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Abstract—This paper presents an interval algebra created
specifically to evaluate timing properties of multiprocessor sys-
tems. It models the application load as intervals, and considers
allocation and scheduling as algebraic operations over those
intervals, aiming to analyse the impact of resource allocation
decisions on application response times or schedulability. The
theoretical background is introduced informally, followed by the
description of a reference implementation of the interval algebra
in C++, aiming to appeal to the design practitioner rather than
the formalist. Examples of the usage of the proposed algebra
are also provided, showing its applicability to the performance
evaluation of industrial systems implemented over bus-based and
Network-on-Chip multiprocessor platforms. A particular design
flow is highlighted, where the interval algebra is used as a fitness
function in a genetic algorithm tailored to optimise resource
allocation in hard real-time multiprocessors.

I. INTRODUCTION

A multiprocessor system is a composite of computation,

communication and storage resources, and each of them

contributes to the overall timing behaviour of the system

as it processes application load. The way the application

load is allocated to those resources has crucial impact to its

performance and timeliness. Thus, resource allocation is an

increasingly important part of the design flow of such systems,

specially as the number of processors keeps increasing in both

embedded and high-performance domains.

Resource allocation is a well known problem and most of its

formulations belong to the NP-hard class [3]. For current mul-

tiprocessor systems with hundreds of communicating tasks,

dozens to hundreds of processors and sophisticated intercon-

nects, it is not practical to optimally solve resource allocation

problems. Heuristic solutions are currently the state-of-the art,

trying to achieve acceptable allocations by sampling only a

small subset of the very large solution space of such problems

[11]. To find an acceptable solution, models of the application

load and the multiprocessor platforms can be used to forecast

performance metrics under different allocation alternatives.

Such models must be expressive enough to describe diverse

system architectures, load patterns, resource constraints and

timing requirements.

In this paper, we propose an interval algebra (IA) that mod-

els all those aspects and uses them to evaluate the timeliness
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of multiprocessor systems under different resource allocations.

It models the application load using the mathematical notion

of intervals, which are used to denote the amount of time an

application component (e.g. computational task, communica-

tion message) uses a specific multiprocessor platform resource

(e.g. CPU, communication bus). It then models the allocation

and scheduling of those application components as algebraic

operations over those intervals. By applying those algebraic

operations, it is possible to obtain performance figures such

as the response times of the application components, which

can be in turn aggregated to obtain e.g. average and worst-

case performance.

To establish the need for the proposed algebra, we review a

number of performance analysis formalisms, aiming to show

that while very useful in their specific domains they cannot

be easily integrated into a common framework to analyse

different kinds of application load (e.g. periodic or aperiodic,

with or without dependencies between tasks) or multiproces-

sor platform (e.g. homogeneous or heterogeneous processors,

shared or distributed memory). We then informally present the

foundations of the proposed algebra through examples, using

a simple yet consistent ASCII-based notation, as our aim is to

be appealling to design practitioners rather than to formalists.

This is followed by the description of our first reference

implementation of the algebra, which follows object-oriented

principles and provides an API of classes and methods to solve

interval-algebraic representations of multiprocessor systems

under load. By solving valid expressions of the proposed

algebra, designers can investigate the timeliness of applica-

tions running over multiprocessors under different resource

allocation policies, enabling them to design systems that can

meet the application’s timing constraints. Furthermore, the

compact and simple implementation of the algebra can also be

used during runtime to guide resource allocation in dynamic

systems, where the application load is not known at design

time and must be allocated on demand. The paper is then

closed with a number of examples of the applicability of the

proposed algebra and a discussion of its current and potential

use.

II. RELATED WORK

The inherent complexity of contemporary multiprocessor

systems limits the possibility of a complete analysis using

simulations, thus analytical models are of increasing impor-

tance as part of modern system design [12]. In this section, a



number of widely used analytical models are briefly reviewed.

Queueing theory can be applied to systems in which cus-

tomers come to be processed by a service facility. When a

customer arrives but there is no idle server, it waits in a

queue. The interarrival time and service time are specified

probabilistically. Using a queueing model, a number of vital

performance measures can be estimated, such as a number of

customers waiting in the system for service, a mean queue

length, waiting time in a single queue or the whole system,

duration of a busy period, etc. Queueing theory is often

used in communication networks [1], including Networks

on Chip [11], where customers represent packets transmitted

between nodes. An example of queueing-theory-based model

for evaluating energy dissipation in a network node can be

found in [13]. The main feature preventing direct queueing

theory application in the real-time domain is related with

its strictly probabilistic nature. It allows computing average

quantities in an equilibrium state and is not intended to infer

about the worst-case behaviour.

Network Calculus is a theory of deterministic queuing

systems that has been proposed by Cruz in [7]. It is an

alternative approach to queueing theory, using upper bounds

to characterize arrivals and lower bounds to describe services.

Using this approach it is easy to compute the bounds of

network performance metrics, such as a delay or backlog

[4]. Network Calculus describes data flows by the cumulative

function, R(t), being a number of the bits transmitted in a

particular data flow during time interval [0, t]. Both continu-

ous and discrete time models can be applied. Since bounds

obtained with Network Calculus hold with probability 1, they

can be treated as the worst-case values, essential to evaluate

schedulability in hard real-time systems. To compute a delay or

backlog for an average case, a stochastic extension of network

calculus has been introduced [10]. It can be applied to provide

particular stochastic (soft) guarantees [6].

Network Calculus has been extended to Real-Time Calculus

in [5]. It uses upper and lower arrival curves as functions

bounding the amount of the events arriving in a time interval.

These events may be treated as task arrivals. Using this

notation, it is possible to represent periodic or sporadic tasks.

A number of schedulability tests based on Real-Time Calculus

have been proposed in [14]. Furthermore, Real-Time Calcu-

lus has been extended to globally-scheduled multiprocessor

systems in [14]. In [9] the modelling capability of Real-

Time Calculus has been extended with the execution of a

task triggered by events on multiple input event streams using

OR-activation, AND-activation, or their combination. Despite

relatively large research on Real-Time Calculus and its vast

applicability, there is still lack of efficient methods for deter-

mining response-time bounds in case they are unspecified. The

multiprocessor case is not fully compatible with uniprocessor

Real-Time Calculus. The pessimism introduced by applying

real-time calculus methods has not been assessed in [14].

Schedulability analysis is a formalism to evaluate the timing

properties in real-time systems introduced in [15]. In this

technique, a workflow is usually given as a set of independent

periodic or sporadic tasks, where each task is defined as a

tuple with its worst-case execution time, relative deadline, and

priority. With this tuple, it can be verified if all tasks mapped to

a particular processor, do not exceed the processors capacity.

An example formula of direct schedulability tests, which

checks task response time, is proposed in [2]. The majority of

schedulability analysis research assumes task independence. A

solution considering control and data dependencies, presented

in [17], requires relatively complicated system modelling by

means of conditional process graphs. Earlier proposals of deal-

ing with dependencies included using even more sophisticated

techniques like appropriate release jitters, or time offsets of

phases [16]. Lacking of any simple extension to application

models with dependent or single appearance tasks can be

viewed as a strong disadvantage.

An exhaustive survey of hard real-time scheduling analysis

for multiprocessor systems has been presented in [8]. The

number of already proposed schedulability tests can be consid-

ered as rather high. Nearly each of these tests has a different

capability or applicability. Since schedulability analysis is

dedicated to hard real-time systems, it is not easily applicable

when soft timing constraints are assumed. In the case of

periodic and sporadic intervals, schedulability analysis can be

easily integrated to the proposed algebra as one restricted type

of algebraic transformation.

From this survey it follows that there is not a single

analytical model that is expressive enough to describe various

application dependency patterns, with different task temporal

behaviour, capable of representing resource affinities and ap-

plicable to both soft and hard-real time systems. We foresee,

however, the increasing need for such a formalism, as high-

performance and cloud computing become more time-critical

and start to be seen as soft real-time systems, and hard real-

time systems become more dynamic and can only provide

schedulability guarantees during runtime for a finite time

horizon.

III. INTERVAL ALGEBRA PRINCIPLES

An algebra is a definition of symbols and the rules for

manipulating those symbols. An interval algebra (IA) therefore

establishes rules for the manipulation of intervals. The pro-

posed IA defines different types of intervals, which represent

the amount of time a particular application component requires

from a notional platform component. It also defines rules for

the manipulation of such intervals: what happens when an

interval is allocated to a specific type of resource, what if two

intervals are allocated to the same resource, etc. Two basic

algebraic operations are needed: time displacement and parti-

tion. Time displacement changes the endpoints of an interval

by an arbitrary value X, and denotes that the application com-

ponent had to wait for its allocated resource (i.e. its starting

and ending times were moved X time units to the future).

Partition simply breaks one interval in two, and denotes that

an application component was preempted from a resource

(and the second interval produced by the partition likely to

be time-displaced). All other interval-algebraic operations of



the proposed IA, which can represent an arbitrarily large set

of allocation and scheduling mechanisms, can be expressed

as compositions of those two. By applying those operations,

it is possible to investigate the impact of different resource

allocation and scheduling mechanisms on the endpoints of the

intervals, which in turn denote the completion times of each

application component.

Throughout this paper an application is viewed as a set of

tasks (a taskset). The tasks appearing exactly once during the

application execution are often referred to as singletons and

are composed of a single job. A periodic or sporadic task

can be treated as an infinite series of jobs that are released

periodically or less often than the provided inter-release time,

respectively.

Let us consider a simple example. A given application is

composed of three singleton tasks: A, B and C, and a given

homogeneous platform is composed of two processors with

the first-in-first-out (FIFO) scheduling. Each of the tasks can

be represented by an interval that denotes the time it needs

to run using one of the platform processors: A = [0, 30),
B = [0, 45), C = [0, 20) (assuming in this example that A,

B, C are all independent and ready to run at time = 0). By

using simple interval algebra operations, a resource allocation

heuristic can estimate the response time R of the three tasks

under different allocation schemes (e.g. RA = 30, RB = 45
and RC = 50 if A and C are allocated, in that order, to

one of the processors and B is allocated to another), and

thus can dynamically decide whether it is likely to meet

the application’s constraints when using a given allocation.

While trivial, such example can be made arbitrarily complex

by allowing different resource scheduling disciplines, a larger

number of tasks and processors. For the proposed algebra,

however, the analysis of the response times under a specific

allocation would still involve the application of the same

interval manipulation rules.

The advantages of such an approach are numerous, includ-

ing the following.

• It enables dynamic allocation heuristics to have an ap-

propriate level of confidence on whether the chosen

allocation meets the applications constraints.

• The approach can be used as a fitness function of search-

based allocation heuristics, if the algebraic operations are

sufficiently lightweight as they have to be applied over a

potentially large search space (some examples of applying

IA to genetic algorithms are provided in Section V).

• The solution of algebraic operations can be found in

multiple ways, with different levels of performance.

Therefore, resource allocation heuristics can be improved

simply by optimising the solution of the employed alge-

braic operations.

• If absolute predictability is not required (i.e. in soft real-

time and best-effort applications), algebraic operations

can be solved faster by applying approximations that

sacrifice the accuracy of the final result. This enables

applying of heuristics that can be applied to systems with

different levels of strictness of their timing requirements.

In the following subsections, we briefly introduce the main

features of the application modelling approach based on the

proposed interval algebra from different aspects, such as:

modelling application architecture with respect to various

dependency patterns, modelling diverse temporal behaviour,

including periodicity, modelling task affinities to certain re-

sources, and also describing assorted loads.

A. Modelling Application Architecture

Using IA, application jobs are represented as intervals. For

example, a singleton task can be represented by the time

interval it requires from a notional resource. It can be denoted

with the notation2 exemplified below:

#A#0#40 (1)

where the first element of the tuple is a unique job identifier,

the second is a non-negative real number representing the

release time of the job and the third is a positive real number

representing the job’s load, i.e. the actual length of the time

interval. In the example above, the job A is released at time

0 and requires 40 time units of a resource. The same concept

can also be represented using the mathematical notation for a

left-closed right-open bounded interval [0, 40).
Such interval-based representation of a job is sufficient to

express a singleton, and by using a set of intervals, indepen-

dent jobs can be also represented. To denote a dependency

between two tasks A and B, the notation can be extended to

include a job identifier instead of the release time of a job:

#B#A#50 (2)

This notation is capable of denoting single dependency

jobs, and conveys that interval B’s first endpoint depends

on interval A. Multiple dependencies can also be specified

as a dependency set, and thus multi-dependency jobs can be

covered:

#C#{A,B}#260 (3)

This notation assumes that whenever an interval has de-

pendencies, its first endpoint lies exactly at the highest second

endpoint among all the intervals it depends on. In this example,

assuming that tasks A and B are defined as in formulas (1) and

(2), this leads to: A = [0, 40), B = [40, 90), C = [90, 350).

B. Modelling Application Temporal Behaviour

The intervals described in the previous subsection are

single-appearance and have a fixed release time, therefore

express singleton tasks. A strictly periodic series of jobs can

be characterised by its release time, the period after which a

new job is released, and the time interval each job requires

from a notional resource. We denote such job series with the

notation exemplified below, which is exactly the same as the

notation of a singleton task followed by the period:

#P#0#40#100 (4)

2The formal description of interval algebra grammar, specified
with Extended Backus-Naur Form (EBNF), can be found at
https://www.cs.york.ac.uk/rts/rtslab/wiki.



Mathematically, it represents an infinite series of intervals,

such as: P = [0, 40), [100, 140), [200, 240), . . .. This extension

is expressive enough to represent strictly periodic tasks.

The release time of sporadic tasks is not deterministic but

has well defined bounds. In case of aperiodic tasks, those

bounds do not exist. To model those cases, we can represent re-

lease times with so-called aleatory variables. Those variables

are associated with probability distributions that can constrain

assumed values. The interval algebra notion does not impose

any limitation on the choice of probability distributions. Their

parameters should be provided following the usual notation.

For example, a normal distribution N (µ, σ2) with parameters

mean µ = 2 and variance σ2 = 1, N (2, 1) can be used to

denote the release time of task R, and similarly N (40, 1) can

denote its execution time:

#R#normal(2, 1)#normal(40, 1) (5)

The time when R finishes its execution is described by the

convolution of two Gaussians: N (2, 1) ∗ N (40, 1).

C. Modelling Application Resourcing Constraints

A resource can be represented by an algebraic operation

over all the jobs mapped onto it, each represented by its

respective interval. The algebraic operation determines how

the resource is shared between the jobs mapped to it, and how

the sharing affects their timings. We denote a resource with

the notation exemplified below:

+Π1(#A#0#40) (6)

where the algebraic operation Π1 is applied to the set of

intervals surrounded by brackets (only A in the example

above). The example below shows the same resource, but this

time with two distinct jobs mapped to it:

+Π1(#A#0#40,#B#0#50) =

+Π1(#A&40,#B&90) =

+Π1([0, 90)) (7)

In this example, we introduce two different ways to evaluate

the operator Π1 (which we can intuitively understand as a

resource serving jobs under a FIFO schedule). The first eval-

uation of the operator preserves the identities of the mapped

jobs, and it indicates the completion times of each one of

them after the symbol ”&”. We will refer to this type of

evaluation as information-preserving (or simply preserving).

The second way to evaluate the operator is equivalent to

the first, but it does not preserve any information about the

individual operands. It simply determines the busy period(s)

of the resource with one or more intervals. We refer to this type

of evaluation as information-collapsing (or simply collapsing).

A slightly different example is shown below, using the same

jobs but this time mapped onto resource Π2 that uses a time-

division multiplexing (TDM) scheduler with a quantum of 8

time units:

+Π2(#A#0#40,#B#0#50) =

+Π2(#A&72,#B&90) =

+Π2([0, 90)) (8)

It is worth noticing that only the intermediate expression

(i.e. after the preserving evaluation) differs, and the final result

after the collapsing evaluation is the same. This is always the

case if the operand denote a work-preserving scheduler, when

no processor is idle as long as there are tasks ready to be

executed.

The two following examples show jobs mapped onto a

resource that is shared under a priority-preemptive scheduler,

assigning priorities in the same order the jobs are passed to

the operator (higher to lower):

+Π3(#C#15#40,#D#10#50,#E#0#50) =

+Π3(#C&55,#D&100,#E&140) =

+Π3([0, 140)) (9)

+Π4(#F#10#4,#G#0#18,#H#26#5,

#I#24#8) =

+Π4(#F&14,#G&22,#H&31,#I&37) =

+Π4([0, 22), [24, 37)) (10)

In both cases, the algebraic operations abstracts away the

specific interleaving patterns of the execution of each job.

Each of the evaluation types focusses solely on, respectively,

the finish times of each job or the idleness of the resource.

For example, (10) represents the following: task G starts to be

executed at time zero, but after 10 time units it is preempted

by task F which runs t completion for 10 time units; then

G resumes and runs for its remaining execution time until

time equals 22 units; resource Π4 becomes idle until task I

is released at 24 time units, which in turn executes until time

equals 37 units.

Just like single appearance jobs, periodic jobs can be

mapped to resources:

+Π1(#A#0#40#100,#B#0#50) =

+Π1(#A&40,#B&90,#A#100#40#100) =

+Π1([0, 90),#A#100#40#100) (11)

It is important to notice that a periodic job series always

remains as a distinct interval in the result of both preserving

and collapsing evaluations of an operator. This reflects the

infinite nature of the series.

One of crucial properties of each task is a list of resources

that can execute this task. The task that can be executed on any

resource available in a system is referred to as untyped task.

If a task can be executed on a single type of resources only,

it is a single-typed task. A multi-typed task can be executed

on a few (enumerated) resource types, possibly with different

execution time. In all the earlier examples, untyped tasks have



been presented. To describe a single-typed or multi-typed task,

the notation should support the definition of different types of

resources and different types of resource affinity. This can be

expressed as follows, where each scalar in pointy brackets

denotes a different type and the absence of type constraints

implies untyped jobs or resources (as earlier):

+X < 2 > (#J < 2 > #0#15,#K < 2, 3, 8 > #0#20,

#L#0#14) (12)

By allowing the definition of resources types and resource

requirements, it is also possible to present communicating jobs

by modelling the job as two fully dependent intervals with

distinct resource requirements, one for computation and one

for communication (i.e. the job can only communicate over

resource 2 once it has finished being computed over resource

1):

#L < 1 > #0#14

#M < 2 > #L#340 (13)

D. Modelling Application Load Characterisation

The representation of load as the interval length, denoted

by a positive real number (as defined in subsection III-A), is

already capable of representing a fixed load.

To represent a typed fixed load, we allow the specification

of different interval lengths for different resource types using a

similar notation as the one introduced at the end of subsection

III-C:

#M < 2, 4, 6 > #0# < 10, 20, 20 > (14)

To represent a probabilistic load or typed probabilistic load,

we have to rely again on aleatory variables to represent the

load. This can be done for both typed and untyped jobs.

IV. APPLICATION MODELLING USING INTERVAL

ALGEBRA REFERENCE IMPLEMENTATION

In this section, a brief description of the reference im-

plementation of the proposed interval algebra is provided.

Its software architecture follows the principles of object-

orientation and object-oriented frameworks, allowing for fur-

ther extensions through inheritance. It has been implemented

in C++ language.

The most important classes of the interval algebra reference

implementation are presented in Figure 1. Among these classes

four clusters can be identified:

• related with various notion of time (Time1,

TimeDeterministic, TimeStochastic),

• related with jobs to be allocated (Job, JobTree,

JobTreeNode, TreeNode),

• related with various policies of schedul-

ing (Scheduler, SchedulerTDM,

SchedulerFIFO, SchedulerPriorityTDM,

SchedulerPriorityNonPreemptive,

SchedulerPriorityPreemptive),

1Classes written in italic are abstract.

Scheduler

SchedulerPriorityNonPreemptive

SchedulerPriorityPreemptive

SchedulerPriorityTDM

SchedulerTDM

SchedulerFIFO

Time

TimeDeterministic TimeStochastic
JobTree

TreeNode

JobTreeNodeResource Job

1
*

1
*

1*

ResourceType

Fig. 1. Main classes of the reference implementation of the interval algebra
and their dependencies

• related with hardware platforms (Resource,

ResourceType).

In this section, we demonstrate simple examples (written in

C++) of the interval algebra reference implementation usage.

An application is modelled by defining parameters of

its jobs. After this stage, each job shall be added to

a job list held by a scheduler. In the examples be-

low we assume that a scheduler object has been al-

ready created, for example a scheduler with the FIFO

policy (SchedulerPriorityFIFO class), but any other

schedulers derived from abstract class Scheduler can

be used instead. The scheduler can be instantiated in the

same manner as any other C++ object: SchedulerFIFO

*MySchedulerFIFO=new SchedulerFIFO;.

Applications are modelled with instances of class Job.

The constructor of this class requires the job name as a

parameter (string). Then the required parameters of the job are

set by means of executing the member functions of the Job

class. These parameters include: release time, period, deadline,

parent jobs, resources the job can be executed on, execution

time for each possible resource and the job priority.

Applications that are composed of a single job can be

modelled by creating an instance of class Job. In the example

below, the task described with IA by formula (1), i.e. a

singleton task named A is defined, released at 0ms (the default

time unit), of the execution time equal to 40ms on the default

resource.

Job *A = new Job("A");

Time *TimeReleaseA = new TimeDeterministic(0);

A->SetReleaseTime(TimeReleaseA);

Time *TimeA=new TimeDeterministic(40);

A->SetExecutionTimeForExecutingResource(TimeA);

MySchedulerFIFO->AddJob(A);

There is a possibility of modelling applications that are



composed of an arbitrary number of single-dependency jobs,

i.e. the jobs that can depend on one and only one other

job. The preceding job, whose execution is required before

the execution of the given job, is set with member func-

tion Job::AddDependency(Job*). For example, the task

given by formula (2) can be described with the following code

(assuming job A has been already created).

Job *B = new Job("B");

Time *TimeB=new TimeDeterministic(50);

B->SetExecutionTimeForExecutingResource(TimeB);

B->AddDependency(A);

MySchedulerFIFO->AddJob(B);

A strictly periodic task is comprised of a series of jobs with

release times separated by a constant time interval. Internally,

a periodic task is split into a series of single appearance jobs.

The number of instances is set so that the release time of

no instance is higher than the provided time. The pointer

to this time is given as the second parameter of member

function Scheduler::AddPeriodicJobs, whereas the

first parameter is, similarly to the single appearance job,

the pointer to the Job object itself. In the example below,

representing the task described with formula (4), this time

is named MaxTime. We assume the task has an implicit

deadline, i.e. the relative deadline of each job is equal to its

period. However, any other positive value can be used instead.

Time *MaxTime = new TimeDeterministic(300);

Job *P =new Job("P");

Time *TimeReleaseP = new TimeDeterministic(0);

P->SetReleaseTime(TimeReleaseP);

Time *TimeP=new TimeDeterministic(40);

P->SetExecutionTimeForExecutingResource(TimeP);

Time *PeriodP = new TimeDeterministic(100);

P->SetPeriod(PeriodP);

Time *DeadlineP = new TimeDeterministic(40);

P->SetDeadline(DeadlineP);

MySchedulerFIFO->AddPeriodicJobs(P,MaxTime);

The affinity of applications defines which kind of re-

sources a given job requires for its execution. In or-

der to be used with the interval algebra, each resource

has to be defined and instantiated. For example, to cre-

ate a resource named Processor1, the following line of

code should be written: Resource *Processor1=new

Resource("Processor1");. Then, to allow a job

to be executed on this resource, one should use the

Job::AddExecutingResource(Resource*) with a

pointer to the resource as the parameter, for example:

A->AddExecutingResource(Processor1);.

To set the job execution time for a particular

resource, one should use member function

Job::SetExecutionTimeForResource(Time*,

Resource*).

V. EXAMPLES AND EXPERIMENTS

In this section, some capabilities of the proposed algebra are

presented using Bosch’s DemoCar benchmark, a lightweight

engine control system composed of 43 tasks (basic execution

units) and 71 labels (memory locations of given lengths) for

inter-task communication.

The actual computation time of tasks is not known a priori,

only its lower and upper bounds are provided together with

a probability distribution function representing the likelihood

of the values inbetween them. Since DemoCar contains hard

real-time constraints, we use the worst-case execution time

(WCET) to determine the length of the intervals representing

tasks. To illustrate this issue, let us present an IA formula of

one arbitrary task of this benchmark, for example CylNumOb-

server. This periodic task is released every 10000µs and its

execution time is described with a Weibull distribution with

parameters λ = 7534.51 and k = 1.51. However, the WCET is

also specified to be equal to 440µs and this value is employed

in formula CylNumObserver#0#440#10000 that is used

for response time evaluation. For soft real-time systems, an

aleatory variable could be created for execution time and it

would be used to determine probability distribution function

of the system response time.

A. Number of Processors and Scheduler Selection

In the first experiment we present how interval algebra

can be used to choose an appropriate number of processors

and a scheduling discipline for a particular system so that

no deadline is violated. Firstly, we model a simple bus-based

architecture with the number of processors ranging from 1 to

5, where data transfer overheads from and to a shared memory

has been assumed to be negligible (i.e. a contention on the bus

is not modelled).

Let us compare the influence of various schedulers in

the DemoCar example. For this relatively simple case, the

obtained makespan (aka response time) of the whole taskset

does not depend on the chosen scheduler type, and is depicted

in Figure 2 for processor number ranging from 1 to 5.

However, the number of missed deadlines varies significantly

for different scheduler types, as presented in Figure 3. For

TDM in the single processor system and quantum 100µs, 42

out of 43 deadlines are missed, whereas with the remaining

scheduler types only about 20 tasks have been executed on

time assuming WCET. For priority schedulers (where priorities

of tasks have been assigned statically depending on the task

deadline - the lower deadline, the higher priority), three

processors are sufficient to meet all the deadlines, whereas

for the FIFO scheduler one deadline remains violated even in

the 5-processor system. This simple experiment shows both

the significant influence of the chosen scheduler as well as

capabilities of the interval-algebra-based evaluation.

The proposed technique can be also applied to more so-

phisticated platform architectures, such as a mesh Networks

on Chip (NoC). In contrast with the previous case, data

transfer overhead has been taken into consideration, assuming

constant time for transferring a single flit (flow control digit,

a small piece of a packet to be transferred) between two

neighbouring nodes if no contention is present. Each link

is used as a single resource, so for example to transfer one

data from Processor0,1 to appropriate sink Processor2,0 we

need such resources allocated simultaneously: Processor0,1−
Router0,1, Router0,1 − Router1,1, Router1,1 − Router2,1,
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Fig. 3. Deadline misses for DemoCar use case with different schedulers and
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Router2,1−Router2,0, Router2,0−Processor2,0, as shown

in Figure 4. Communicating tasks can be allocated in dif-

ferent processors, resulting in potentially large transmission

overheads.

Both processor functionalities and labels have been assigned

with the round-robin order, presumably far from being optimal

(finding an optimal mapping belongs to the NP-hard problems

and thus is intractable [3]). The makespans for a few different

NoC sizes executing the DemoCar example with the FIFO

scheduler are presented in Figure 5. In line with our expecta-

tions, the makespan decreases with the NoC size growth due to

the lower contention and processor utilization up to a certain

mesh size (here: 3x3), after which the potentially increased

distance between message senders and receivers changes this

Router0,1 Router1,1 Router2,1

Router0,0 Router1,0 Router2,0

Router0,1-Router1,1 Router1,1-Router2,1

Router2,1-Router2,0

Router2,0-Processor2,0

Processor0,1-Router0,1

Processor0,1 Processor1,1 Processor2,1

Processor0,0 Processor1,0 Processor2,0

Fig. 4. Example of a path in a mesh Network on Chip
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Fig. 5. Makespan values for mesh NoC with FIFO scheduler (bars) and
percentage of met deadlines (crosses) - DemoCar use case

trend. The obtained worse results than those presented in Fig-

ure 3 show the price of using NoC communication without any

task allocation optimization and motivate developing methods

aiming at makespan shortening and improving meeting timing

constraints.

B. Task and Memory Allocation

Interval algebra can be also used to evaluate the quality of

the allocation of tasks and labels into processors to decrease

the makespan and meet all timing constraints. In this exper-

iment, we use it as a fitness function in a genetic algorithm

that aims to explore the allocation space towards solutions

with optimised timing behaviour statically, during the system

design stage [18]. To demonstrate this possibility, a NoC mesh

platform with XY routing algorithm has been chosen. For the

DemoCar application, the size of the mesh has been initially

configured as 4x4. The application model has been extended

with communication messages between tasks and labels. The

genetic algorithm is then executed to perform both task and

label allocations to processors during 100 generations of 20

individuals each. The first fully schedulable allocation has

been found in the 17-th generation, but the fully schedulable

allocation found in the 95-th generation has had 20% lower

makespan value. This workload is also fully schedulable in

a 3x3 mesh, as a allocation with no violations has been

found in the 12-th generation (Figure 6 top). For a 3x2 NoC,

the fully schedulable allocation has been found in the 18-

th generation, whereas the minimum makespan in the 32-nd

(Figure 6 bottom). A fully schedulable allocation has not been

found for 2x2 mesh NoC, despite analysing much wider search

space than previously - spanning over four islands with 100

individuals each. The best found allocation leads to violation

14 out of 186 deadlines.

C. Performance and scalability

The average execution time of performing the interval

algebra preserve operation during the experiment with the

bus-based system has been lower than 0.002s regardless the

scheduler applied. To determine the approach scalability, a

real-life engine control system, composed of 1297 tasks and

46929 labels, has been chosen as a taskset. It has been
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Fig. 6. Missed deadlines (grey) and makespan (black) value optimization for
DemoCar implemented on 3x3 (above) and 3x2 (below) mesh-based NoC

evaluated by the IA reference implementation in 0.25s. All

these computations have been performed by a single core in

a typical desktop computer. These results confirm that the

proposed approach is applicable to industrial-size cases. For

comparison with another analytical method, we have rewritten

the DemoCar use case in MAST-1 model and performed its

schedulability analysis with MAST 1.5.0.1 tool from Univer-

sity of Cantabria3. To make the comparison fair, the soft-

ware has been configured for multiprocessor and distributed

systems and to reflect task dependencies with offsets. With

the fastest technique available for these settings, Offset Based

Approximate Analysis, the analysis of a single mapping takes

31s, which is too long to be used as a GA fitness function.

Comparisons with other formalisms and with real system

performance are planned as future work.

VI. CONCLUSIONS

An interval algebra has been proposed for evaluating perfor-

mance parameters of multiprocessor systems. This algebra is

expressive enough to model a wide class of platforms, includ-

ing homogeneous or heterogeneous processors connected with

buses or NoCs. The application model covers broad range of

tasksets, with deterministic or stochastic execution time and

deadlines, with any dependency patterns or processor affini-

ties. The modelled tasks can be singletons, strictly periodic,

sporadic or aperiodic. The efficiency and scalability of the

reference implementation facilitates using the interval-algebra-

based evaluation as a fitness function in various search-space

heuristics even with industrial-size cases.

The conducted experiments demonstrated a selection of an

appropriate number of processors to satisfy all the applica-

3http://mast.unican.es

tion’s timing constraints and a choice of a suitable scheduling

policy. The resource contention was assessed and resolved by

using different platform architectures and resource allocations.

The taskset schedulability and makespan were optimized by

using genetic algorithms in mesh-based NoCs with various

processor numbers.

The library source is planned to be publicly released under

the GNU licence in the second half of 2015.
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