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Robustness analysis of network modularity
Jongrae Kim, Member, IEEE, and Kwang-Hyun Cho, Senior Member, IEEE

Abstract—Modules are commonly observed functional units in
large-scale networks and the dynamics of networks are closely
related to the organization of such modules. Modularity analysis
has been widely used to investigate the organizing principle
of complex networks. The information about network topology
needed for such modularity analysis is, however, not complete in
many real world networks. We noted that network structure is
often reconstructed based on partial observation and therefore
it is re-organized as more information is collected. Hence, it
is critical to evaluate the robustness of network modules with
respect to uncertainties. For this purpose, we have developed
a robustness bounds algorithm that provides an estimation of
the unknown minimal perturbation, which breaks down the
original modularity. The proposed algorithm is computationally
efficient and provides valuable information about the robustness
of modularity for large-scale network analysis.

Index Terms—Network modularity, community structure, ro-
bustness analysis

I. INTRODUCTION

Network or graph theory has been applied to modelling

many physical, biological, and social systems for various

interaction data such as internet communications, biomolecular

interactome, and social relationships. A network consists of

nodes and edges as shown in Fig.1(a), where a node may

represent a computer server in the internet, a protein species in

a protein-protein interaction network, or an individual person

in a social network, and an edge may denote a physical

network connection between two computers, a protein-protein

interaction between the protein species, or friendship between

two people. Because of the simplicity of network modelling,

a massive number of components and interactions can be

considered easily for many cases.

The most important finding in large-scale network analysis

is arguably the scale-free characteristic [1]. This explains

two important properties, i.e., robustness and small-worldness,

in large-scale networks. Another important way of compre-

hending large-scale networks is modularity analysis, which

has been one of academic research interest in recent years.

There are several different definitions on network modularity

[2], [3], [4], [5], [6]. Among these, a defining characteristic

of a module is that nodes in the same module have more

frequent interconnections than to the connections to the nodes

in different modules. The formulation proposed by Newman

[2] is one of the widely accepted definitions as it shows

a quite intuitive result and the module calculation can be

done efficiently using the power iteration. The community or
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(a) Unknown full network

(b) Sampled network (c) Sampled network with wrong
edges

Fig. 1. Modularity and sampling effects: (a) Eight darker nodes are sampled
for (b) and (c); (b) One node is categorized in the wrong module; (c) The
thick gray edge is incorrectly identified, and one edge and one node are not
observed.

modular structure provides us with the information about the

hidden functional organization of the networks. For instance,

two modules indicated by the ellipsoids in Fig.1(a) indicate

that social division occurred in a Karate club in America [7],

where the network shows the friend-relationships among the

club members.

A profound consequence of the modular structure of com-

plex networks is the enhanced robustness to various internal

and external perturbations and disturbances. Robustness is

considered to be one of the key factors that shaped biolog-

ical systems through evolution. Modular system design is an

efficient way to distribute and organize functions as frequently

observed in many engineering systems, whose design evolves

as well based on their performance. The functional modu-

larization might be the origin of robustness [8] and highly

optimized tolerance [9]. In addition, graph partition is an

important control problem to organize multiple agents in order

to perform a common mission while communications among

them are limited [10].

A number of previous studies reported how to dissect

hierarchical modular structures [1] and interpret their physical,

biological and social meanings [1], [11], [12].

However, in many cases, it was overlooked that most large-

scale network data are incomplete and that they are only

partial measurements of the unknown full networks and/or
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Fig. 2. A simple network and its worst case perturbation for each number
of edge alterations (t).

a snap shot at a fixed time. For instance, we may not have

the full network data as shown in Fig.1(a) but only have the

partial sampling such as Fig.1(b) or 1(c). As the available

network data are only a partial subset of the unknown true

network, the modular structure inferred from such data would

be influenced by the sampling effect as illustrated in Fig.1(b),

where one node is included in a wrong module. In addition, a

sampled network might include a false interaction, e.g. the

gray edge in Fig.1(c) (false positive) or miss a true edge

between one of the blue nodes and the lighter blue nodes (false

negative). This sampling effect was reported in the past. For

example, identifying high degree nodes in different categories

of biological networks [11] cannot be supported from the data

used [13] and the power-law degree distribution in scale-free

networks is highly sensitive to the data analyzed [14]. Hence,

any network modularity analysis needs to be further validated

by robustness analysis with respect to the network uncertainty

in terms of false positive or negative nodes and edges.

To examine the effect of such uncertainties on the modular-

ity structure, we need to identify the minimal perturbation that

can break down the original modularity of the network. For

instance, a simple six-nodes network shown in Fig. 2 can be

divided into two modules, the red and the blue. By applying

all possible perturbations, we find that removing three edges

shown in Fig. 2 is the minimum number of edge perturbations,

which destroys the original modularity. Based on this minimal

perturbation, we can measure the robustness of the current

modular structure. The number of possible perturbations to

be examined for an exhaustive search increases exponentially

along with the size of a network and therefore it is impossible

to perform a full search even for a network of a moderate size.

This paper is organized as follows. First, the robustness

analysis is formulated as a quadratic integer programming

problem. Second, the upper and lower bound algorithms are

established. Third, the algorithms are applied to various ex-

ample networks including a social network, the yeast protein-

protein interaction (PPI) network, and a research citation

network. Finally, conclusions are made.

II. ROBUSTNESS OF MODULARITY

An n× n adjacency matrix, A, describes a network with n
number of nodes, where the i-H row and j-th column of the

matrix A is set to 1 if the two nodes are directly connected or

0 if there is no direct connection. The solution of the following

maximization problem [2],

Maximize
s∈S

Q(s, A) :=
1

4m
s
TB s, (1)

divides n nodes in A into two groups for Q > 0 or declares

the network indivisible for Q ≤ 0, where S is the set of n-

dimensional column vectors, s, whose element is either 1 or -1,

m is the number of edges in the network, (·)T is the transpose,

k = A1, each value in k is called the degree of node, 1 is the

n-dimensional column vector whose elements are all 1, and

B := A − kk
T

2m
.

B measures the difference between the current edge distri-

bution, A, and the average edge distribution, kk
T /(2m). The

maximum value of Q being positive indicates more edges than

expected in each subgroup for a division given by s, and the

nodes are separated into two groups depending on the sign of

elements in s.

With the optimal solution to (1) denoted by s
∗, the maxi-

mum modularity, Q∗, is given by

Q∗ = max(Q) = Q(s∗, A).

While A is fixed in the maximisation problem, in reality, the

network is most likely a subset of the unknown true network

including some false positive or false negative edges/nodes,

and it might even change with time. For brevity, only the edge

perturbation case is considered and the general case including

node perturbation will be discussed at the end. Once edges

are added to and/or removed from the current network, the

adjacency matrix is changed.

Ag := A + ∆A,

where the subscript g represents the perturbed network, ∆A

is n × n matrix representing removal (-1) or addition (+1) of

edges to the original network. The perturbed B is given by

Bg := Ag − 1

2mg

kgk
T
g ,

kg := Ag1 = k + δk,

mg is the number of edges in the perturbed network, 1 is

assumed to have an appropriate dimension from now on, and

δk is an n-dimensional vector, whose elements represent the

degree changes of the nodes in the network. he robustness

analysis problem is formulated as follows:

Problem 1: (Robustness analysis of modularity) For a given

network, A, and the partition, s
∗, find ∆A minimising Qg as

follows:

Minimize
∆A

Qg(s
∗,∆A)

for a fixed number of alterations, t ∈ [1,min(t1, t2)], where

Qg(s
∗,∆A) := Q(s∗, Ag), t1 = m and t2 = n(n− 1)/2−m.

For each number of alterations, t, the worst perturbation, ∆A,

to impact on the modular structures of A is to be sought.

There exist always two extreme perturbations: removing all

m original edges and all nodes in A become orphan; or

connecting each node to the other nodes and A is fully
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connected. The upper bound of t corresponds to either one of

these two extreme cases. It can be shown that the following

is equivalent to Problem 1:

Problem 2: (Robustness analysis of modularity) For t in the

range of [1,min(t1, t2)], find dv such that

Minimize
dv∈Dv

q(dv) = a · dv − (b · dv)
2

b
, (2)

where Dv is the set of all feasible column vectors, dv , whose

dimension is n(n − 1)/2 and the value of each element is 0

(no change) or 1 (either remove the edge if an edge exists or

add an edge if not). dv is constructed by vectorizing ∆A and

d
T
v 1 = t. “·” is the dot product, a and b are vectors, which

are constructed from A, m, and s
∗, and b is the magnitude of

b (see Appendix for the full definitions).

Proof: See Appendix.

Once the minimization problem is solved, the worst Qg is

calculated as follows:

Qworst
g (t) := min

α∈Sα(t)
Qg

= min
α∈Sα(t)

{

1

1 + α

[

Q∗ +
α (k · s∗)2

8m2(1 + α)
+

q∗

4m

]}

,

where q∗ is the minimum of q(dv), α is given by

2mg = 1
T Ag1 = 2m(1 + α),

and Sα(t) is the set of all possible elements of α for a fixed

t as follows:

Sα(t) =

{

{0,±2/m,±4/m, . . . ,±t/m} for t is even,

{±1/m,±3/m, . . . ,±t/m} for t is odd.

α is the net number of edge alterations. Positive or negative

values of α imply that after perturbation the number of edges

in A has increased or decreased, respectively. For a fixed

number of alterations, t, there is more than one possible value

of α given by the set Sα(t).

Modularity robustness analysis is presented as a quadratic

integer programming problem. The computational cost in-

creases exponentially as fast as
∑n

k=1 n!/[k!(n−k)!]. Calculat-

ing the exact solution requires unreasonable computation time

for even some moderate size problems. Hence, developing an

efficient lower and upper bounds algorithm is greatly desirable.

However, we note that any bounds algorithm will eventually

produce conservative results for some cases, which is the

unavoidable risk for using bounds algorithms.

A. Robustness lower bound

By the definition of vector dot product, the minimization

problem, (2), can be written as

Minimize
dv∈Dv

q(dv) = adv cos θ1 − bd2
v cos2 θ2 (3)

subject to dv · 1 = t, where t ∈ [1,min(t1, t2)], a and dv is

the magnitude of a and dv , respectively. The angle between

a and dv is θ1, while the angle between b and dv is θ2. It

can be shown that θ1 is in the following range:

cos−1

(
∑

i∈M̄ ai

a
√

t

)

≤ θ1 ≤ cos−1

(
∑

i∈M ai

a
√

t

)

,

where M̄ and M are the sets, whose elements are the indices

of the first t-number of largest and smallest elements in a,

respectively. θ2 is equal to π + θ − θ1 for θ + θ1 + θ2 > π or

π − θ − θ1 otherwise (See Proposition A.1 in appendix). The

minimizing q(dv) is shown to be equivalent to:

Minimize
θ1∈[θ

1
,θ̄1]

q(θ1) = a
√

tx − bt(x cos θ ±
√

1 − x2 sin θ)2,

and the minimum of q(θ1) occurs at x∗, which is either the

solution of quartic equation, i.e.,
∑4

i=0 wix
i = 0, where

x = cos θ1, or one of the boundary values for θ1, i.e.,

x = cos θ1 or x = cos θ̄1 . The definitions of wi and the

proofs are shown in Propositions A.2 and A.3 in appendix.

All solutions of the quartic equations for x can easily

be calculated and the minimum solution, θ∗1 , is given by

cos−1 x∗. Now, we are ready to present a lower bound

algorithm.

Theorem 2.1: (Lower Bound) For a given t, the worst case,

Qworst
g (t), is bounded below by

QLB [α∗

LB(t)] ≤ Qworst
g (t),

where α ∈ Sα(t),

QLB(α) :=
1

1 + α

[

Q∗ +
α (k · s∗)2

8m2(1 + α)
+

q(θ∗1)

4m

]

,

α∗

LB(t) = argmin
α∈Sα(t)

QLB(α).

Proof: By the definition, q(θ∗1) is less than or equal to q∗,

and it leads to QLB [α∗

LB(t)] ≤ Qworst
g (α). �

In order to find the lower bound, first, calculate min q(θ1)
for all α ∈ Sα(t), second, substitute these into QLB(α), take

the minimum among QLB(α) for α ∈ Sα(t), and finally,

repeat these for different t values. This algorithm requires only

polynomial computation time.

B. Robustness upper bound

Whether the lower bound is close to the true worst or not

can be verified by an upper bound. To develop an upper bound,

the following inequality is derived:

min
dv∈Dv

q(dv) ≤ q(d̄v),

where d̄v represents some specific perturbation, ∆A, defined

by Proposition A.4 in appendix. The next step is to solve the

following minimization problem, which is constructed from

q(dv) shown in Proposition A.4:

Minimize
dv∈Dv

p(dv) =
(

a
T
1 − ã

T
2

)

Avdv − d
T
v b̃b̃

T
dv.
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This is only a function of dv excluding α. Expand the vector

multiplications,

p(dv) = a1dv1 + a2dv2 + . . . + aldvl

−
(

b̃1dv1 + b̃2dv2 + . . . + b̃ldvl

)2

,

where ai, b̃i and dvi are the i-th element of (aT
1 − ã

T
2 )Av ,

b̃ and dv , respectively, for i = 1, 2, . . . , l − 1, l, and

l = n(n − 1)/2. Notice that d2
vi = dvi as dvi is either 0 or 1.

For brevity, consider n = 3 case, the formulations for the

general cases can be derived similarly.

p(dv) = c1dv1 + c2dv2 + c3dv3

− 2b̃1b̃2dv1dv2 − 2b̃1b̃3dv1dv3 − 2b̃2b̃3dv2dv3,

where ci = ai − b̃2
i for i = 1, 2, 3. Again, this is a quadratic

integer programming problem. Although any perturbation will

provide an upper bound, in order to reduce the unknown

distance from the worst case and simplify the calculations,

p(dv) is modified as follows:

p̂(d̂v) = c1dv1dv2 + c1dv1dv3 + c2dv1dv2 + c2dv2dv3

+ c3dv1dv3 + c3dv2dv3 − 2b̃1b̃2dv1dv2

− 2b̃1b̃3dv1dv3 − 2b̃2b̃3dv2dv3,

i.e.,

p̂(d̂v) = f
T
d̂v,

where

f
T :=

[

c1 + c2 − 2b̃1b̃2 c1 + c3 − 2b̃1b̃3 c2 + c3 − 2b̃2b̃3

]

,

d̂v :=
[

dv1dv2 dv1dv3 dv2dv3

]T ∈ Dvv.

The minimum value p̂(d̂v) is obtained by simply choosing

the first τ smallest elements in f and set the corresponding

elements of d̂v to 1, where τ is an integer in [1, l]. This

is a heuristic modification of p(dv). There is no guarantee

that a minimising solution of p̂(d̂v) is the same as the one

of p(dv). This is the reason that the solution for p̂(d̂v) will

be an upper bound, where calculating the solution for the

modified equation is simply a sorting procedure.

The following inequality is obtained using the solution

obtained from p̂(d̂v):

q(d̄v) ≤ q(d̃v),

where d̃v is a specific perturbation calculated from the solution

of p̂(d̂v). A detailed proof is shown in Proposition A.5 in

appendix.

Now, the upper bound is given by the following Theorem

2.2.

Theorem 2.2: (Upper Bound) For a given t, the worst case

perturbation is bounded above by

Qworst
g (t) ≤ QUB(t),

where

QUB(t) :=
1

1 + ᾱ

[

Q∗ +
α̃ (k · s∗)2

8m2(1 + α̃)
+

q(d̃v)

4m

]

,

for the right hand side of the equation less than Q∗ or

QUB(t) = Q∗ otherwise, where α̃ = 1Avd̃v .

Proof: The proof is trivial and omitted. �

In the upper bound calculation, the perturbed modularity

is compared with the nominal modularity. This is to ensure

that the upper bound is always below Q∗. The upper bound

calculation does not guarantee that the perturbation will always

decrease the modularity. The perturbation calculated by the

algorithm might improve the modularity of original network

by chance and the perturbed modularity will be larger than

Q∗. For these rare cases, the calculated upper bound will

be rejected and the unperturbed one is declared as the upper

bound.

In order to improve the upper bounds, some heuristic opti-

mization algorithms could be used such as genetic algorithms,

particle swarm optimization, and simulation annealing, where

the estimate provided by the upper bound algorithm could be

an initial guess.

C. Subnetwork robustness bounds

Once a given network is divided into two modules, each

module is investigated again whether it can be further divided

or not and this procedure is repeated until all modules are no

longer divisible. The minimization problem for subnetwork

modularity robustness is given by Theorem 2.3.

Theorem 2.3: (Subnetwork Robustness) The minimization

sub-problem for the worst case analysis of subnetwork is

Minimize
dv∈D

sg
v

qsg(dv) = a · dv − (b · dv)
2

b

+ 2mαsg +
2 (msg + mαsg)

2

m(1 + αsg)
, (4)

where αsg , msg , a, b, and all other notations follow similar

definitions of the full network.

Proof: See the appendix. �

The minimization problem for subnetwork robustness is

exactly the same as the previous minimization problem except

the last two constant terms in (4), which does not affect

the minimization solution. Hence, the same lower and upper

bounds algorithms for the full network are used for the

subnetwork robustness analysis.

III. EXAMPLES

The bound algorithms are applied to various examples:

social, biological, and citation networks. Several physical and

biological interpretations are presented.
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Fig. 3. A simple network (6 nodes, 7 edges): The true worst modularity
indicated by the black circled line is tightly confined by the upper and the
lower bounds.

A. A simple network

The network shown in Fig. 2 has six nodes and seven edges.

The two modules, red and blue, are the optimal partition.

The upper and lower robustness bounds are illustrated in

Fig. 3. The true worst perturbation found by an exhaustive

search is indicated in the black circled line. The upper bound

presents the worst case perturbation scenario and t = 0
corresponds to the original network without any perturbation.

The first negative value corresponds to the smallest number

of perturbations that make the original two module partition

invalid. The perturbed network in Fig. 2 shows the worst

case perturbation. After removing the three edges, one module

disappears and this leaves only the blue module with an

additional node that originally belongs to the red module.

The lower bound shows that the modularity measure will be

negative for the three perturbations. Note that the negative

modularity implies that the original partition is destroyed.

The robustness of the network module is measured as 43%

(addition/removal of three edges out of seven edges) where

the upper and lower bounds become negative at the same level

of perturbations, i.e., t = 3.

B. Karate network

The robustness analysis result of the Karate network is

shown in Fig. 4. This Karate network illustrates the actual

social division that took place among people in a Karate Club

in America in 1970’s where each node represents an individual

member and each edge denotes the relationship between two

members in the club [7]. From the robustness analysis of this

division, we found that such division can hold up to 16%

perturbations (t/m) before the lower bound becomes negative.

An exhaustive search is not possible for this network since

there are too many combinations. The minimum worst change

(t̄/m) found in order to resolve the social division is 42%

perturbation. This implies that if a perturbation corresponding

to this upper bound is applied so that some relations are

prohibited and new connections are encouraged, the social

division might be resolved.
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Fig. 4. Karate network (34 nodes, 78 edges): The worst upper bound
(t̄/m) indicates that minimum 42% perturbations in the edges can destroy
the modularity. The worst lower bound (t/m) shows that the modularity will
become negative by 16% perturbations.
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Fig. 5. Yeast PPI network (1004 nodes, 8319 edges): Addition and/or removal
of 34% edges (t̄/m) will void any modularity of this network. The worst
lower bound (t/m) indicates that the modularity will become negative by 2%
perturbations

C. Yeast protein-protein interaction network

The protein-protein interaction (PPI) network of yeast is a

well-characterized biological interaction network [15]. Each

node in this network represents a particular protein and each

edge connecting two proteins indicates an identified biomolec-

ular interaction between them. The network has several iso-

lated groups and the largest one composed of 1,004 nodes

and 8,319 edges and is used in this analysis. The worst lower

bound shown in Fig. 5 is 2% and this indicates that we might

have a very conservative lower bound, which is not close to the

worst upper bound, 34% perturbation. It might be the opposite

case where the upper bound is conservative and the lower

bound indeed indicates the extreme fragility of the network

modularity structure. This is an unavoidable result in any

bounding algorithms corresponding to an NP-hard problem.

D. Citation Network

Due to limitations of the current social network database and

measurement technologies for biological networks, time-series

data for network growth is still rarely recorded. One available

case is the citation network of High-Energy Physics Theory in
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arxiv (http://arxiv.org) [16]. The information about how each

paper cited others is available as a network growth data set.

In this network, two papers are connected by an edge if one

of them cites the other. A complete history of citations of all

papers in the database is available from the beginning date of

the website. In the first year, the size of the network is very

small and the number of papers reached around 20 at the 304th

day. The number of nodes grows up to 2500 per year since

the 304th day. In order to compare the characteristics of the

citation network, the time history of an artificial network data

is constructed using one of the well-known scale-free network

generating algorithms, the preferential attachment [17].

The modularity robustness analysis is performed as follows:

i) current network is divided into two modules, ii) the worst

upper (t̄/m) and lower (t/m) bounds are calculated using the

bounds algorithms, iii) once additional nodes with connections

to the existing nodes are introduced, the additional nodes

are distributed optimally to the existing two modules by

maximising the modularity, Q, iv) if the modularity is negative,

then we go to step i), otherwise we go to step ii) with the

updated network by the additional nodes and edges. In other

words, the worst bounds for the current module are calculated

until the module is broken down. Once it is broken down, then

a new modular structure is found and repeat the calculation.

The number of increasing nodes is roughly the same for

both networks. Fig. 6 shows the worst bounds histories for

both networks. The gap between the bounds for the scale-

free network becomes larger as time evolves and the initial

modular structure remains the same. The increasing gap with

time is mainly caused by the conservatism of the lower bound

calculation. On the other hand, the lower bound for the citation

network is not conservative and the gap between them is

very small once in a while, which implies there is a highly

dynamic mixing nature of the citation modularity. The citation

modules are not fixed but there exists a strong mixing and re-

organising force in the network, which seems quite normal in

an academic society with some narrow concentrated topics.

This is completely opposite to the modularity dynamics of

the scale-free network since the scale-free network always

maintains the original modular structure. In other networks,

these mixing forces and the modularity conservation energy

might be balanced in some ways.

IV. CONCLUSIONS & FUTURE WORKS

An efficient algorithm for the robustness analysis of network

modularity is developed. The algorithm calculates the lower

and upper bounds of robustness with respect to structural

perturbation of the network. The computational cost does not

increase exponentially with the number of nodes. Hence, the

bounds for a time-varying network, i.e., nodes alterations, can

be obtained by applying the algorithm for each fixed time

without incurring a significant computational cost.

The tightness of the bounds is case dependent. Some

optimization algorithms can be further employed to obtain

a tighter bound with the cost of increasing computational

time. In general, however, the modular structure starts breaking

down from the submodules, which have a smaller number of

nodes. In most cases we are more interested in the robustness

analysis of small to medium size networks. Therefore, the

proposed algorithms can provide valuable information on

the fundamental robustness nature of modular structures of

complex networks in many practical cases.

The bound estimation algorithms assume that a modular

partition, which might not be optimal, is provided based on

the modularity definition. As long as the partition is not

significantly different from the true, it is unlikely that the

worst perturbation would enhance the true partition. However,

there are several degeneracy cases for finding the commu-

nity structures by maximizing the modularity as shown in

[18]. Whenever the robustness analysis shows that a network

module is fragile, then the modularity partition should be re-

investigated whether there exists a better partition.

As one of the important future works, network perturbations

corresponding to minimizing or maximising the modularity

could be identified as malicious attacks to the network or

defence mechanisms of the network. This leads to a min-

max optimization problem and it would be one of the ways

to design robust network structure with respect to external

disturbances.
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APPENDIX

DERIVATION OF (2)

Expand Qg as follows:

Minimize
∆A

Qg(s
∗,∆A)

=
1

1 + α

{

Q∗ +
1

4m

[

s
∗T ∆11s

∗ − 1

2m(1 + α)

×
(

2s∗T
kδ

T
k s

∗ + s
∗T

δkδ
T
k s

∗ − αs
∗T

kk
T
s
∗

)]}

.

For a fixed α, the minimisation problem is reduced to

Minimize
∆11∈D

q(∆11) := s
∗T ∆11s

∗

− 1

2m(1 + α)

(

2s∗T
kδ

T
k s

∗ + s
∗T

δkδ
T
k s

∗

)

.

Re-arrange

∆11s
∗ =











d
T
1

d
T
2
...

d
T
n











s
∗ =











s
∗T

d1

s
∗T

d2

...

s
∗T

dn











=
(

In ⊗ s
∗T
)











d1

d2

...

dn











,

where d
T
i is the i-th row of ∆11, In is n× n identity matrix,

and ⊗ is the Kronecker product. As ∆11 is a symmetric matrix

and n2 elements of di for i = 1, 2, . . . , n are not completely

independent but only n(n − 1)/2 elements are independent.

By defining a matrix L appropriately, the following can be

found:











d1

d2

...

dn











:= L















d
2..n
1

d
3..n
2
...

d
(n−1)..n
n−2

d
n..n
n−1















= Ld̃v,

where d
j..n
i is the vector only taking the elements from j-

th to n-th elements of di for i = 1, 2, . . . , n − 1 and j =
2, 3, . . . , n − 1.

In addition, each element of d̃v cannot be freely +1 (add

edges) or -1 (remove edges) but it can be only +1 or -1 if the

corresponding element of A is 0 (no edge) or 1 (pre-existing

edge). In order to restrict each element of d̃v to 0 (no change)

or 1 (change: remove the edge if there is an edge or add an

edge if there is no edge) without considering the corresponding

element value of A, define a diagonal matrix, Av , composed

from the element of A, i.e., aij ,

Av := diag [f(a12), f(a13), . . . , f(a1n),

f(a23), f(a24), . . . , .f(a2n),

. . . , f(a(n−2)(n−1)), f(a(n−2)n), f(a(n−1)n)
]

,

where f(aij) is equal to -1 for aij = 1 or 1 for aij = 0, for

i = 1, 2, . . . , n − 1 and j = 2, 3, . . . , n. Then,










d1

d2

...

dn











= Ld̃v := LAvdv,

Fig. 7. Worst perturbation: two topological cases

where dv is the element of Dv and Dv is the set of n(n−1)/2
dimensional vectors, whose element is either 0 or 1. Hence,

∆11s
∗ =

(

In ⊗ s
∗T
)

LAv dv

and

δk = ∆111 =
(

In ⊗ 1
T
)

LAv dv.

Finally, the minimization problem is reposed as follows:

Minimize
dv∈Dv

q(dv) = a
T
dv − d

T
v Bdv, (5)

where

a :=

[

s
∗T
(

In ⊗ s
∗T
)

L − s
∗T

ks
∗T
(

In ⊗ 1
T
)

L

m(1 + α)

]

Av,

B :=
AT

v LT
(

In ⊗ 1
T
)T

s
∗
s
∗T
(

In ⊗ 1
T
)

LAv

2m(1 + α)
.

As B is a rank one matrix,

Minimize
dv∈Dv

q(dv) = a
T
dv − d

T
v be

T
dv,

where B = be
T , each element in b is the magnitude of

each row vector of B and e is the unit vector spanning the

one-dimensional row space of B. Note that B is symmetric

and b and e are parallel. Hence, (2) is obtained. �

INEQUALITY FOR θ1

Proposition A.1: θ1 and θ2 are related to each other as θ2 =
π + θ − θ1 for θ + θ1 + θ2 > π or θ2 = π − θ − θ1 otherwise,

where θ is the angle between a and −b. θ1 is in the range

between θ1 and θ̄1, where

θ1 := min(θ1) = cos−1

(
∑

i∈M̄ ai

a
√

t

)

,

which is greater than or equal to zero, M̄ is the index set

whose elements are the indices of the first t-number of largest

elements in a,

θ̄1 := max(θ1) = cos−1

(
∑

i∈M ai

a
√

t

)

,

which is less than or equal to π, and M is the index set whose

elements are the indices of the first t-number of smallest
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elements in a.

Proof: As shown in Fig. 7, without loss of generality dv

is assumed to be in the plane formed by a and b as the

perpendicular component of dv to the plane does not have

any effect on the value of q(dv). There are two geometrical

cases for θ2, i.e., θ2 = π + θ − θ1 for θ + θ1 + θ2 > π or

θ2 = π − θ − θ1 otherwise. By the definition, θ1 is given by

θ1 = cos−1

(

a
T
dv

a
√

t

)

,

and cos(θ1) is a monotonically decreasing function for

θ1 ∈ [0, π]. Hence, for a fixed t, i.e., the number of 1’s in dv ,

the minimum or the maximum of θ1 occurs at the summation

of the maximum or the minimum t-number of elements in a. �

QUARTIC EQUATION

Proposition A.2: q(dv) in (3) is equivalent to

Minimize
θ1∈[θ

1
,θ̄1]

q(θ1) = a
√

tx − bt(x cos θ ±
√

1 − x2 sin θ)2,

where x = cos θ1, and the following inequality is satisfied if

θ1 takes any values between θ1 and θ̄1:

min q(θ1) ≤ min q(dv).

Proof: The magnitude of dv is
√

t and (3) becomes

q(dv) = a
√

t cos θ1 − bt cos2 θ2.

Substitute θ2 = π ± θ − θ1 into the above

q(θ1) = a
√

t cos θ1 − bt cos2 (±θ − θ1)

= a
√

t cos θ1 − bt (cos θ cos θ1 ± sin θ sin θ1)
2
,

and sin θ1 =
√

1 − cos2 θ1 for θ1 ∈ [θ1, θ̄1]. θ1 is allowed to

be any angle between θ1 and θ̄1. However, not all angles in

[θ1, θ̄1] are feasible by dv as its elements are restricted into

either 0 or 1. Hence, min q(θ1) is always less than or equal

to min q(dv). �

Proposition A.3: Let q(θ∗1) = min q(θ1) and θ∗1 is equal

to θ1, θ̄1 or cos−1 x∗, where x∗ is the solution of quartic

polynomial equation:
∑4

i=0 wix
i = 0, whose coefficients are

given by the following two cases:

w4 = 4b2t2
[

4 sin2 θ cos2 θ +
(

2 cos2 θ − 1
)2
]

,

w3 = −4abt
√

t
(

2 cos2 θ − 1
)

,

w2 = −16b2t2 sin2 θ cos2 θ + a2t2 − 4b2t2
(

2 cos2 θ − 1
)2

,

w1 = 4abt
√

t
(

2 cos2 θ − 1
)

,

w0 = 4b2t2 sin2 θ cos2 θ − a2t,

or

w4 = 4b2t2
(

2 cos2 θ − 1
)2

,

w3 = −4abt
√

t
(

2 cos2 θ − 1
)

,

w2 = a2t2 − 4b2t2
(

2 cos2 θ − 1
)2

,

w1 = 4abt
√

t
(

2 cos2 θ − 1
)

,

w0 = 4b2t2 sin2 θ cos2 θ − a2t,

and x ∈ [−1, 1].

Proof: θ∗1 will occur either on the boundary, i.e., θ1 or θ̄1, or

the angles in (θ1, θ̄1), where the derivative of q(θ1) is equal

to zero.

dq(θ∗1)

dθ1
=

dq(θ∗1)

dx

dx

dθ∗1
= −

dq(θ∗1)

dx
sin θ∗1 = 0.

Immediate solutions from sin θ∗1 = 0 are θ∗1 = 0 or π and they

would be either on the boundary of the domain of θ1 or outside

of the boundary. Hence, they are automatically considered

when the boundary values are checked. The remaining θ∗1
values to be checked are the ones making the derivative equal

to zero. Take the derivative

dq(θ)

dx
= a

√
t − 2bt

(

2 cos2 θ − 1
)

x

∓ 2bt sin θ cos θ
√

1 − x2 ± 2bt sin θ cos θ
x2

√
1 − x2

= 0.

After squaring both sides and some algebraic manipulations,

which is tedious and omitted, it leads to the two quartic

polynomials in x. �

INEQUALITY FOR THE UPPER BOUND

Proposition A.4: The minimum of q(dv) is bounded above

by

min
dv∈Dv

q(dv) ≤ q(d̄v),

where

q(d̄v) =
[

ᾱa
T
1 Avd̄v + p(d̄v)

]

× (1 + ᾱ)−1,

p(dv) :=
(

a
T
1 − ã

T
2

)

Avdv − d
T
v b̃b̃

T
dv,

a
T
1 := s

∗T
(

In ⊗ s
∗T
)

L,

ã
T
2 := s

∗T
ks

∗T
(

In ⊗ 1
T
)

L × m−1,

b̃ := AT
v LT

(

In ⊗ 1
T
)T

s
∗ × (

√
2m)−1,

d̄v := argmin
dv∈Dv

p(dv),

ᾱ := 1
T Avd̄v.

Proof) Recall (5) in Appendix and rearrange it as follows:

Minimize
dv∈Dv

q(dv) =

[

a
T
1 − ã

T
2

(1 + α)

]

Avdv − d
T
v

b̃b̃
T

(1 + α)
dv

=
1

1 + α

{

[

(1 + α)aT
1 − ã

T
2

]

Avdv − d
T
v b̃b̃

T
dv

}

.

min p(dv) is the minimizing solution of only parts of q(dv)
and the corresponding solution, (d̄v, ᾱ), is substituted into

q(dv), which is equal to q(d̄v). Hence, min q(dv) ≤ q(d̄v). �

Proposition A.5: The following inequality is satisfied:

q(d̄v) ≤ q(d̃v),

where

d̃v = T
[

argmin p̂(d̂v)
]

,
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i.e., T (·) is the operator to transform d̂v in Dvv to the

corresponding dv in Dv . For example, for l = 3, d̃v = [1 0 0],
then d̃v = T (d̂v) = T ([1 0 0]) = [1 1 0]T .

Proof) As d̃v is transformed from the minimizing solution

of p̂(d̂v) by T (·). By the definitions, p(d̃v) is greater than

or equal to min p(dv). Hence, q(d̃v) is also greater than or

equal to q(d̄v). �

PROOF OF THEOREM 2.3

As each submodule is part of a whole network, the modu-

larity definition for a submodule is as follows [2]:

Maximize
s∈S

Q(s, Asg) =
1

4m
s
T Bsg

s,

where

Bsg = Asg − 1

2m
k

sg
k

sgT − diag
[

k̃sg
1 , k̃sg

2 , . . . , k̃sg
ng

]

+
1

2m
diag

[

ksg
1 1

T
k

sg, ksg
2 1

T
k

sg, . . . , ksg
ng
1

T
k

sg
]

,

Bsg is scaled by the last two terms in order to evaluate the

modularity in the whole network, Asg is the adjacency matrix

including only the concerned submodule,

k̃sg
i =

ng
∑

j=1

Asg
ij ,

for i = 1, 2, . . . , ng ,

k
sg =

[∑n

j=1 Al1j ,
∑n

j=1 Al2j , . . . ,
∑n

j=1 Alng j

]T
,

{

l1, l2, . . . , lng

}

are the indices including the nodes that be-

long to the submodule, and ng is the number of nodes in the

submodule. Re-arrange Q for submodule

Q(s, Asg) = s
T 1

4m

(

Asg − 1

2m
k

sg
k

sgT

)

s

− 1

4m
s
T









s1k̃
sg
1

s2k̃
sg
2

. . .

sng
k̃sg

ng









+
1

8m2
s
T diag











ksg
1 1

T
k

sg

ksg
2 1

T
k

sg

...

ksg
ng
1

T
k

sg











s

= s
T 1

4m

(

Asg − 1

2m
k

sg
k

sgT

)

s − s
T diag[s]

4m
k̃

sg

+ k
sgT

diag[s]
(

s1
T
)

8m2
k

sg,

where k̃
sg is the vector constructed by k̃sg

i . Note that pertur-

bations only occur in the submodule, i.e. Asg
g = Asg + ∆11,

hence

k
sg
g = k

sg + δk and k̃
sg
g = k̃

sg + δk.

Then,

Q(∆11) = s
∗T 1

4mg

(

Asg
g − 1

2mg

k
sg
g k

sgT
g

)

s
∗

− s
∗T diag[s∗]

4mg

k̃
sg
g + k

sgT
g

diag[s∗]
(

s
∗
1

T
)

8m2
g

k
sg
g ,

where s
∗ = argmaxQ(s, Asg). The worst-case analysis prob-

lem is given by

Minimize
∆11∈Dsg

Q(∆11) = s
∗T 1

4mg

(

Asg
g − 1

2mg

k
sg
g k

sgT
g

)

s
∗

− s
∗T diag[s∗]

4mg

k̃
sg
g + k

sgT
g

diag[s∗]
(

s
∗
1

T
)

8m2
g

k
sg
g ,

where the first term in the right hand side has exactly the same

form as the one in the whole network and mg can be written

as

2mg = 1
T Ag1 = 1

T A1 + 1
T ∆111 = 2m(1 + αsg),

and αsg = δsg
m /m. From the same logic as before, there are

two extreme perturbations and

−m̃sg

m
≤ αsg ≤ nsg(nsg − 1)

2m
− m̃sg

m
.

With two additional terms in the right hand side, the worst

sub-modularity is

{

Qsg
g

}worst
(αsg) =

1

1 + αsg

[

Q∗ +
αsg (ksg · s∗)2
8m2(1 + αsg)

+
qsg∗

4m

]

,

and the robustness analysis sub-problem is given by

Minimize
dv∈D

sg
v

qsg(dv) =

[

s
∗T
(

Ing
⊗ s

∗T
)

Lsg − s
∗T

k
sg

s
∗T
(

Ing ⊗ 1
T
)

Lsg

m(1 + αsg)

]

Asg
v dv

− d
T
v

AsgT
v LsgT

(

Ing
⊗ 1

T
)T

s
∗
s
∗T
(

Ing
⊗ 1

T
)

LsgAsg
v

2m(1 + αsg)
dv

− s
∗T diag[s∗]δk + k

sgT
g

diag[s∗]
(

s
∗
1

T
)

2m(1 + αsg)
k

sg
g ,

where αsg , Lsg and Asg
v are defined similarly to α, L and Av ,

respectively. The last two terms in the right hand side become

s
∗T diag[s∗]δk = 1

T
δk = 2δsg

m = 2αsgm,

and

k
sgT
g

diag[s∗]
(

s
∗
1

T
)

2m(1 + αsg)
k

sg
g =

(

k
sgT + δ

T
k

)

1 (ksg + δk)

2m(1 + αsg)

=

(

k
sgT + δ

T
k

)

(2msg + 2δsg
m )1

2m(1 + αsg)
=

2 (msg + αsgm)
2

m(1 + αsg)
,

where msg = 1
T
k

sg/2 and δsg
m = 1

T δk/2. �
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