism by which Vpu channel activity might act during the HIV-1 life-cycle (Hsu et al., 2010). Scrambling 317 

the Vpu TMD also reduces pathogenicity in vivo (Hout et al., 2005) and in culture (Schubert et al., 1996a), plus 318 

introduction of a His residue into the Vpu TMD (A18H) generated an adamantane-sensitive HIV-1, supporting a 319 

role for Vpu channel activity (Hout et al., 2006a; Hout et al., 2006b).  Introduction of His at this position 320 

generates an HxxxW tetrad in the Vpu sequence, reminiscent of AM2 (Sharma et al., 2011). Both the A18H 321 

variant and the wild type Vpu protein have recently been shown to behave as channels in bacterial growth-322 

based assays, most likely effecting the conductance of potassium ions (Taube et al., 2014). Alternatively, Vpu 323 

has been proposed to act by interfering with cellular channels rather than exerting its own effects (Coady et al., 324 

1998). Specifically, the Vpu TMD was shown to interact with Twik-related Acid Sensitive K+ (TASK) channel 325 

TMDs, causing their degradation and so preventing the flow of K+ ions (Hsu et al., 2004). Thus, it remains to be 326 

seen whether a defined role for Vpu channels can be elucidated and potentially targeted for antiviral therapy. 327 

 328 

Structure and activity of HIV-1 Vpu 329 

Vpu is a class 1 viroporin (i.e. single TMD) comprising 81 amino acids with a mass of ~9 kD. It is separated into a 330 

~9 residue N-terminal ectodomain, a single TMD and a cytosolic domain containing two (or more) alpha helices 331 

(33-49 and 57-70) (Lemaitre et al., 2006). Peptides corresponding to the first thirty or so residues recapitulate 332 

channel activity in vitro and both the TMD and the cytosolic domain interact with CD4 and tetherin, 333 

independent of channel activity (Bolduan et al., 2011; Kuhl et al., 2011; Skasko et al., 2012). NMR structures for 334 

both the cytosolic (PDB: 1VPU, 2K7Y) and TMD (PDB: 2JPX, 2GOF, 2GOH, 1PJE) are available, which have been 335 

assembled into computational models of the full length protein (Lemaitre et al., 2006); a more recent version 336 



16 

 

of this model is shown in figure 2, courtesy of Prof Wolgang Fischer, Tapei . The majority of studies favour the 337 

formation of a pentameric TMD helical bundle, with a lumen lined by both ionisable (e.g. Ser23) and 338 

hydrophobic aromatic side-chains, including Trp22, which could act as a molecular gate (Cordes et al., 2001; 339 

Kukol & Arkin, 1999; Lu et al., 2010; Park et al., 2006; Park et al., 2003; Sharpe et al., 2006). In vitro, Vpu TM 340 

peptides display relatively weak channel-like properties, adopting more of a pore-like character with Michaelis-341 

Menten characteristics in the presence of increasing salt concentration (Mehnert et al., 2008). However, 342 

preferential cation conductance and a critical role for Ser23 in the TM domain for channel activity imply that a 343 

selective, defined gating mechanism exists (Ewart et al., 2002; Ewart et al., 1996; Grice et al., 1997; Mehnert et 344 

al., 2007; Mehnert et al., 2008; Romer et al., 2004). Recent studies in yeast and bacteria support that full 345 

length Vpu preferentially conducts potassium ions, notwithstanding earlier studies showing less selective 346 

channel behaviour (Taube et al., 2014).   347 

 348 

Targeting Vpu channel activity 349 

Hexamethylene amiloride (HMA) and other amiloride derivatives block both Vpu channel activity in vitro as 350 

well as HIV-1 virus-like particle production in culture (Ewart et al., 2002; Kim et al., 2006; Lemaitre et al., 2004; 351 

Romer et al., 2004), although the ambiguity concerning Vpu channel function and a lack of resistance 352 

mutations makes it difficult to firmly ascribe Vpu-specific effects. Whilst no direct information concerning the 353 

inhibitory action of HMA is available, docking studies predict it to bind within the Vpu lumen adjacent to Ser23 354 

(Kim et al., 2006). Rimantadine is also able to block engineered A18H Vpu proteins (Hout et al., 2006a; Park & 355 

Opella, 2007), although this has little relevance in developing Vpu-targeted therapies. Various bacterial screens 356 

may provide a means to increase the repertoire of Vpu-selective channel blockers (Taube et al., 2014), and 357 

have already been used to generate a viroporin-targeted small molecule, BIT225 (Khoury et al., 2010), which 358 

has been advanced to human trials. 359 
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BIT225 is an amiloride derivative, originally selected in an HCV p7 bacterial screen (see below), that was also 360 

found to display activity against Vpu (Khoury et al., 2010; Luscombe et al., 2010). BIT225 is inactive against HIV-361 

2, which lacks Vpu, and displays a cell culture EC50 of ~2 M against HIV-1, with improved efficacy against 362 

macrophage-tropic compared with T-cell tropic strains. Like HMA, the binding mode and inhibitory mechanism 363 

of this small molecule are unknown and resistant polymorphisms in Vpu have not been reported. Nevertheless, 364 

first-in-man studies show BIT225 to have a reasonable safety profile, and phase I/II trials are proceeding in 365 

South East Asia for HIV-1-, HCV- and co-infected individuals. 366 

 367 

HCV p7 368 

Channel-specific and independent roles for p7 during the HCV life cycle 369 

HCV p7 was the tenth product of the viral polyprotein to be discovered as a result of its inefficient cleavage 370 

from E2-p7 and E2-p7-NS2 precursors by signal peptidase (Lin et al., 1994; Mizushima et al., 1994). p7 is a 371 

highly hydrophobic, 63 amino acid protein predicted to contain two TMDs, separated by a short cytosolic loop 372 

containing two highly conserved basic residues (K/R33 and R35 in most isolates) (Carrere-Kremer et al., 2002). 373 

Double membrane spanning topology was supported by cellular expression studies (Carrere-Kremer et al., 374 

2002), although evidence exists that the C-terminus may also flip across membranes (Isherwood & Patel, 2005). 375 

The protein is therefore considered to be a class 2 viroporin with its termini being oriented towards the ER 376 

lumen. p7 has been shown by over-expression studies and in full length HCV to predominantly localise to ER 377 

membranes (Carrere-Kremer et al., 2002; Haqshenas et al., 2007; Wozniak et al., 2010), including those 378 

associated with mitochondria (Griffin et al., 2005). Cell surface expression has also been noted (Carrere-Kremer 379 

et al., 2002) and recent studies of HA-tagged or native proteins in full length virus have observed associations 380 

with HCV core, E2 and NS5A proteins (Bentham et al., 2013; Vieyres et al., 2013). 381 
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In 2003 our laboratory showed that p7 (genotype 1b, J4 strain) oligomerised and displayed amantadine-382 

sensitive channel activity in artificial bilayers (Griffin et al., 2003). Further studies confirmed activity for another 383 

genotype (1a, H77 strain) and identified nonylated imino-sugars and HMA as further inhibitor classes (Pavlovic 384 

et al., 2003; Premkumar et al., 2004). p7 channels displayed both single channel and burst-like behaviour, 385 

consistent with channel-pore dualism. Interest in p7 as a potential ion channel therapeutic target was 386 

stimulated by chimpanzee studies that showed it to be essential for HCV propagation in vivo (Sakai et al., 387 

2003). 388 

TŚĞ ĂĚǀĞŶƚ ŽĨ HCV ŝŶĨĞĐƚŝŽƵƐ ĐƵůƚƵƌĞ ďĂƐĞĚ ŽŶ ƚŚĞ ŐĞŶŽƚǇƉĞ ϮĂ ͞JFH-ϭ͟ (Japanese Fulminant Hepatitis) 389 

infectious isolate (Wakita et al., 2005) led to the identification of an essential role for p7 during the production 390 

of infectious HCV particles (Jones et al., 2007; Steinmann et al., 2007a). Viable full length HCV containing IRES 391 

elements inserted between E2 and p7, or p7 and NS2 argued against a functional role for p7 precursors (Jones 392 

et al., 2007). Both early and late-acting defects in virion production have been described where p7 was 393 

(partially) deleted, mutated at specific residues or treated with inhibitors (Bentham et al., 2013; Foster et al., 394 

2014; Foster et al., 2011; Jones et al., 2007; Steinmann et al., 2007a; Vieyres et al., 2013; Wozniak et al., 2010). 395 

This is now known to result from p7 performing multiple functions within infected cells, comprising distinct 396 

protein-protein interactions as well as its channel forming activity. Whilst channel activity clearly depends upon 397 

oligomerisation, the conformation of the protein as it interacts with viral, and possibly cellular factors is 398 

unknown. 399 

One well characterised ion channel-independent p7 function is its interaction with NS2, targeting the latter to 400 

defined loci within infected cells where it is thought to ĂĐƚ ĂƐ Ă ͞ƉĂƌƚŝĐůĞ ĂƐƐĞŵďůǇ ƐĐĂĨĨŽůĚ͟ (Boson et al., 2011; 401 

Jirasko et al., 2008; Jirasko et al., 2010; Ma et al., 2011; Popescu et al., 2011; Stapleford & Lindenbach, 2011; 402 

Tedbury et al., 2011). p7 and NS2 in concert control sub/genotype-dependent compartmentalisation of HCV 403 

core protein between the ER and lipid droplets, with more efficient particle production resulting from ER-404 

associated core (Boson et al., 2011). Moreover, p7 was recently shown to interact with core, both envelope 405 
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glycoproteins and NS2 (Hagen et al., 2014), with additional genetic evidence supporting an interaction with 406 

NS5A (Scheel et al., 2012). Such interactions likely underpin the recently described role for p7 during capsid 407 

assembly and the envelopment of HCV particles (Gentzsch et al., 2013). 408 

p7 channel activity appears to influence a late-acting phase of the HCV life-cycle, distinct from that concerning 409 

protein-protein interactions; whereas p7 deletions and deleterious point mutations abrogate infectivity in all 410 

compartments (Atoom et al., 2013; Bentham et al., 2013; Brohm et al., 2009; Jones et al., 2007; Steinmann et 411 

al., 2007a; Wozniak et al., 2010), small molecule p7 inhibitors (p7i) prevent the accumulation of secreted, but 412 

not intracellular infectivity (Foster et al., 2014; Foster et al., 2011). Point mutations recapitulating the p7i-413 

induced phenotype have not been identified, yet unlike (partial) deletion mutants (Brohm et al., 2009), 414 

infectivity of HCV carrying mutations to the basic loop region (to either alanine, or the less hydrophobic 415 

glutamine) can be partially restored by trans-complementation with influenza A M2 (AM2), or by treating cells 416 

with the vATPase inhibitor Bafilomycin A (BafA) (Bentham et al., 2013; Wozniak et al., 2010). As AM2 does not 417 

interact with HCV proteins, a requirement for proton channel activity exists during the latter stages of HCV 418 

particle release. Consistently, early studies found p7 and M2 to be functionally interchangeable in surrogate 419 

cellular assays for M2-mediated HA surface transport (Griffin et al., 2004), and more recent work found p7 to 420 

raise vesicular pH both of extracted HEK293T microsomes and within HCV-infected Huh7 cells; p7i prevented 421 

both vesicle alkalinisation and virion secretion concomitantly, in a dose-dependent fashion (Wozniak et al., 422 

2010). 423 

The functional requirement for p7 proton channel activity is explained by the enhanced acid-sensitivity of 424 

intracellular HCV particles compared with the more stable secreted mature virion (Wozniak et al., 2010), which 425 

may be linked to the stability of E2 (Atoom et al., 2013). This ͞ƉH ŵĂƚƵƌĂƚŝŽŶ͟ ŽĐĐƵƌƐ at a late stage of particle 426 

production, either just prior to or during release, and appears to be directly influenced by p7 (Atkins et al., 427 

2014). As the majority of intracellular HCV infectivity is known to reside in the pH-neutral ER (Gastaminza et al., 428 

2008)͕ Ɖϳ ůŝŬĞůǇ ĐŽŶƚƌŽůƐ Ă ƐĞĐƌĞƚŽƌǇ ͞ďŽƚƚůĞŶĞĐŬ͟ with relatively few virions passing through acidic 429 
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compartments at a particular time. Hence, secreted rather than the bulk of cell-associated infectivity is 430 

sensitive to p7i (Foster et al., 2014; Foster et al., 2011). However, HCV cell-to-cell spread appears less sensitive 431 

to the effects of p7i (Meredith et al., 2013), suggesting that this pathway may be less dependent on channel 432 

activity, albeit with genotype-variability. 433 

A controversial role for p7 channel activity during virus entry has been proposed, based upon enhanced 434 

hepatocyte uptake of HCV-LP containing p7 (Saunier et al., 2003), as well as inhibitory effects of p7i added 435 

during the infection process (Griffin et al., 2008). However, despite immuno-gold detection of E2-p7 complexes 436 

in HCV-like particles (HCV-LP) (Isherwood & Patel, 2005), recent studies have failed to demonstrate the 437 

presence of HA-tagged p7 within infectious virions (Vieyres et al., 2013). Whilst this clearly depends upon 438 

antibody detection limits, with potential interference from HCV glycoproteins, a similar outcome resulted from 439 

studies of the related Pestivirus, bovine viral diarrhoea virus (BVDV) (Elbers et al., 1996). Furthermore, high 440 

efficiency particle-producing chimaeric HCV strains yield measurable infectivity despite carrying p7 basic loop 441 

mutations (albeit with ~1000-fold reduction in titre); mutant-derived virions possessed equivalent specific 442 

infectivity to that of wild type chimaeric HCV (Steinmann et al., 2007a). However, loop mutations likely disrupt 443 

p7 channel activity indirectly rather than by the formation of inactive channel complexes, via effects upon 444 

protein processing/stability and membrane insertion (Bentham et al., 2013; Perez-Berna et al., 2008; StGelais 445 

et al., 2009). Thus, it is possible that the low level of infectious virions produced in this scenario in fact retain 446 

intact channel complexes. In support of this notion, p7 influences the acid stability of secreted particles (Atkins 447 

et al., 2014) and non-infectious intracellular particles are present within cells harbouring loop mutant JFH-1 448 

(Bentham et al., 2013), although these may also retain envelopment defects (Gentzsch et al., 2013). However, 449 

a conclusive answer to this question should be achievable in the near future, given recent advances in the 450 

purification of infectious HCV particles (Catanese et al., 2013) and the identification of p7i resistant mutants 451 

(see below) (Foster et al., 2011).  452 

 453 
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p7 structure and gating 454 

The stoichiometry of p7 channel complexes has been reported as both hexameric and heptameric in 455 

membrane-mimetic detergents and lipid bilayers, with some studies reporting mixtures of both forms (Clarke 456 

et al., 2006; Griffin et al., 2003; Luik et al., 2009; OuYang et al., 2013; StGelais et al., 2009; Whitfield et al., 457 

2011). Molecular dynamics confirms that both species are theoretically viable, although both display a degree 458 

of metastability (Chandler et al., 2012). The membrane environment appears to exert significant influence over 459 

p7 structure and channel activity, with potential fluctuations in both the monomeric and oligomeric form 460 

proposed to regulate its behaviour (Whitfield et al., 2011). Furthermore, there seems to be genotype-461 

dependent predominance of heptameric (e.g. genotype 1b) or hexameric (e.g. genotype 2a) channels, although 462 

these have not been directly compared in the same lipid environment. Based primarily upon computer 463 

predictions, the majority of computer-generated p7 channel models have comprised arrangements of 464 

monomeric hairpins made up of two TMDs, with the N-terminal lining the lumen (Chandler et al., 2012; Clarke 465 

et al., 2006; Foster et al., 2011; Patargias et al., 2006; StGelais et al., 2009). In support of such models, 466 

genotype 1a p7 activity was susceptible to blockade using Cu2+ ions, indicative that a conserved His17 (in 467 

genotype 1 and some others) present on the N-terminal TMD was solvent-exposed (Chew et al., 2009). 468 

Elegant transmission electron microscopy (TEM) reconstruction studies of hexameric genotype 2a p7 channel 469 

complexes in detergent micelles revealed a flower-shaped channel complex with both N/C termini membrane-470 

ĞǆƉŽƐĞĚ ĂŶĚ ŽƌŝĞŶƚĞĚ ƚŽ ƚŚĞ ďƌŽĂĚ ͞ƉĞƚĂůƐ͟ ŽĨ ƚŚĞ ĐŚĂŶŶĞůƐ ďǇ ŝŵŵƵŶŽŐŽůĚ ůĂďĞůůŝŶŐ͕ ĐŽŶƐŝƐƚĞŶƚ ǁŝƚŚ Ă ŚĂŝƌƉŝŶ 471 

monomeric conformation (Luik et al., 2009). However, the 16 Å resolution of this structure was not sufficient to 472 

discern the precise arrangement of protomers within the channel complex, making further atomic structural 473 

information highly desirable. Early solution NMR studies yielded the structure of the genotype 1b p7 carboxyl 474 

terminus (PDB: 2K8J) (Saint et al., 2009), as well as an NMR-guided molecular dynamics model of the complete 475 

monomer in a hairpin conformation (Montserret et al., 2010). Subsequent solid-state NMR investigations also 476 

supported a monomeric hairpin, albeit with altered helical positioning (Cook & Opella, 2010; 2011). 477 
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2013 saw three complete p7 solution structures reported (Figure 23): two genotype 1b monomeric structures 478 

(PDB: 3ZD0, 2MTS) (Cook et al., 2013; Foster et al., 2014), and a complete hexameric genotype 5a channel 479 

complex (PDB: 2M6X) (OuYang et al., 2013). Whilst both monomeric structures formed hairpins, protomers 480 

within the 5a structure adopted an unusual iнϯ ͞ƐƚĂƉůĞ-ůŝŬĞ͟ ĐŽŶĨŽƌŵĂƚŝŽŶ͕ ĐŽŵƉƌŝƐŝŶŐ ƚŚƌĞĞ ŚĞůŝĐĂů ĚŽŵĂŝŶƐ 481 

that interacted with three adjacent neighbours. Whilst the two monomeric structures differed slightly in 482 

conformation, likely due to the pH at which they were solved (3ZD0: pH 7.0, 2MTS: pH 4.0), the stark difference 483 

in protomer arrangements within the hexameric 2M6X structure could not have been predicted from previous 484 

ďŝŽŝŶĨŽƌŵĂƚŝĐ ĂŶĂůǇƐŝƐ͘ ϱĂ ƉƌŽƚŽŵĞƌƐ ůĂĐŬĞĚ Ă ͞ďĂƐŝĐ ůŽŽƉ͟ ĂŶĚ ƚŚĞŝƌ carboxyl-terminus was membrane-485 

embedded. The resultant channel structure was larger than helical bundles predicted for hairpin protomers, 486 

with a lumenal aperture ranging from 6.8 (Ile6) to 10.5 Å (R35), lined predominantly by residues from the first 487 

two helices. Whilst the structure fitted to the genotype 2a EM density (Luik et al., 2009) with a correlation of 488 

Ϭ͘ϵϰ͕ ĚŝĨĨĞƌĞŶĐĞƐ ǁĞƌĞ ĂƉƉĂƌĞŶƚ ǁŝƚŚŝŶ ƚŚĞ ͞ƉĞƚĂůƐ͟ ŽĨ ƚŚĞ ϮĂ ƐƚƌƵĐƚƵƌĞ. Furthermore, the orientation of the 5a 489 

N and C termini within the density is the opposite to that revealed by immunogold labelling of 2a complexes 490 

(Luik et al., 2009), and the embedded 5a carboxyl-terminus would presumably not be detectable by such 491 

methods. Nevertheless, null mutations predicted by the 5a structure (2a: His9Ala, Arg35Asp; 5a: Asn9, Arg35) 492 

reduced activity of 2a channels in two-electrode voltage clamp experiments in Xenopus oocytes; functionality 493 

could not be demonstrated for the modified 5a protein (OuYang et al., 2013). It is currently unclear how 494 

genotype 1b monomeric hairpin structures relate to the genotype 5a channel structure, although the 495 

significant genetic distance between the two (~52%) could potentially result in structurally distinct molecules. It 496 

is also possible that ͞ŚĂŝƌƉŝŶ͟ monomers undergo conversion to the ͞staple-like͟ form upon assembly into an 497 

oligomer. These possibilities will be difficult to reconcile until further oligomeric structures become available 498 

for p7 from other HCV genotypes. 499 

p7 has been shown to conduct a variety of ionic species and small molecules in vitro and in cells. In vitro, 500 

genotype 1a/b p7 displays preferential cation conductance compared with anions, and has been shown to 501 
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conduct Na+, K+, and Ca2+ ions in suspended bilayers (Clarke et al., 2006; Griffin et al., 2003; Pavlovic et al., 502 

2003; Premkumar et al., 2004). Genotype 2a channels were also shown to be sensitive to K+ concentration in 503 

Xenopus oocytes (OuYang et al., 2013). pϳ ĐŚĂŶŶĞůƐ ĂůƐŽ ĂĚŽƉƚ ŵƵůƚŝƉůĞ ĐŽŶĚƵĐƚĂŶĐĞ ƐƚĂƚĞƐ ĂŶĚ ĞǆŚŝďŝƚ ͞ďƵƌƐƚ 504 

ĂĐƚŝǀŝƚǇ͕͟ ǁŝƚŚ Ă ƐƚƌŽŶŐ ŝŶĨůƵĞŶĐĞ ĂĨĨŽƌĚĞĚ ďǇ ƚŚĞ ŵĞŵďƌĂŶĞ ĞŶǀŝƌŽŶŵĞŶƚ͕ ƉŽƚĞŶƚŝĂůůǇ ǀŝĂ ĞĨĨĞĐƚƐ ŽŶ ƚŚĞ ŽǀĞƌĂůů 505 

channel structure. p7 from a variety of genotypes has also been shown to conduct small molecules, such as the 506 

pH-sensitive fluorophore HPTS (8-Hydroxypyrene-1,3,6-Trisulfonic Acid) (Wozniak et al., 2010), and 507 

carboxyfluorescein (StGelais et al., 2007), indicative of channel-pore dualism; one study recently questioned 508 

the relevance of such behaviour (Gan et al., 2014), yet indirect systems are widely utilised in viroporin studies, 509 

including by these same authors (Li et al., 2014), and results faithfully and consistently reproduced those 510 

obtained for infectious HCV culture (Foster et al., 2014; Foster et al., 2011; Griffin et al., 2008; Wozniak et al., 511 

2010). In this regard, the ability of p7 to mediate proton conductance within infected Huh7 cells remains the 512 

only activity for which a biologically relevant function has been assigned within the HCV life cycle (Wozniak et 513 

al., 2010), although roles for other observed conductances cannot be ruled out. Interestingly, p7 from the 514 

related Pestivirus, classical swine fever virus (CSFV) was recently shown to behave as an amlodipine-sensitive 515 

Ca2+ channel (Gladue et al., 2012; Guo et al., 2013)͕ ŝůůƵƐƚƌĂƚŝŶŐ ƚŚĂƚ ŶŽƚ Ăůů ͞Ɖϳ͟ ƐĞƋƵĞŶĐĞƐ ŶĞĐĞƐƐĂƌŝůǇ ďĞŚĂǀĞ 516 

similarly and that genetic divergence, such as that observed between some HCV genotypes, may significantly 517 

affect channel functions. 518 

In accordance with its potential role as a proton channel, reduced pH has been shown to activate p7 from some 519 

HCV genotypes (1b, 2a) both in vitro and in cell membranes, reminiscent of M2 (StGelais et al., 2007; Wozniak 520 

et al., 2010). However, this was not the case for genotype 1a p7 (H77 strain), which instead adopted more 521 

pore-like behaviour, responding to electrochemical gradients in both directions (Atkins et al., 2014; Li et al., 522 

2012). However, patient-derived variants within the 1a p7 sequence restored an M2-like, pH-activated 523 

phenotype, suggesting that p7 channel gating varies at the quasispecies level as well as between genotypes; 524 
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caution must therefore be applied when proposing observations based upon one or a few sequences as 525 

general p7 characteristics.  526 

Residues controlling the gating of p7 channels have been proposed by functional/mutagenic analysis in the 527 

context of hairpin-monomer models of the channel structure. These include a role for positions 17 and 21, 528 

occupied by His and Tyr/Trp in many, but certainly not all HCV isolates, as an M2-like HxxxW proton 529 

sensor/gate motif (Meshkat et al., 2009). However, genotype 1a (H77) channels retain His17 and are not pH-530 

activated (Atkins et al., 2014; Chew et al., 2009; Li et al., 2012). Ser/Tyr21, Trp30 and Tyr/His31 have also been 531 

shown to modulate channel activity and/or infectious virion production in various studies (Brohm et al., 2009; 532 

Steinmann et al., 2007a; StGelais et al., 2009). A Phe25ala mutation generates hyper-conductive genotype 1b 533 

and 2a channels in vitro (Foster et al., 2011), consistent with channel models based upon the 3DZ0 1b 534 

monomer structure where it forms a hydrophobic ͞ŐĂƚĞ-ůŝŬĞ͟ constriction (Foster et al., 2014). More recently, 535 

ƚŚĞ ϱĂ ĐŚĂŶŶĞů ƐƚƌƵĐƚƵƌĞ ƉŽŝŶƚƐ ƚŽ Ɖϳ ĐŚĂŶŶĞůƐ ĂĐƚŝŶŐ ĂƐ ͞ĨƵŶŶĞůƐ͕͟ ǁŝƚŚ ŚǇĚƌŽƉŚŽďŝĐ ĐŽŶƐƚƌŝĐƚŝŽŶƐ Ăƚ IůĞϲ ;VĂů 536 

in most isolates) and Asn9 (often substituted by an ionisable His) at one end, and a ring of basic Lys35 residues 537 

at the broader neck of the channel acting as a cation selectivity filter (OuYang et al., 2013).  538 

Taken together, whilst a clearer picture of the structure and gating of p7 channels has recently emerged, the 539 

broad genetic diversity between HCV sub/genotypes seemingly precludes a universally applicable model, at the 540 

current time. Broadening both structural and functional analysis to multiple sub/genotypes will likely be 541 

required to obtain a firm grasp upon this enigmatic channel, encoded by perhaps the most diverse of human 542 

viruses.  543 

 544 

Inhibition of p7 channels 545 

Sensitivity of p7 to the three classes of prototypic p7i: adamantanes, alkyl imino-sugars and HMA was first 546 

identified in vitro, using either recombinant protein or peptides (Griffin et al., 2003; Pavlovic et al., 2003; 547 



25 

 

Premkumar et al., 2004). Subsequent studies, including those in the then newly-available JFH-1 infectious 548 

culture system provided conflicting results, yet it later became clear that sub/genotype differences accounted 549 

for variable sensitivity profiles (Griffin et al., 2008; Steinmann et al., 2007b). Whilst commonly accepted for 550 

other HCV targets (e.g. 1st generation protease inhibitors), genotype dependence has commonly been cited as 551 

a reason not to pursue p7 as a viable drug target. This waƐ ĨƵĞůůĞĚ ďǇ ďŽƚŚ ƚŚĞ ƐƉĞĐƚƌĞ ŽĨ ĂŵĂŶƚĂĚŝŶĞ͛Ɛ ĨĂŝůŝŶŐƐ 552 

in the treatment of influenza, combined with a lack of efficacy when prototypes such as amantadine were 553 

combined with interferon/ribavirin (IFN/Rib) in clinical studies (Deltenre et al., 2004; Mangia et al., 2004; 554 

Maynard et al., 2006). Nevertheless, both rimantadine and the imino-sugar NN-DNJ displayed broad genotype 555 

activity (Gottwein et al., 2011; Griffin et al., 2008; Steinmann et al., 2007b). 556 

Despite the relatively poor potency of prototype p7i, they did at least point to the presence of at least one 557 

druggable site in the p7 channel complex; prolonged treatment could effectively cure HCV in culture 558 

(Steinmann et al., 2007b). With atomic structures only recently available, early insight into the mode of action 559 

for these molecules arose through correlating candidate p7 resistance polymorphisms with molecular 560 

modelling of p7 channel complexes (Foster et al., 2011). For nonyl imino-sugars, transfer of an F25A 561 

polymorphism from resistant genotype 3a into susceptible genotype 1b and 2a strains conferred resistance. 562 

This correlated with docking studies that predicted NN-DNJ to interact with Phe25 whilst intercalating between 563 

p7 protomers. Accordingly, its mode of action was demonstrated in vitro to be through the inhibition of 564 

channel oligomerisation. Encouragingly, adamantane resistance was shown to be entirely separate to that of 565 

imino-sugars, providing the tantalising prospect of drug combinations targeting p7 (Foster et al., 2011). 566 

Adamantanes were predicted to bind to a peripheral, membrane exposed site on the p7 channel surface, 567 

reminiscent of M2 NMR studies (Schnell & Chou, 2008). This site contained both conserved leucine residues 568 

shown to influence amantadine sensitivity in vitro (StGelais et al., 2009), as well as Leu20, which had previously 569 

been shown to change to Phe in genotype 1b HCV patients unresponsive to amantadine combined with IFN/Rib 570 

(Mihm et al., 2006). Introducing L20F into susceptible 1b and 2a strains again conferred resistance (Foster et 571 
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al., 2011). Interestingly, peripheral adamantane binding sites are supported by both the 2M6X 5a complete 572 

channel structure (OuYang et al., 2013) as well as structure-guided channel models based upon the 3ZD0 1b 573 

monomer (Foster et al., 2014), with both studies showing interaction data confirming an interaction with 574 

rimantadine. Furthermore, despite the clear structural diversity, position 20 and several of the conserved Leu 575 

residues are present within the peripheral site in both cases. Accordingly, for genotype 1b, an L20F mutation 576 

abrogated NMR interactions with rimantadine (Foster et al., 2014), and vice versa for 5a, which naturally 577 

retains Phe20, and was shown to form stronger interactions with rimantadine following introduction of a Leu 578 

residue (OuYang et al., 2013). Thus, p7 joins M2 as the only viroporins for which specific small molecule 579 

resistance polymorphisms have been demonstrated.  580 

The third class of prototype p7i, typified by HMA (Premkumar et al., 2004), have not been as extensively 581 

studied and no data is available regarding their activity against HCV in culture, potentially due to cytotoxic 582 

effects (Griffin et al., 2008). However, the BIT225 amiloride derivative has been advanced into clinical trials by 583 

Biotron Ltd. As described above, BIT225 was derived from a bacterial screen vs genotype 1a p7 and has been 584 

shown to exert an antiviral effect against the Pestivirus, BVDV (Luscombe et al., 2010). However, the mode of 585 

action for this inhibitor is unknown and activity against HCV in culture has not been published; this may be of 586 

concern given recently reported differences in Pestivirus p7 function (Gladue et al., 2012; Guo et al., 2013). 587 

Nevertheless, BIT225 appears to have a reasonable safety profile and preliminary findings in small patient 588 

studies appear encouraging, with larger studies planned (see www.biotron.com.au).  589 

Ongoing research efforts into the development of p7i with potency suited to drug development programmes 590 

has comprised both high throughput and rational approaches. Screening based upon liposome dye release 591 

assays conducted by Boehringer Ingelheim was found to be robust, generating few false-positives and a 592 

sensible percentage hit rate, although this has not been followed up to date in the literature (Gervais et al., 593 

2011). Moreover, rational compound design based upon the adamantane binding site in 3ZD0 structure-guided 594 

channel models yielded compounds with much improved potency, with nanomolar IC50 values against HCV in 595 

http://www.biotron.com.au/
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culture (Foster et al., 2014). These structurally novel compounds displayed cross-genotype activity and 596 

effectively suppressed the L20F adamantane resistance polymorphism at sub-micromolar concentrations. Thus, 597 

potential for drug development targeting p7 appears feasible, yet whether this will ultimately prove relevant in 598 

the rapidly evolving landscape of HCV treatment remains to be seen (Griffin, 2014). 599 

 600 

Other RNA virus viroporins 601 

Picornavirus 2B and VP4 proteins 602 

Modulation of membrane permeability is essential for two key stages of the life cycle amongst the 603 

Picornaviridae, namely the entry of non-enveloped particles into the host cell and the late phase of infection, 604 

where cell lysis culminates in the release of infectious virions. The Enterovirus genus has been most intensively 605 

studied, comprising many significant human pathogens such as poliovirus, Coxsackie viruses, enterovirus 71 606 

(EV71) and human rhinovirus. The non-structural 2B protein is considered to be the principle mediator of host 607 

cell membrane permeability during the replicative phase of the life cycle, whereas VP4 represents a burgeoning 608 

class of viroporins comprising essential components of non-enveloped virus particles.  609 

Multiple Enterovirus proteins (e.g. 2BC, 2B, 2C) were initially shown to modulate both membrane permeability 610 

(Aldabe et al., 1996; Barco & Carrasco, 1995) and membrane trafficking (Doedens & Kirkegaard, 1995), yet 2B is 611 

now commonly accepted as the principle mediator of such behaviour. 2B is a class 2 viroporin with two helical 612 

TMDs separated by a stretch of highly polar residues. 2B fused to maltose binding protein forms tetramers with 613 

a pore radius of ~6 Å (Agirre et al., 2002), consistent with modelling studies that predict tetrameric pores of 5-614 

7Å radius with a lumen lined by a stretch of three lysines followed by a serine (Patargias et al., 2009). 2B 615 

multimerisation has been observed in mammalian cells (de Jong et al., 2004; de Jong et al., 2002; van 616 

Kuppeveld et al., 2002) and the protein readily permeabilises vesicles in vitro (Agirre et al., 2008; Sanchez-617 

Martinez et al., 2008). 2B expression gives rise to elevated cytosolic Ca2+, which alters vesicle trafficking, 618 
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induces apoptosis and directly lyses cells as protein levels accumulate, reminiscent of a membrane-active toxin 619 

(Campanella et al., 2004; de Jong et al., 2004; de Jong et al., 2006; de Jong et al., 2003; Sandoval & Carrasco, 620 

1997; van Kuppeveld et al., 1997). Localisation to the Golgi is essential for these functions as the ER-localised 621 

Hepatovirus 2B protein does not affect cytosolic Ca2+ levels. Interestingly, 2B proteins appear to cause 622 

inflammasome activation, adding to the growing number of viroporins associated with phenomenon (Ito et al., 623 

2012). However, it appears that 2B proteins from diverse Enteroviruses may, much like p7, display altered 624 

channel activity, as EV71 2B mediates Cl-, rather than Ca2+ conductance (Xie et al., 2011).  This has led to the 625 

only description of a small molecule inhibitor for 2B proteins, namely the generic chloride channel inhibitor 626 

DID“ ;ϰ͕ϰ͛-diisothiocyano-Ϯ͕Ϯ͛-stilbenedisulfonic acid), which blocked both channel activity in Xenopus oocytes 627 

as well as EV71 growth in vitro. This serves as proof-of-principle that 2B might represent a therapeutic target. 628 

The second viroporin encoded by Enteroviruses, VP4, is retained on the inside of the virion particle until 629 

internalisation and endosomal acidification begin the process of uncoating (Tuthill et al., 2010). Interestingly, 630 

the potential for the formation of channels at the 5-fold vertices of a variety of non-enveloped viruses was 631 

previously predicted from analysis of crystallographic studies, suggesting functional conservation (Kalko et al., 632 

1992). In co-operation with VP1, VP4 is thought to enable the passage of viral RNA into the cytosol, thus 633 

representing an extreme of the channel-pore dualism observed in viroporins. However, VP4 activity is not 634 

membrane-disruptive and induces discrete channel events in artificial bilayers (Danthi et al., 2003). VP4 635 

channels can be reconstituted in vitro using recombinant protein and their activity is amenable to liposome dye 636 

release assays (Davis et al., 2008). Recent studies also support the formation of discrete multimeric complexes 637 

(pentameric and hexameric) of defined pore size, with activity enhanced by myristoylation and reduced pH, 638 

consistent with the scenario within the early endosome (Panjwani et al., 2014). The tantalising prospect of a 639 

small molecule inhibitor of Enterovirus entry targeting VP4 is therefore a realistic possibility, which could have 640 

profound impact ranging from polio eradication to treating the common cold. 641 

 642 
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Coronavirus (CoV) E, 3a and other channel forming proteins 643 

Multiple proteins have been assigned viroporin activity in CoV, with studies comprising animal viruses as well 644 

as the severe acute respiratory syndrome CoV (SARS CoV) and other human CoV. The first proteins shown to 645 

display channel forming activity was were the small envelope membrane E proteins, from SARS CoV (Wilson et 646 

al., 2004)  and murine hepatitis virus protein, E (Madan et al., 2005; Wilson et al., 2004). E peptides display 647 

cation activity in planar bilayers, with sensitivity to HMA; HMA also blocked the spread of mouse hepatitis virus 648 

(MHV) in culture, yet does not affect attenuated E-deleted viruses (Wilson et al., 2006). SARS CoV lacking E 649 

activity is also attenuated, and shows promise as a vaccine candidate due to its reduced inflammatory stimulus; 650 

E may therefore play a key role during SARS pathology (Netland et al., 2010; Regla-Nava et al., 2015). E is 651 

thought to comprise a type 1 viroporin and forms pentameric bundles (Torres et al., 2006), although its 652 

topology is a matter of some debate (Ruch & Machamer, 2012). Solution NMR structures of the pentameric 653 

TMD have been reported showing an interaction with HMA at both the N-terminal and C-terminal neck, 654 

although these have not been entered onto the PDB (Torres et al., 2006). HMA also blocks E activity in whole 655 

293T cell patch-clamp experiments (Torres et al., 2006) and high concentrations (millimolar range) of 656 

amantadine can also inhibit activity (Torres et al., 2007), although the relevance of such concentrations is 657 

questionable. Asn15Ala and Val25Phe mutations located in the TM domain abrogate channel activity and 658 

attenuate SARS CoV in mice, and both the activity and cation selectivity of E channels are modulated by 659 

membrane composition (Verdia-Baguena et al., 2012).  660 

CoV 3a protein forms potassium-selective channels in oocytes, with tetrameric complexes formed by 661 

recombinant protein in membranes stabilised by disulphide linkages (Lu et al., 2006). 3a mediates the 662 

production of infectious viral progeny, potentially linked to cellular trafficking of the spike glycoprotein (Tan, 663 

2005), but has also been proposed to comprise a structural component of the infectious virion (Shen et al., 664 

2005). 3a is pro-apoptotic in a number of cell lines, which appears directly dependent upon channel function, 665 

and may be linked to the induction of an ER stress response (Chan et al., 2009; Freundt et al., 2010; Law et al., 666 
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2005; M et al., 2005; Minakshi et al., 2009; Padhan et al., 2008). Two studies have reported small molecule 667 

inhibitors targeting 3a. Emodin, a constituent of plant extracts (including Japanese Knotweed), inhibited 3a 668 

channels in Xenopus oocytes with an EC50 of ~20 micromolar and also reduced infectious virion production 669 

(Schwarz et al., 2011). However, Emodin is known to display off-target effects against multiple kinases, 670 

including p56lck. Another report describes an inhibitory effect for kaempferol glycosides derived from Chinese 671 

medicinal herbs (Schwarz et al., 2014). Finally, other CoV proteins including ORF8a (Chen et al., 2011; Hsu et 672 

al., 2015) and ORF4a (Zhang et al., 2014) have also recently been demonstrated to exhibit channel forming 673 

activity.  674 

 675 

The small hydrophobic (SH) proteins of Paramyxoviridae 676 

Three genera of the Paramyxoviridae encode small hydrophobic (SH) proteins, namely the Pneumoviruses (e.g. 677 

respiratory syncytial virus (RSV)), Metapneumoviruses (e.g. human metapneumovirus (HMPV)) and 678 

Rubulaviruses (e.g. mumps virus (MuV)). Whilst dispensable for growth of MuV or RSV in the majority of culture 679 

systems (He et al., 1998; Takeuchi et al., 1996), SH appears to act as a significant virulence factor; for example, 680 

SH-deleted RSV shows 10-fold and 40-fold reductions in replication in small animal and chimpanzee models, 681 

respectively (Bukreyev et al., 1997; Whitehead et al., 1999). SH has been proposed to antagonise TNF 682 

mediated apoptosis (Fuentes et al., 2007; Lin et al., 2003), but recent reports also point to a role during HMPV 683 

entry, where it modulates both virion membrane permeability and the activity of the viral fusion (F) protein 684 

(Masante et al., 2014). 685 

SH is predicted to contain a single TM domain and so comprise a class 1 viroporin of 64 or 65 amino acids, with 686 

an unmodified 7.5 kDa species and carbohydrate-modified forms observed within infected cells. SH is 687 

commonly thought to form pentameric oligomers (Collins & Mottet, 1993; Gan et al., 2008; Gan et al., 2012), 688 

although hexamers have also been reported (Carter et al., 2010). Solution NMR structures have been reported 689 
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for the pentameric bundles, yet have not been added to the PDB (Gan et al., 2008; Gan et al., 2012). Both SH 690 

TMD peptides and full length protein form cation selective channels in vitro (Gan et al., 2008), as well as 691 

promoting bacterial membrane permeability (Perez et al., 1997) and mediating dye release from liposomes 692 

(Carter et al., 2010). The effect of low pH upon channel opening appears to be context dependent, with 693 

conserved His22, His51 and Trp15 residues implicated in channel gating/opening. However, deletion of both 694 

His residues is required to generate non-functional channels and it remains unclear as to the precise effect of 695 

pH upon channel opening (Gan et al., 2008; Gan et al., 2012). Recently, pyronin B was identified as an inhibitor 696 

of SH activity in liposome dye release assays, suspended bilayers and RSV spread in culture (Li et al., 2014). 697 

Binding of this compound was shown by NMR to occur at a peripheral, membrane-exposed region at the 698 

carboxy-terminal end of the TMD, reminiscent of those proposed for both M2 and p7. Pyronin B thus 699 

represents a start-point from which to build inhibitor series, which could have profound impact in the 700 

treatment of RSV and other Paramyxoviridae. 701 

 702 

Alphavirus 6K 703 

The Alphavirus genus of the Togaviridae are insect-borne arboviruses, usually transmitted by mosquitoes, and 704 

include significant human pathogens such as Chikungunya virus (CHIKV). 6K is cleaved from the structural 705 

polyprotein by signal peptidase, following its expression from a viral subgenomic RNA. 6K is an acylated 61 706 

amino acid protein (Gaedigk-Nitschko et al., 1990; Gaedigk-Nitschko & Schlesinger, 1990), predicted to 707 

comprise two TMDs, although a single TMD has also been proposed (Antoine et al., 2007; Melton et al., 2002). 708 

6K appears to function during membrane trafficking and is also a minor virion component; 6K-deleted/mutated 709 

viruses form aberrant particles with altered thermal stability (Gaedigk-Nitschko et al., 1990; Gaedigk-Nitschko 710 

& Schlesinger, 1990; 1991; Ivanova et al., 1995; Lusa et al., 1991; McInerney et al., 2004; Sanz & Carrasco, 711 

2001; Schlesinger et al., 1993; Yao et al., 1996).   712 
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6K induces bacterial membrane permeability (Sanz et al., 1994) and recombinant protein displays channel 713 

activity in suspended bilayers with preference for Na+ and over Ca2+, and a 15-fold preference for Na+ over Cl- 714 

(Melton et al., 2002). However, experiments in oocytes could not recapitulate channel activity and found that 715 

6K instead induced endogenous Cl- (and associated K+) efflux (Antoine et al., 2007). Inhibitory small molecules 716 

targeting 6K have not been described and it has been difficult to link its channel activity with a defined role in 717 

the virus life cycle. Interestingly, recent studies have identified a frame-shifted (-1 open reading frame) C-718 

terminal extension of 6K, termed TF. TF was identified within both purified Sindbis virus (SINV) and CHIKV 719 

virions, and, although not essential, its deletion led to significant decreases in particle release in cultured 720 

mammalian and insect cells without affecting genome replication, particle infectivity, or envelope protein 721 

trafficking (Snyder et al., 2013). SINV TF mutants are attenuated in vivo, and the protein induces bacterial 722 

membrane permeability to a similar degree as 6K. Thus, either 6K and/or TF may mediate important stages in 723 

the Alphavirus life cycle dependent upon channel activity, which could be exploited as targets for therapy in 724 

this group of emerging viral pathogens.  725 

 726 

Flavivirus M protein 727 

The 75 amino acid small membrane (M) protein is cleaved from the viral envelope (E) protein by signal 728 

peptidase as a prM precursor, which is then processed in the Golgi and acidifying secretory compartments by 729 

furin-like proteases into M and the pr peptide (Junjhon et al., 2008; Keelapang et al., 2004; Kuhn et al., 2002; 730 

Wong et al., 2012; Yu et al., 2008). The release of virions from the cell surface results in the loss of pr and 731 

resultant formation of a mature, infectious virion (Junjhon et al., 2010; Junjhon et al., 2008; Yu et al., 2009; Yu 732 

et al., 2008). prM is required for efficient trafficking of E to the cell surface and accelerated cleavage of prM is 733 

detrimental to virion production (Junjhon et al., 2010; Junjhon et al., 2008; Keelapang et al., 2004). 734 
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M protein forms a dual membrane topology within virions and this form of the protein has been shown to lack 735 

channel activity in oocytes (Wong et al., 2011). However, peptides corresponding to a proposed TMD in the 736 

carboxyl-terminus of the protein displayed cation-selective channel activity in suspended bilayers, with 737 

sensitivity to both HMA and amantadine (Premkumar et al., 2005). Similar peptides also induce mitochondrial 738 

membrane permeability, although the relevance of this to natural infection is unclear (Catteau et al., 2003). 739 

Single TMD topology has also been predicted for M, implying that two membrane-associated forms may exist, 740 

potentially as a result of the tight turn (three amino acids) between the two TMDs found within particles (Kuhn 741 

et al., 2002; Yu et al., 2008; Zhang et al., 2003).  Much like Vpu and 6K, investigators are yet to assign a 742 

functional role to potential M-mediated channel activity, although mutation of a highly conserved His39 in the 743 

first TMD reduced Dengue virus spread without affecting polyprotein processing or the formation of prM-E 744 

heterodimers, yet this did prevent glycoprotein secretion, which may conceivably relate to channel forming 745 

activity (Pryor et al., 2004). 746 

 747 

Rotavirus NSP4 748 

Rotaviruses are non-enveloped segmented dsRNA viruses from the Reoviridae and are the leading cause of life-749 

threatening viral gastroenteritis among children worldwide. Elevated cytosolic calcium levels are a hallmark of 750 

rotavirus replication and underpin many facets of intestinal disease. A single viral non-structural protein, NSP4, 751 

is sufficient to recapitulate all effects on calcium homeostasis and is present as both an intracellular form and a 752 

secreted endotoxin (Browne et al., 2000; Dong et al., 1997; Einerhand, 1998; Halaihel et al., 2000; Horie et al., 753 

1999; Newton et al., 1997; Tafazoli et al., 2001; Tian et al., 1996; Tian et al., 1995). NSP4 (175 amino acids) is 754 

sub-divided into an amino-terminal helical domain, a coiled-coil region (aa 95-146) for which both tetrameric 755 

and pentameric crystal structures have been solved (Bowman et al., 2000; Chacko et al., 2011; Chacko et al., 756 

2012a; Chacko et al., 2012b; Deepa et al., 2007; Sastri et al., 2014), and a C terminal double-layered particle 757 
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receptor domain, which is essential for the assembly and egress of rotavirus capsids (O'Brien et al., 2000). 758 

Viroporin activity has recently been shown to exist for the amino-terminal portion of the protein, which 759 

contains multiple predicted helical domains (Hyser et al., 2010; Hyser et al., 2012). Such activity is conserved 760 

across Rotavirus sub-types and is dependent upon a conserved region (aa 47-92) containing a penta-lysine 761 

motif and an amphipathic helix.  762 

NSP4 viroporin activity enhances bacterial membrane permeability and leads to elevated cytosolic Ca2+ in 763 

mammalian cells. Associated depletion of ER calcium stores results in the activation of ER calcium sensor 764 

stromal interaction molecule 1 (STIM1), and its subsequent co-localisation with plasma-membrane ORAI-1 765 

calcium channels, increasing Ca2+ uptake from the extracellular milieu (Hyser et al., 2013). NSP4 viroporin 766 

activity and cytosolic Ca2+ elevation are essential for Rotavirus replication. Thus, inhibitors of NSP4 channels 767 

could act to both suppress virus replication as well as its endotoxin effects on bowel epithelia, dramatically 768 

reducing disease pathology. 769 

 770 

DNA virus viroporins 771 

Whilst the majority of viroporins identified to date originate from RNA viruses, proteins encoded by small DNA 772 

viruses have recently been shown to exhibit viroporin-like characteristics. Such proteins encoded by some 773 

Polyomaviruses and members of the Papillomaviridae display diverse functions and may indicate the existence 774 

of other, as yet uncharacterised viroporins in other families and/or genera. 775 

 776 

Proteins with viroporin activity encoded by Polyomaviruses 777 

Two members of the Polyomavirus genus have been shown to encode proteins with viroporin activity. Three 778 

prototypic Simian Virus 40 (SV40) proteins: VP2, VP3 and VP4, have been reported to contribute virion egress 779 

via channel formation. VP4 is a late-acting protein encoded by the same transcript as VP2 and VP3 by internal 780 
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initiation, although unlike VP2/3 it is not thought to comprise a minor component of the virus capsid. VP4 is 781 

125 amino acids in length and contains a single hydrophobic TMD. VP4 was observed to form channels with an 782 

inner diameter of ~3 nm that promote membrane destabilisation, with a preference for nuclear and plasma 783 

membranes (Raghava et al., 2011). VP2/3 are also thought to form membrane-destabilising channels in ER 784 

membranes (Giorda et al., 2013), with activity regulated by their interaction with the VP1 major capsid 785 

protein(Daniels et al., 2006). Mutations in all three proteins that disrupt membrane association and/or channel 786 

formation severely disrupt the propagation of SV40 in culture. 787 

A fourth viroporin identified in the human JC Polyomavirus is the agnoprotein (Suzuki et al., 2010). Agnoprotein 788 

is a 71 amino acid multi-functional protein with numerous reported protein-protein interactions (Darbinyan et 789 

al., 2004; Endo et al., 2003; Johannessen et al., 2008; Safak et al., 2002; Suzuki et al., 2005). It also retains a 790 

central hydrophobic TM domain which, along with an N-terminal region, is required for ER/plasma membrane 791 

localisation and membrane integration (Suzuki et al., 2010), and forms stable oligomers within infected cells 792 

(Coric et al., 2014; Sami Saribas et al., 2013; Saribas et al., 2011; Suzuki et al., 2010). Agnoprotein expression 793 

both increases plasma membrane permeability and elevates cytosolic calcium, resulting in enhanced virion 794 

release (Suzuki et al., 2010). Both the related human BK Polyomavirus and SV40 encode agnoproteins, yet 795 

viroporin activity has not been reported. 796 

 797 

High risk human Papillomavirus (HPV) E5 798 

The E5 protein is the least-well characterised of the three oncoproteins encoded by high risk HPV16 (Halbert & 799 

Galloway, 1988; Leechanachai et al., 1992; Leptak et al., 1991; Maufort et al., 2007; Pim et al., 1992; Straight et 800 

al., 1993; Valle & Banks, 1995). Unlike E6 and E7, HPV16 E5 is highly hydrophobic and is predicted to comprise 801 

three TMDs within its 83 amino acid sequence (Krawczyk et al., 2010; Wetherill et al., 2012). E5 induces 802 

anchorage-independent growth in culture (Leechanachai et al., 1992) and tumour formation in transgenic 803 
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mouse models (Maufort et al., 2007), with expression detectable in human malignancies (Cavuslu et al., 1996; 804 

Hsieh et al., 2000; Sahab et al., 2012). E5 impairs endosomal maturation, thereby stabilising epidermal growth 805 

factor receptor (EGFR) signalling, and leading to increased extracellular signal-regulated kinase (ERK) mitogen-806 

activated protein kinase (MAPK) activity (Disbrow et al., 2005; Genther Williams et al., 2005; Leechanachai et 807 

al., 1992; Pedroza-Saavedra et al., 2010; Pim et al., 1992; Rodriguez et al., 2000; Straight et al., 1993; 808 

Suprynowicz et al., 2010; Tomakidi et al., 2000). However, understanding of the precise mechanism by which 809 

E5 mediates this is incomplete. 810 

A recent study showed that both cell-expressed and recombinant E5 protein formed hexameric oligomers, 811 

forming integral membrane complexes with discernible pores (Wetherill et al., 2012). E5 complexes displayed 812 

channel forming activity with defined pore-size, which was increased by reduced pH. Activity was sensitive to 813 

relatively high concentrations of rimantadine, as well as to a novel small molecule inhibitor generated via in 814 

silico modelling of E5 complexes and subsequent docking analysis. Importantly, E5-mediated stabilisation of 815 

phosphorylated ERK was prevented by channel-specific small molecules, suggesting that E5 channel activity is 816 

directly linked to its oncogenic function. Thus, E5 represents the first example of an oncogenic viroporin and 817 

illustrates the potential for diverse consequences resulting from viral manipulation of cellular ion homeostasis.  818 

 819 

Conclusions: current and future potential of viroporins as antiviral targets 820 

The identification of viroporins in an increasingly diverse and broad range of viruses, many of which represent 821 

significant human pathogens, represents an important opportunity for the development of novel therapies. 822 

Furthermore, understanding how viruses manipulate cellular ion homeostasis can provide important insight 823 

into both virus- and host-specific processes, including membrane trafficking, apoptosis and growth factor 824 

signalling as just a few examples. Thus, viroporins represent an important, yet relatively unexplored area of 825 

virology, deserving of significant research focus. 826 



37 

 

Ion channel targeted therapeutics have had significant impact in areas such as cardiac medicine, yet viroporins 827 

lag significantly behind as drug targets. Amantadine and rimantadine remain the only licensed antivirals 828 

targeting a viroporin, and, hailing from the 1960s, were not derived using modern drug discovery methods. 829 

Indeed, despite setting a clinical precedent, their failings as effective drugs have perhaps done more to impair, 830 

than to encourage the exploration of viroporins as targets. An extremely limited chemical toolbox of viroporin 831 

ŝŶŚŝďŝƚŽƌƐ ŚĂƐ ůĞĚ ƚŽ ƚŚĞ ͞ŐŽůĚ ƐƚĂŶĚĂƌĚ͟ ŽĨ ƐƵĐŚ ŵŽůĞĐƵůĞƐ ĨĂůůŝŶŐ ƐŚŽƌƚ ŽĨ ƚŚĞ ĐƌŝƚĞƌŝĂ ƌĞƋƵŝƌĞĚ ƚŽ ƉƵƌƐƵĞ ĚƌƵŐ 832 

discovery projects, with prototype compounds displaying promiscuous, yet only moderate activity. Studies, 833 

particularly in a clinical setting, involving such compounds are therefore highly likely to fail, and in so doing 834 

further add to the scepticism concerning viroporins as targets. 835 

However, some encouraging progress has been made in recent times, particularly regarding the accumulation 836 

of atomic structural information and the development of screening assays for several viroporin targets, most 837 

notably M2 and p7, but with SH and CoV E protein not far behind. This is starting to yield improvements in our 838 

ability to e.g. target amantadine-resistant influenza, and to select compounds with cell culture potencies 839 

approaching those suited to drug discovery. However, early progress must be continued if viroporin targets are 840 

to be taken up by pharmaceutical companies and a large amount of laboratory research must be undertaken to 841 

determine more and better atomic structures, expand screening technologies and the apply meticulous 842 

medicinal chemistry. In addition, elucidation of the precise role of viroporin channel activity within virus life 843 

cycles will be necessary to both better define inhibitor effects, as well as to provide appropriate biomarkers 844 

should compounds ever be advanced to human trials. Taken together, viroporins represent an essentially 845 

untapped reservoir of antiviral targets spanning multiple virus families, although their exploitation will require 846 

cohesive, improved and combined efforts in structure-guided and screen-led drug development. 847 

 848 

  849 
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 1684 

Figure Legends 1685 

Figure 1. Selected atomic structures for Influenza A M2 proteins. A. “ƚƌƵĐƚƵƌĞƐ ƐŽůǀĞĚ ĨŽƌ MϮ ͞TM͟ ƉĞƉƚŝĚĞƐ 1686 

from the DeGrado group with PDB identifiers. Ribbons and transparent electron density are shown, in addition 1687 

to a single monomer as sphere space-fill. Lumen-bound inhibitors are shown in yellow: amantadine for 3C9J 1688 

and 2KQT, M2WJ332 adamantane derivative (see table 2) for the 2LY0 structure of an amantadine-resistant 1689 

N31 channel. B. “ƚƌƵĐƚƵƌĞƐ ƐŽůǀĞĚ ĨŽƌ ͞CD͟ ƉĞƉƚŝĚĞƐ ĨƌŽŵ ƚŚĞ CƌŽƐƐ ;ϮLOJͿ ĂŶĚ ƚŚĞ CŚŽƵ ůĂďŽƌĂƚŽƌŝĞƐ ;ϮRLFͿ͘ 1690 

2RLF shows four peripherally-bound rimantadine molecules (yellow). 1691 
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Figure 2.  Full length HIV Vpu strucrutal structural model. In silico monomeric model, building upon that 1692 

previously reported (Lemaitre et al., 2006), constructed from independent NMR data of the cytoplasmic 1693 

domain (2K7Y) and molecular dynamics predictions for the transmembrane domain (unpublished, Fischer lab). 1694 

Potentially important lumenal polar (Ser23) and hydrophobic gate (Trp22) residues illustrated as stick 1695 

sidechains. PDB generously provided by Prof Wolfgang Fischer, Taipei.  1696 

Figure 23. Atomic structures for HCV p7 proteins. A. Full monomeric structures from the Griffin (3ZD0) and 1697 

Opella (2MTS) laboratories, solved at neutral and acidic pH, respectively. Structures are displayed as ribbons, 1698 

showing the side chains of His17, Lys33 and Arg35 for orientation. B. Oligomeric p7 channel complexes based 1699 

ƵƉŽŶ ĞŝƚŚĞƌ ͞ŚĂŝƌƉŝŶ͟ Žƌ ͞ƐƚĂƉůĞ-ůŝŬĞ͟ ƉƌŽƚŽŵĞƌ ĐŽŶĨŽƌŵĂƚŝŽŶƐ͕ ƌĞƉƌĞƐĞŶƚĞĚ ďǇ Ă ϯ)DϬ-based molecular model 1700 

and the 2M6X solution NMR structure from the Chou laboratory. Again, His17, Lys33 and Arg35 side chains are 1701 

shown for orientation, with N and C termini oriented towards the top of each image. 1702 

 1703 



Class Family Virus Name AA TM Ion? Role of Channel Function 

ssRNA 

(+) 
Picornaviridae Poliovirus 2B 97 2 Ca

2+ Particle Production, cell lysis 

VP4 68 1 - Entry 

Coxsackievirus B3 2B 99 2 Ca
2+ Particle Production, cell lysis 

EV71 2B 99 2 Cl
- Virus Spread 

Human Rhinovirus VP4 68 1 - Entry 

Flaviviridae Hepatitis C virus p7 63 2 H
+ Particle Production, Entry? 

BVDV p7 63 2 ?H
+ Particle Production 

CSFV p7 63 2 Ca
2+ Particle Production 

Dengue Virus M 75 2 K
+
/Na

+ Particle Production 

Togaviridae Semliki Forest Virus 6K 60 2 K
+
/Na

+ Particle Production 

Sindbis Virus 6K 55 1* K
+
/Na

+ Particle Production 

Ross River Virus 6K 62 1* K
+
/Na

+ Particle Production 

Coronaviridae SARS CoV E 76 1 K
+
/Na

+ Particle Production 

3a 27
4 

3 K
+ Virus Spread 

8a 39 1 K
+
/Na

+ - 

MHV E 83 1 K
+
/Na

+ Particle Production 

ssRNA(-) Paramyxoviridae hRSV SH 64 1 K
+
/Na

+ TNF antagonist, Pathogenesis 

Orthomyxoviridae Influenza A virus M2 97 1 H
+ Entry, Particle Production (some) 

Influenza B virus BM2 11
5 

1 H
+ Entry 

NB 10
0 

1 H
+ - 

Influenza C virus CM2 11
5 

1 H
+ Entry 

dsRNA Reoviridae Rotavirus NSP4 17
5 

1/3 Ca
2+ Particle Production, Endotoxin 

RT (RNA) Retroviridae HIV-1 Vpu 81 1 K
+
/Na

+ Particle Production 

HTLV-1 P13ii 87 2 ?K
+ Mitochondrial Permeability 

dsDNA Polyomaviridae SV40 VP4 12
5 

1 Ca
2+ Particle Production 

Table
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JC Agno 71 1 Ca
2+ Particle Production 

Papillomaviridae HPV-16 E5 83 3 ? H
+ Oncogene, Signalling/Trafficking 

 

Table 1: Summary of viroporin characteristics. Current consensus from the literature regarding viroporin 

function, size (AA, amino acids) ion specificity (Ion?) and the number of trans-membrane domains (TM), 

including several proteins not discussed herein. * computer prediction; ? Indirect assays; - 

unknown/uncertain. Abbreviations: AA, number of amino acids; TM, number of trans-membrane domains; 

Ion, consensus ion specificity; EV71, Enterovirus 71; BVDV, bovine viral diarrhoea virus; CSFV, classical 

swine fever virus; SARS CoV, severe acute respiratory distress syndrome associated coronavirus; MHV, 

murine hepatitis virus; hRSV, human respiratory syncitial virus; HIV-1, human immunodeficiency virus type 

1; HTLV-1, human T-lymphotropic virus type 1; SV40, simian vacuolating virus 40; JC, John Cunningham 

polyomavirus; HPV-16, human papillomavirus type 16. 

  



Class Compound Structure Target Resistance 

Adamantane ͞AŵĂŶƚĂĚŝŶĞ͟ ;ϭ-adamantylamine) 
Hay et al., EMBO 1985; Griffin et al., FEBS Lett 
2003; Premkumar et al., J Membr Biol. 2005 

 

Influenza M2 L26F, L28F, V27A, A30T, 

S31N, G34E 

HCV p7 L20F, genotype 1a (H77), 

2a (JFH-1) 

Dengue M (C-

terminus) 
 

͞RŝŵĂŶƚĂĚŝŶĞ͟ ϭ-(1-
adamantyl)ethanamine 
Hay et al., EMBO 1985; Griffin et al., Hepatology 
2008; Gottwein et al., J Virol 2012 

 

Influenza A M2 L26F, L28F, V27A, A30T, 

S31N, G34E 

HCV p7 L20F, genotype 1a (H77) 
͞H͟ ϱ-(1-adamantyl)-2-methyl-1H-
imidazole 
Foster et al., Hepatology 2011 

 

 HCV p7 (L20F)  

Spiro[piperidine-2,2'-adamantane] 3 
Kolocouris et al., Bioorg Med Chem Letts 2008 

 

 

Influenza A M2 S31N 

͞“ƉŝƌŽĂĚĂŵĂŶƚĂŶĞ͟ 
Wang et al., JACS 2011 

 
 

 

Influenza A M2 
(V27A, L26F) 

S31N 

͞MϮWJϯϯϮ͟ ;ϯ“͕ϱ“͕ϳ“Ϳ-N-{[5-
(thiophen-2-yl)-1,2-oxazol- 3-
yl]methyl}tricyclo[3.3.1.1~3,7~]decan-
1- aminium 
Wang et al., PNAS 2013 

 

 

Influenza A M2 
(S31N)  

Spirane-

amine 
͞BL-ϭϳϰϯ͟;Ϯ-[3-azaspiro 
(5,5)undecanol]-2-imidazoline),  
Kurtz et al., Antimicrob. Agents Chemother 1995 

 

 

Influenza A M2 I35T 

Alkyl Imino-

Sugar 
͞NN-NDNJ͗͟N-nonyl deoxynojirimycin 
Pavlovic et al., PNAS 2003 
 

 
 

 

HCV p7 F25A, Genotype 3a (452) 

͞NN-DGJ͗͟ N-Nonyl 
deoxygalactonojirimycin 
Pavlovic et al., PNAS 2003 

 

 HCV p7 F25A, Genotype 3a (452) 

 UT-231b ? HCV p7  

Amiloride ͞HMA͗͟ ϱ-(N,N-
hexamethylene)amiloride 
Premkumar et al., FEBS Lett 2004; Wilson et al., 
Virology 2006; Premkumar et al., J Membr Biol. 
2005; Ewart et al., Eur Biophys J. 2002  

 HCV p7  

SARS CoV E  

Dengue M (C-  



terminus) 

HIV-1 Vpu  
͞BIT-ϮϮϱ͗͟ ;N-[5-(1-methyl-1H-
pyrazol-4-yl)-napthalene-2-carbonyl]-
guanidine 
Luscombe et al., Antiviral Res. 2010; Khoury et al., 
Antimicrob Agents Chemother 2010  

 

 

HCV p7  

BVDV p7  

HIV-1 Vpu  

Other ͞CD͗͟ 1,3dibenzyl 
5(2H1,2,3,4tetraazol5yl) 
hexahydropyrimidine 
Foster et al., Hepatology 2011 

 

 

HCV p7 L20F 

͞LD“Ϯϱ͟ N-(1-phenylethyl)-2-[4-
(phenylsulfonyl)-1-piperazinyl]-4-
quinazolinamine 
Foster et al., Hepatology 2014 

 
 

 

HCV p7  

͞EŵŽĚŝŶ͗͟ ϲ-Methyl-1,3,8-
trihydroxyanthraquinone 
Schwarz et al., Antiviral Research 2011 

 

 

SARS CoV 3a  

Verapamil 
Gladue et al., J Virol 2012 

 

 

CSFV p7  

͞DID“͗͟ ϰ͕ϰ͛-diisothiocyano-Ϯ͕Ϯ͛-
stilbenedisulfonic acid 
Xie at al., Cell Res 2011 

 

 

EV71 2B  

MV006 
Wetherill et al., J Virol 2012 

 
? HPV-16 E5  

Pyronin B 
Li et al., J Virol 2014 
 
 

 

RSV SH  

 

 

Table 2: Viroporin inhibitor toolbox. Summary of prototypic and derivative viroporin inhibitors reported in the 
literature. Virus abbreviations as in table 1.  
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