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Abstract—Many-core systems are envisioned to fulfill the
increased performance demands in several computing domains
such as embedded and high performance computing (HPC).
The HPC systems are often overloaded to execute a number of
dynamically arriving jobs. In overload situations, market-inspired
resource allocation heuristics have been found to provide better
results in terms of overall profit (value) earned by completing the
execution of a number of jobs when compared to various other
heuristics. However, the conventional market-inspired heuristics
lack the concept of holding low value executing jobs to free the
occupied resources to be used by high value arrived jobs in order
to maximize the overall profit. In this paper, we propose a market-
inspired heuristic that accomplish the aforementioned concept
and utilizes design-time profiling results of jobs to facilitate
efficient allocation. Additionally, the remaining executions of the
held jobs are performed on freed resources at later stages to
make some profit out of them. The holding process identifies
the appropriate jobs to be put on hold to free the resources
and ensures that the loss incurred due to holding is lower than
the profit achieved by high value arrived jobs by using the free
resources. Experiments show that the proposed approach achieves
8% higher savings when compared to existing approaches, which
can be a significant amount when dealing in the order of millions
of dollars.

Keywords—Many-core, High Performance Computing, Re-
source allocation, Profit, Value curves.

I. INTRODUCTION

Many-core architectures are widely adopted to fulfill the
need in various computing fronts such as general purpose
and high performance computing (HPC) [1], [2]. These ar-
chitectures enable parallel processing of various processes on
different cores and thus achieve high performance. In HPC,
the many-core resources can be arranged in several possible
configurations. The bottom part of Figure 1 shows one possible
configuration of a many-core HPC platform. The platform
contains several nodes (Node 1,...,Node N), where each node
contains a set of processing elements (PEs) connected by an
on-chip interconnection network [2], [3]. The PEs are also
referred to as processing cores. The nodes of the platform
can be connected via different communication infrastructures
such as conventional bus, PCI express, network switch, etc., to
facilitate communication between the cores of different nodes.
Depending upon the performance requirement and hardware
cost, an appropriate infrastructure can be employed.

It has been well proven that resource allocation is one of
the most complex problems in large many-core systems, and in
general it is considered NP-hard [4]. Therefore, a well-tuned
search algorithm needs to evaluate hundreds of thousands of
distinct allocations before it finds one solution that meets the
systems performance requirements. Since such evaluation is
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Fig. 1. Jobs arrival and resource allocation for them on a many-core HPC
platform.

expected to take a long time, maybe hours to days, it cannot
be applied to find the solution quickly, which is desired in the
contexts of dynamic resource allocation for the jobs arriving
at different unknown moment of times. A job may contain a
number of tasks or processes. Further, the search algorithms
normally consider static workload, e.g., a fixed number of jobs
known a priori, and thus cannot handle dynamic workload,
where unknown number of jobs may arrive at different moment
of times. The top part of Figure 1 shows jobs (e.g., JOB 1
and JOB m) having different arrival time. These dynamically
arriving jobs can be allocated to the platform resources by
employing light-weight run-time heuristics that can find an
allocation quickly.

Resource allocation process takes the list of unallocated
arrived jobs as input at some particular time and tries to
find an efficient allocation for each job based on current
platform status, i.e. availability of resources (cores). A platform
resource manager, as shown in Figure 1, keeps the updated
platform status and performs the resource allocation process by
employing efficient light-weight run-time heuristics. Extensive
literature exists for such run-time heuristics [1]. However, in
overload situation where demand for available resources is
higher than the supply, these heuristics can lead to starvation,
missed deadlines and reduced throughput [5], [6]. In such
situation, it becomes difficult to decide what jobs to discard
(or hold for later allocation) and what to enter into the system
when resources become available due to completion of a job.



To handle the overload situation, notion of values (eco-
nomic or otherwise) of the jobs have been introduced by
previous researchers to define the importance level of jobs [5],
[6]. For example, in a time-critical system, jobs are supposed to
accomplish certain services upon execution, and thus each job
has a particular importance to the overall system functionality.
This helps in deciding to hold the low value jobs for late
allocation and allocating limited resources to the high value
jobs. The value of a job can change over time to reflect
the impact of the computation over the business processes.
For example, finishing a computation earlier may result in
increasing earnings (achieved profit) for a specific product,
whereas a late finish may result in low earnings. Such a
variation in the value of a job adds complexity to the allocation
process.

The notion of values of the jobs has led to the investigation
of several market-inspired or value-based heuristics for various
computing platforms such as clusters, distributed databases,
grids, etc. [7], [8]. These heuristics use available platform
capacity measured in terms of bids within an auction-like
allocation process and try to find allocations resulting in high
system performance in terms of profit or value. In Figure 1, to
initiate auction-like process, the bids from different computing
nodes (Node 1, ..., Node N) in terms of available processing
power (cores) can be placed to the platform resource manager
and the node having the highest bid can be chosen to allocate
the current highest value job to maximize the value returned by
system. Existing market-inspired heuristics use several similar
concepts, but they do not employ the concept of holding low
value executing jobs to free the occupied resources to be
used by high value arrived jobs in order to maximize the
overall profit. Additionally, they do not employ any design-
time profiling of the jobs, which can facilitate efficient resource
allocation to the jobs.

Contribution: This paper addresses shortcomings of exist-
ing market-inspired heuristics by proposing 1) a design-time
profiling concept for jobs obtained from the historical data to
facilitate efficient dynamic allocation, and 2) the concept of
holding low value executing jobs for later allocation in order
to allocate freed resources by holding to the high value arrived
jobs. Since the jobs put on hold, i.e. preempted jobs, are tried
to be allocated later on, our approach can also be referred
to as preemptive or suspend/resume approach. The holding
(preemption) process in initiated when the bids received by
platform resource manager from different nodes (Node 1, ...,
Node N in Figure 1) are zero in terms of number of free cores
and none of the arrived jobs can be allocated to the platform
cores. The holding process selects the appropriate low value
executing jobs to stop their execution such that holding will
lead to improved overall profit. The remained executions of
the held jobs are resumed (performed) on freed resources at
later times if the jobs still hold some values. The profiling
and holding/resuming concept can be easily augmented into
the existing market-inspired heuristics in order to achieve
improved overall profit. We evaluate the proposed approach
for HPC workloads containing dynamically arriving jobs and
observe improvement in the overall profit when compared to
existing approaches. The HPC workloads are obtained from
High Performance Computing Center Stuttgart (HLRS) of the
University of Stuttgart as the historical data over the last year,
and many-core HPC system and heuristics are modelled to
fulfill the needs of a real HPC system to be deployed in later

stages.

The remainder of the paper is organized as follows. In
Section II, related works regarding the dynamic resource allo-
cation involving market concepts are discussed. The models
of job, value of a job and HPC platform along with the
problem definition are introduced in Section III. The proposed
market-inspired approach is discussed in Section IV. Section
V presents the experimental results and Section VI concludes
the paper.

II. RELATED WORK

Resource allocation on many-core systems is a well studied
topic. The need for dynamic resource allocation arose to
handle dynamic workloads, which is encountered in several
computing systems such as embedded and HPC. The dynamic
allocation process normally employ a heuristic following some
fundamental optimization procedure to identify an efficient
allocation at run-time. Several heuristics have been proposed
to accomplish this aim [1], [9]. Some fundamental procedures
employed in the heuristics are iterative hierarchical allocation
to reduce energy consumption while satisfying the required
Quality of Service (QoS), incremental dynamic allocation,
hybrid mapping to perform intensive computations at design
time and using the design-time analysed results at run time,
etc. [10]. In overload situation, as described earlier, these
heuristics can lead to starvation, missed deadlines, and reduced
throughput. Further, these heuristics do not take into account
any notion of values of jobs to users.

Market-inspired resource allocation heuristics employing
notion of values representing importance of jobs have been
studied to perform well in overload situations [7], [11], [12].
Some researchers have considered fixed value of a job [13],
whereas others consider values that can change with time,
described with so-called value curve of the job [5], [6]. In such
curve, the value of a job normally decreases with computation
time and reflects the impact of computation over the business
process. It has been shown that using value curves instead of
fixed values of jobs gives greater market efficiency in the long
run [14]. During the course of allocation, the resource manager
receives the list of unallocated jobs and the bids obtained from
different nodes (Figure 1) to identify appropriate allocation for
each job [15].

The employed heuristic can allocate the jobs in several
ways. For example, the highest value job to the node having
highest bid, which can also be referred to as bidding based on
highest value [13]. The problem with this approach is that a
high value job might require large amount of resources, and
thus leaving less resources for rest of the jobs. A remedy to
this problem could be to allocate resources first to several
small size jobs requiring less resources, but a higher profit
cannot be guaranteed as the values of jobs requiring more
resources and having higher values might become very low or
zero by the time resources are available. In order to overcome
such problems, bidding based on highest value density was
introduced [16], where tasks value divided by the amount of
required computational homogeneous resources is considered
as the value density. Variants of value density based approaches
have also been proposed [17]–[19]. Another heuristic termed
as minimum value remaining has been proposed to ensure
that the job that is going to lose its value soon, i.e., has
minimum remaining value, should be allocated first [20]. The
remaining value is calculated as the area under the value



curve from the current time to the time when its value is
zero. These approaches are similar to Backfilling approaches
in cluster schedulers, where small jobs are moved forward
in the prioritized job queue to utilize the idle computers or
cores [21], [22]. These approaches might not guarantee higher
overall profit than the bidding based on the highest value as
higher value jobs might be postponed for later allocation due
to their low value density or high minimum remaining value.
Further, they do not use design-time profiling results and lack
the concept of holding low value executing jobs to allocate the
freed resources to high value jobs.

In contrast to the above heuristics, our approach uses
profiling results and employ the concept of holding the low
value executing jobs for allocating high value arrived jobs and
resuming the held job back to operation. Further, some of
existing heuristics consider a uni-process system (e.g., [19])
and a fixed value of each job (e.g., [13]). Our approach
is applicable to many-core systems and jobs having varying
values over time, which is desired for the modern HPC
systems.

III. SYSTEM MODEL AND PROBLEM DEFINITION

We model our workload and many-core HPC platform
based on the typical industrial HPC scenario. This section
provides a brief overview of the workload and platform model
along with the problem definition.

A. Job Model

An HPC workload consists of a number of jobs, where each
job j is modelled as a directed graph TG = (T ;E), where T
is the set of tasks of the job and E is the set of directed
edges representing dependencies amongst the tasks. Figure
2 (a) shows an example job that contains 7 tasks (t1,..,t7)
connected by a set of edges. Each task t ∈ T has attributes
execution time (ExecTime) and memory requirement, when
mapped on a core. The ExecTime for each task is considered as
its worst-case execution-time (WCET) and remains fixed. Each
edge e ∈ E represents data that is communicated between the
dependent tasks. A job j is also associated with its arrival time
ATj . The jobs of the HPC workload are obtained from our
project partner High Performance Computing Center Stuttgart
(HLRS) and are based on the historical data.

B. Value Curve of a Job

The value curve represents the value forecast related to
the completion of a given computation over time. Therefore,
for each job j, the value curve V Cj is a function of the
value of the job to the user depending on the completion
time of the job. The value curve is usually a monotonically-
decreasing function and trends towards zero with the increasing
completion time, as shown in Figure 2 (b), where appropriate
benefits (profits or values, on vertical axis) for completing the
job at different times (on horizontal axis) are shown. A similar
value curve model has been used in several works reported
in the literature, e.g., [5], [6], [23], [24]. We assume that
value curve of each job of the HPC system is given, which
is generally perceived from the business unit by following an
economic model. The description of the economic model is
orthogonal to our approach and out of scope of this paper.

The value curves facilitate bidding based on the available
processing capacity on different platform nodes computed as
bids towards maximizing the profit for each node. For example,
a node with a high available processing capacity can bid for the
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Fig. 2. An example job model and its value curve.

maximum value (500 in Figure 2 (b)) to maximize its profit.
This also helps to finish the job as soon as possible, e.g. in
15 time-units if bid is for 500, enabling faster release of the
occupied resources that can be used for future incoming jobs.

C. Many-core HPC Platform Model

The HPC platform HP contains a set of nodes
(PG1, ..., PGN ), where each node contains a set of homo-
geneous cores (PEs). A node n is represented as a directed
graph PGn = (Cn;Vn), where Cn is the set of cores of the
node and Vn represents the connections amongst the cores.
The bottom part of Figure 1 shows an example HPC platform.
The communication amongst the cores of a node is established
by employing dedicated connections.

A platform resource manager (as shown in Figure 1) is
used to manage the platform resources and perform resource
allocation for the arrived jobs. During system operation, the
manager keeps up to date status of the platform resources,
i.e., which resources are busy and which are idle, such that
accurate and efficient allocations can be made. In our case,
the platform status is maintained as the number of available
(idle) cores at different nodes and resource allocation has also
been referred to as core allocation.

D. Problem Definition

In HPC system, jobs (j1, ..., jM ) arriving at different mo-
ment of times need to be efficiently allocated on the resources
(cores) of the platform nodes (PG1, ..., PGN ) in order to
maximize the overall system profit P earned by servicing these
jobs. It is assumed that the tasks of a job are allocated to
only one node in order to avoid huge communication delay
between different nodes. To summarize, the problem targeted
in this paper considers the following set of input, constraints
and objective.

• Input: Workload, i.e., Job set (j1, ..., jM ), Value curve
of each job V Cj , Arrival time of each job ATj

(j ∈ 1, . . . ,M ), Cores of the HPC platform nodes
(PG1, ..., PGN ).

• Constraints: Limited resources (cores) on each node
of HP .

• Objective: Maximize overall profit P .

IV. PROPOSED MARKET-INSPIRED APPROACH

The proposed market-inspired approach is presented in
Figure 3. It consists of two main steps: 1) design-time (off-line)
profiling of the jobs obtained from the historical data, and 2)
run-time (on-line) resource allocation for the jobs considering
their arrival time and profiled results. The platform resource
manager is invoked to perform the resource allocation process
for the arrived jobs.
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ALGORITHM 1: Design-time Profiling

Input: Job j, HPC Platform HP .
Output: Minimum response times and corresponding

allocations at different number of used cores.
Find maxUsedCores by j;
for usedCore = 1 to maxUsedCores do

Find allocation using usedCore cores that provides
minimum response time by GA [25];

end
return response times and allocations;

A. Design-time Profiling

For each job in the workload, the profiling step estimates
the performance (expressed as response time) when utilizing
different amount of computing power in terms of number of
cores. The response time of a job can also be referred to as
the completion time after the job has been allocated resources
for execution, i.e., different between the end time and start
time of the job. Algorithm 1 describes the profiling procedure
for a job. First, maximum number of used cores by the job
(maxUsedCores) is found, which is equal to the number of
tasks in the job. Since each task can occupy only one core, the
maxUsedCores cores can exploit all the parallelism present
in the job and thus there is no point of allocating more cores
than the number of tasks in the job. To estimate the response
time at different number of used cores, we follow a genetic
algorithm (GA) based evaluation, similarly as in [25]. The
same GA approach is run repeatedly by providing the number
of cores as input in order to find an efficient allocation leading
to minimal response time. Choosing the minimal response time
value helps us to complete the job as soon as possible.

Figure 4 shows some outcomes of the profiling step for
the example considered job in Figure 2. The different number
of used cores and the corresponding minimal response time
values are plotted on the right vertical (# Cores) and horizontal
(time) axis, respectively. The response time values are com-
puted by assuming worst-case execution times of the tasks in
the job, so that the most pessimistic run-time system behaviour
can be taken into account. The profiling output (in red color) is
plotted along with the given value curve (in blue color), which
provide enriched information for the job to perform efficient
run-time resource allocation. Similar profiling is performed for
all the jobs in the workload. For each job, this step associates
information about the required computing power (# Cores)
to achieve a certain value by executing the job over a fixed
amount of time. These information along with the allocation
decisions at different number of used cores are stored (Profiling
Results & Value Curves as shown in Figure 3) to be used for
performing efficient run-time resource allocation.

B. Run-time Resource Allocation

In order to allocate platform resources to the incoming jobs
at run-time, the platform resource manager is invoked to find
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Fig. 4. Profiling output.

an allocation. The manager takes the profiling results of the
jobs from the storage along with their value curves and arrival
times as input, and identifies profit maximizing allocation for
each job based on the number of available cores at different
nodes in the platform. This helps to achieve high overall profit
by servicing (completing) different jobs. For each job, it is
assumed that all of its tasks will be allocated to one node in
the platform, i.e., the tasks of a job cannot be allocated to
more than one nodes in order to avoid huge communication
delay between two nodes. In case of a newly arrived job for
which profiling result is not available, the profiling step in
employed followed by the run-time resource allocation step
based on the available number of cores. In such a case, the
profiling step needs to identify an allocation for the available
number of cores, which can be done in the order of millisecond
or seconds. Since this step is quite fast as compared to tasks
execution times that are in the order of minutes or hours, it
brings only a small timing overhead that can be neglected.

The proposed resource allocation heuristic followed by
the manager is summarized in Algorithm 2. The profiling
results used as input are the minimum response time values
achieved at different computing power (number of used cores)
and the corresponding allocation decisions. At each time
step, the heuristic checks for three events as follows: 1) any
already allocated job(s) finish execution to update the platform
resources, 2) any job(s) arrive into the platform to put into a
job queue, and 3) job queue contains job(s) having non-zero
values at current time step to perform resource allocation for
such jobs.

To perform resource allocation for all valuable queued jobs
(i.e., jobs having positive values), all of them (counter = 0
to JobQueue.size()) are tried to be allocated on the platform
resources as along as any resource is available or profit can
be made by holding some executing jobs. First, bids (in
terms of number of available cores) from different platform
nodes are collected, then the maximum bid (maxBid) and the
corresponding node is selected. Choosing such a node helps to
achieve better load balancing amongst nodes and thus better
resource utilization. In case more than one nodes have the
same amount of bid, any of them is chosen. If the estimate of
maxBid is greater than zero (maxBid > 0), i.e., at least one
resource is available in the platform, the profits of jobs utilizing
maxBid resources are computed and the job leading to maxi-
mum profit is selected (maxProfitableJob) to be allocated to
resources of the node having maxBid resources provided the
maximum profit is a positive value (profit > 0). The profit
computation for each job considers the exact number of cores
to be used by the job and its value at the current time step.
If maxBid is greater than the number of cores to be used to
achieve maximum profit (maximum parallelism exploitation),
the latter one is chosen as the exact number of cores to be used;
otherwise the former one is chosen. The resource allocation



ALGORITHM 2: Run-time Resource Allocation

Input: Incoming Jobs with arrival times, Value curves
of Jobs with profiling results, HPC Platform
HP .

Output: Resource Allocation for Incoming Jobs.
for each time step do

if allocated job(s) finish execution then
Update platform resources;

end
if job(s) arrive then

Put the job(s) in JobQueue;
end
if JobQueue contains job(s) having positive values
then

counter = 0;
repeat

Collect bids from different nodes;
Select maxBid from bids;
if maxBid > 0 then

Compute profits of jobs by utilizing
maxBid resources;
Select maxProfitableJob and its
profit;
if profit > 0 then

Allocate resources of maxBid node
to maxProfitableJob;
Update platform resources;

end
else

//hold low value jobs and allocate later;
Find executing jobs to hold in the
best suitable node for recently arrived
maxProfitJob (from JobQueue) and
max hold profit by Algorithm 3;
if holding profitable (max hold profit >
0) then

Hold jobs jobs to hold and put in
JobQueue for later allocation;
Release used resources by held jobs;
Allocate resources of
best suitable node to
maxProfitJob;
Update platform resources;

end
end
counter++;

until counter != JobQueue.size();
end

end

on the exact number of cores of the node containing maxBid
cores is done based on the allocation achieved on the same
number of cores during design-time profiling. The allocation
process allocates tasks within a job to the cores (PEs) of a
node. The platform resources are updated after each allocation
process to have up to date resources’ availability information
for the next allocation instance. Such information helps to
achieve an accurate and efficient allocation.

In case no resource is available in the platform, i.e.
maxBid = 0, it is checked if any profit can be made by holding
low value executing jobs that are supposed to lead to small

ALGORITHM 3: Jobs Holding Heuristic

// max hold profit = 0;
for each recently arrived job j ∈ JobQueue do

Find executing jobs in each platform node;
Sort executing jobs in each node in ascending order
based on their start times;
for each node n of platform do

for each executing job of n do
Find net profit (Equation 1) by holding
executing job;
if net profit > max hold profit then

max hold profit = net profit;
maxProfitJob = j;
best suitable node = n;
Add executing job to list jobs to hold;

end
end

end
end

amount of profit. For a profitable holding, max hold profit
is greater than zero (max hold profit > 0). The jobs hold-
ing logic in presented in Algorithm 3, which provides the
executing jobs to hold in the best suitable node, and the
maximum profitable queued job (maxProfitJob) along with the
achieved profit (max hold profit) by utilizing the freed cores
of the held jobs. The holding process is carried out for the
recently arrived jobs (i.e., at current time step) to avoid the
same process for all the queued jobs at each time step.

The holding process works as follows. For each queued
job that has arrived at current time step, first, executing jobs
of each platform node are found and sorted based on their start
time of the execution. Then, the net profit made by holding
the executing jobs in each node is computed by Equation 1,
where Profit is calculated by allocating the current queued
job on the freed cores and Loss is the earlier profit achieved
by the executing jobs to hold.

net profit = Profit− Loss (1)

The allocation uses either all the freed cores or some of
them. If the number of freed cores is higher than the number
of cores required by the job to make the maximum profit, the
later one is chosen as the number of cores to be used; otherwise
the former one is chosen for the same. Sorting the executing
jobs based on their start times helps us to choose, first, the
job having the latest start time, then the latest start time job
along with the second latest start time, then latest and second
latest start time jobs along with the third latest start time, and
so on. Such consideration helps to identify and hold the jobs
that have started recently and avoids holding of jobs that have
been executed for a long time. This process tries to identify the
most profitable instance in terms of jobs to hold. For example,
holding the latest start time job might not be profitable, but it
might be profitable to hold the latest and second latest start
time jobs together. In such cases, the profitable instance would
be only when both the latest and second latest start time jobs
are put on hold. Further, this also avoids considering all the
possible job combinations that might be quite huge for large
number of executing jobs in a node.
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Holding Demonstration: Figure 5 demonstrates the hold-
ing process, where three platform nodes are executing different
set of jobs at the current time, e.g., Node 1 is executing jobs
j1, j4 and j7. The executing jobs started at different moments
of time. At the current time, job j8 has arrived and no resource
is available in the platform, therefore, the holding process tries
to identify the set of jobs to be put on hold. The table on the
right hand side shows the jobs to hold in various nodes and
the corresponding net profit by allocating the freed resources
to job j8. It can be realized that sometimes the net profit (in
appropriate currency) by holding two jobs may be higher than
that of one job, e.g., 100 by holding j7 and j4, whereas only
40 by holding j7. The net profit can also be negative (e.g., -80
by holding j5), representing a loss if jobs are put on hold, i.e.,
the achieved profit is less than the loss. The most profitable
holding instance is to hold the jobs j5 and j2 of Node 2, which
results in a net profit of 200. The holding process will choose
this instance.

If holding is profitable (max hold profit > 0), the jobs
jobs to hold of node best suitable node are put on hold
for later allocation and used cores are released. Then, the
incoming job is allocated to the freed cores based on the
profiling allocation decisions and resources are updated. The
holding process helps to achieve a higher profit for some jobs,
whereas jobs on hold achieve lower profits due to allocation
at later time steps with decreased values of the jobs. In case
holding is not profitable, the recently arrived jobs remain in the
job queue and resource allocation for them is performed later
when resources become available by completing the executing
job(s).

The allocation process also ensures that a queued job
having zero value at the current time step is dropped from the
queue as no profit can be made out of it. Further, the allocation
for a queued job that was put on hold starts from the hold
point (i.e., it is resumed) to ensure that only the fraction of
the job left after holding is executed, but not the whole job
from the beginning. The allocation process continues until all
the arrived jobs are allocated or dropped due to having zero
value while waiting in the job queue.

V. EXPERIMENTAL RESULTS

The proposed market-inspired heuristic has been imple-
mented in a C++ prototype and integrated with a SystemC
functional simulator. As a workload to evaluate the quality
of the heuristic, historical data of an industrial HPC system
at High Performance Computing Center Stuttgart (HLRS) has
been considered. The workload contains a set of jobs having
varying arrival time. Each job contains a set of tasks that have
known worst-case execution times (WCETs), which can be

TABLE I. APPROACHES CONSIDERED FOR COMPARISON

Approaches Abbreviation References

Simple Job Queuing SJQ Baseline
Maximum Value Queued Job maxV [13]

Maximum Value Density Queued Job maxVD [16]
Minimum Value Remaining Queued Job minVR [20]

Simple Job Queuing with Holding SJQH Proposed
Maximum Value Queued Job with Holding maxVH Proposed

Maximum Value Density Queued Job with Holding maxVDH Proposed
Minimum Value Remaining Queued Job with Holding minVRH Proposed

obtained via prior executions of tasks from the historical data.
The number of tasks in the jobs vary from 5 to 10.

The considered HPC platform model contains a set of 3
nodes, where each node consists of 9 cores. However, any
number of nodes and cores within them can be considered
based on the physical limitation of hardware integration. The
considered platform is modelled based on a working HPC
platform deployed in the HPC centre at University of Stuttgart.

The platform manager employs a heuristic to find an
allocation for each job of the workload by considering its
arrival time, given value curve and profiled information rep-
resenting the computing power (used number of cores) and
the corresponding allocation decision to achieve a certain
value by executing over a fixed amount of time. The profiling
information is achieved by employing the design-time profiling
step described in Section IV-A. The platform status (resource
availability) is also taken into account during the allocation
process.

We present results obtained from our proposed approach
to perform efficient resource allocation for the jobs in the
workload and compare them with various relevant existing
approaches reported in the literature, which are abbreviated in
Table I. In SJQ, the jobs are queued when no resource (core) is
available in the platform and they are processed in the queuing
order to allocate the freed cores at later time steps if they still
hold values. This approach is the simplest one and is consid-
ered as the baseline. In maxV, maxVD and minVR as well,
the jobs are put in queue when no platform core is available,
but the queued jobs are processed based on their value, value
density and the remaining value, respectively, when utilizing
available (or required) computing power (number of cores) of
highest bid node (maxBid node). The maxV approach chooses
the maximum value queued job first, whereas maxVD and
minVR approaches choose maximum value density queued job
and minimum value remaining queued job, respectively. The
value density of a job is computed by dividing the achieved
value by the number of used cores. This indicates that a job
providing high value and requiring less cores is allocated first,
which also leaves cores for later arriving jobs. The remaining
value of a job is calculated as the remaining area under the
value-time curve from the current time to the time when value
becomes zero. This signifies that the job that is going to loose
its value soon, i.e., has minimum remaining value, is chosen
first in the assumption that most of the jobs will be serviced
and some values will be achieved out of them. However, in
doing so, a high value job might have a very low value by the
time resources are available to perform the allocation process
for it. Therefore, it might result in low overall profit.

The proposed approach employs the holding logic to hold
the low value executing jobs to allocate the freed cores to high
valued arrived jobs. The variants of the proposed approach
when employing holding (H) are referred to as SJQH, maxVH,
maxVDH and minVRH, as tabulated in Table I. The SJQH,



TABLE II. PROFILING RESULTS.

Job Response time at different number of used cores
1 2 3 4 5 6 7 8 9

j1 86 43 29 23 19 17 15 15 15
j2 58 29 20 17 13 11 11 × ×

j3 83 42 28 22 22 22 × × ×

j4 74 37 26 25 25 × × × ×

maxVH, maxVDH and minVRH employ holding logic in
approaches SJQ, maxV, maxVD and minV, respectively. All
the approaches try to use the maximum bid node first, i.e.
the node having highest processing power, and thus inherently
employ load balancing. Further, it should be noted that all the
heuristics in Table I use the profiling results to make a fair
comparison between them.

A. Profiling Results

Table II shows the profiling results in terms of minimum
response time values at different number of used cores for
four jobs j1, j2, j3 and j4 of the considered workload. Similar
results are obtained for the remaining jobs in the workload.
It can be observed that the response time decreases with the
number of used cores growth due to higher parallelism ex-
ploitation. However, it becomes saturated after using a certain
number of cores, which implies that the maximum parallelism
has already been exploited and the response time is governed
by sequential execution of a task belonging to the critical path.
The × symbol indicates that the number of tasks in the job is
lower than the number of cores and an allocation using that
number of cores is not possible. Therefore, the number of used
cores corresponding to the last valid entry for a job represents
the number of tasks in the job, e.g., jobs j1 and j2 consist of
9 and 7 tasks, respectively. The profiling results also include
the allocation information corresponding to each response time
value and are stored along with the value curves to perform
efficient dynamic resource allocation.

B. Overall profit by executing different number of jobs

Figure 6 shows the overall profit obtained by employing the
proposed approaches for varying job sets, which are derived by
choosing different number of jobs from the workload. A small
number of jobs in a set reflects the execution of jobs in the
HPC centre for a fixed small amount of time, e.g. few minutes
or hours, but not for the time as with the whole historical
data. This helps to achieve results without performing time
consuming simulations. A couple of observations can be made
from the Figure 6. 1) The profit obtained by the approaches
employing the holding process (e.g., maxVDH and maxVH)
is always higher than that of the corresponding approaches
without employing holding. This improvement is achieved by
holding low value executing jobs and allocating the freed
resources to high value incoming jobs. Since holding is per-
formed only when it is profitable, the approaches employing
holding achieve higher overall profit. 2) The overall profit
increases with the number of jobs in a workload as profit is
made out of higher number of jobs. 3) The maxVH approach
achieves maximum overall profit for the considered job sets.
This is due to the fact the choosing maximum value queued
job leads to more favourable situations to maximize the profit
by completing different jobs. On an average, maxVH achieves
8% higher profit than that of maxV, which can be a significant
value when serving (completing) a large amount of jobs.

C. Analysing holding effect

Figure 7 shows the profit obtained by different jobs when
approaches SJQ and SJQH are employed for the job set
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Fig. 7. Profit by different jobs.

containing 30 jobs. The interesting observations that can be
made from the figure are as follows. 1) SJQ makes profit
for most of the jobs and jobs achieving zero profit are those
that were queued and whose value decreased to zero when
resources become available. An example of such zero profit
making job is job 27. 2) SJQH makes profit for lower number
of jobs than that of SJQ as SJQH holds some jobs and makes
zero profit for some of them. Examples of such jobs are job
20 and job 24. It should be noted that some zero profit making
jobs by SJQH could be due to the same reason as that of SJQ,
i.e. due to some queued jobs for whom profitable holding was
not possible at their arrival and value for them becomes zero
when resources become available. Similar results are obtained
for other job sets.

D. Overall profit with varying holding penalty

We also have evaluated the overall achieved profit in case
there is some penalty to hold the low value executing jobs.
This will be more favourable situation for the customers as they
know that most likely their submitted jobs will be serviced with
the initial promised quality; otherwise the cluster managing
agency has to pay them back in terms of some penalty. We
have assumed that if a job is put on hold then there will
be a penalty of some percentage of the maximum value that
could be achieved for the job. However, for the queued jobs
that can lead to zero profit making, we have not considered
any penalty since the job is not put on hold but went to out
of profit making point due to resources unavailability. The
holding penalty percentage has been varied to evaluate its
impact on the overall profit achieved by the most promising
approach maxVH.

Figure 8 shows the overall profit obtained by employing
maxVH when holding penalty percentage is varied from 0%
to 70% for the job set containing 30 tasks. The overall
profits obtained by employing maxVH with no holding penalty
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(maxVH-0%) and maxV have also been plotted for the com-
parison purposes. It can be observed that the overall profit by
maxVH decreases as the holding penalty percentage increases
and becomes saturated after a particular holding penalty per-
centage. The profit at lower penalties remains the same as
the penalty is not sufficient enough to affect the allocation
decisions for the jobs. The decreasing trend is obtained as
lesser holdings are performed with increased penalty and thus
making low overall profit. The later constant profit region
indicates that no further holdings are performed due to high
cost (penalty). It should be noted that the holding penalty also
determines the holding decision and thus different jobs are put
on hold with the changed penalty. Further, it can be observed
that the overall profit with higher holding penalty is the same
as that of maxV as the approach maxVH performs resource
allocation exactly in the same manner as that of maxV, i.e.,
no jobs are put on hold due to high penalty and incoming job
is put into the job queue for later allocation when resources
become free.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a market-inspired dynamic resource alloca-
tion approach for many-core HPC systems. We show that the
approach exploits design-time profiling results and employs
the concept of holding low value executing jobs to free
resources for high value arrived jobs towards maximizing
the overall profit of the system. It has been shown that the
exploitation of profiling results and holding concept leads to
higher overall profit. In future, we plan to consider multi-
criteria optimization, e.g. jointly optimizing for overall profit
and energy consumption, which is desired for the high energy
consuming HPC centres.
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