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The precision of textural analysis in ‘®F-FDG-PET scans of oesophageal cancer

Abstract

Objectives: Measuring tumour heterogeneity by textural analysis in **F-fluorodeoxyglucose positron
emission tomography (‘®F-FDG PET) provides predictive and prognostic information but technical
aspects of image processing can influence parameter measurements. We therefore tested effects of
image smoothing, segmentation and quantisation on the precision of heterogeneity measurements.
Methods: Sixty-four **F-FDG PET/CT scans of oesophageal cancer were processed using different
Gaussian smoothing levels (2.0, 2.5, 3.0, 3.5, 4.0mm), maximum standardised uptake values (SUV )
segmentation thresholds (45%, 50%, 55%, 60%) and quantisation (8, 16, 32, 64, 128 bin widths).
Heterogeneity parameters included grey-level co-occurrence matrix (GLCM), grey-level run length
matrix (GLRL), neighbourhood grey-tone difference matrix (NGTDM), grey-level size zone matrix
(GLSZM) and fractal analysis methods. The Concordance Correlation Coefficient (CCC) for the 3
processing variables was calculated for each heterogeneity parameter.

Results: Most parameters showed poor agreement between different bin widths (median 0.08,
range 0.004-0.99). Segmentation and smoothing showed smaller effects on precision (segmentation:
median 0.82, range 0.33-0.97; smoothing: median 0.99, range 0.58-0.99).

Conclusions: Smoothing and segmentation have only a small effect on the precision of heterogeneity
measurements in *3F-FDG PET data. However, quantisation often has larger effects, highlighting a

need for further evaluation and standardisation of parameters for multicentre studies.
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Key points:

1) Heterogeneity measurement precision in *®F-FDG PET is influenced by image processing methods.

2) Quantisation shows large effects on precision of heterogeneity parameters in *F-FDG PET/CT.



3) Smoothing and segmentation show comparatively small effects on precision of heterogeneity

parameters.

Introduction

Be_fluorodeoxyglucose positron emission tomography (**F-FDG-PET) significantly improves the
accuracy of staging and therapy response assessment in a number of cancers [1,2]. There are early
reports that textural analysis, an additional tool quantifying intratumoural heterogeneity of **FDG-
PET tracer uptake, may improve prediction of response and prognosis and it is hypothesised that
image heterogeneity may be related to underlying biology and reflect the behaviour of malignant
tumours [3-7].

The measurement of tumour heterogeneity in *®F-FDG PET images can be achieved by using
statistical or model-based methods. Statistical-based textural analysis can be further categorised
into first-, second- and higher-order statistical methods of increasing complexity, respectively [8-15].
The first-order statistical features are based on histograms of the original image. Second-order
statistics describe the relationship between groups of two, usually neighbouring, voxels while high-
order parameters, derived from 3D matrices, describe differences between each voxel and its
neighbours, taking into consideration for each voxel, the neighbouring voxels in the two adjacent
planes. For example, textural features from second-order statistics, grey-level co-occurrence
matrices (GLCM), introduced by Haralick et al., describe the pixel distribution within a region and
indicate the frequency of the appearance of various combinations of grey values [9]. The high-order
neighbourhood grey-tone difference matrix (NGTDM) method computes the intensity differences
between a voxel and its 26 neighbours [10]. Galloway first proposed the high-order grey-level run
length (GLRL) matrix method that calculates the number of texels (run lengths) [11]. Texels are
adjacent pixels with the same intensity. Chu et al. and Dasarathy and Holder added another two and
four GLRL texture features, respectively [12,13]. High order grey-level size zone matrix (GLSZM)
features were introduced by Thibault et al. as an extension of GLRL, giving information about the

size and intensity of clusters of voxels or pixels in a region of interest [14]. Finally, model-based



fractal analysis (FA) methods describe the complexity of an object by identifying the property of self-
similarity in the object itself [15,16].

Image segmentation is a factor that may depend on image noise and smoothing [17] and has
potential effects on textural analysis [18]. Grey level quantisation (resampling to a number of bins) is
an important process for the matrix construction. Since calculation of second or high order texture
features from the large range of intensities within a PET image is computationally intensive, the data
is typically binned, merging a large group of similar grey levels to a countable smaller number. The
sampling ranges should be a finite number and thus bin widths as a power of 2 are chosen (8, 16, 32,
64, and 128). By including more levels in the bins, the extracted textural information will be more
accurate and will result in a smoother image with reduced noise effects, but with consequent loss of
information. Hence, the number of bin widths is a trade-off [19] and may influence textural feature
measurements. To our knowledge, the sensitivity of textural features to different maximum
standardised uptake value (SUV ) segmentation thresholds, Gaussian smoothing levels and bin
widths has not been evaluated together to date. The aim of our study was to evaluate the precision
of textural feature measurements with respect to varying levels of these processing variables. In this
study we did not aim to test the predictive or prognostic power of any of the texture variables which

is the subject of a separate analysis.

Materials and methods

Dataset

Sixty-four patients with adenocarcinoma of the lower oesophagus underwent *®F-FDG PET/CT scans
for clinical staging purposes before surgery (n=64). Forty seven of the 64 patients were male and the
mean age was 63.1 years. A waiver of institutional review board approval was obtained for this

retrospective analysis.

Positron Emission Tomography Imaging



8E_FDG PET/CT scans were all acquired as per standard institutional protocol on one of two scanners
(Discovery VCT or DST, GE Healthcare, Waukesha, US) which are cross-calibrated to within 3% [20].
Patients were fasted for at least 6 hours prior to administration of 350-400 MBq “®F-FDG. Scans were
acquired 90 minutes after injection from the upper thigh to the base of skull for 4 minutes per bed
position. Volumetric images were reconstructed using the ordered subset expectation maximisation
(OSEM) algorithm (2 iterations, 20 subsets) with a slice thickness of 3.27mm and pixel size 4.7mm.
Low dose CT was acquired for attenuation correction and anatomical localisation. The CT component
of the scans was acquired at 120 kVp and 65 mAs without administration of oral or intravenous

contrast agent.

Image analysis

In order to determine the effect of different Gaussian smoothing levels, percentage SUV .
segmentation thresholds and bin widths on the precision of texture features, different values of the
associated variables were used, keeping the other parameters fixed (Table 1). Different Gaussian
smoothing levels were added in the PET images by applying 2.0, 2.5, 3.0, 3.5 or 4.0 mm full width at
half maximum (FWHM) Gaussian filters. Four different thresholds (45, 50, 55 or 60%) of percentage
SUVax Were used to segment the primary oesophageal tumours by an experienced clinician. Finally,

for the quantisation process, the following equation was used:

In= (Ng - 1)/(Imax_ Imin) (l - /min) +1 (Equation 1)

where N, is the value used for sampling the grey levels in different bin width ranges (8, 16, 32, 64,

128) and /, is the intensity.

Texture Analysis
After image processing, calculation of the textural features was performed using in-house software

implemented under MATLAB (The MathWorks Inc.), constructing the matrices and calculating the 57



textural features from different matrices (GLCM, GLRL, GLSZM, NGTDM and FA). Table 2 lists the

extracted features used in this study.

Statistical Analysis

Texture analysis measurements were statistically analysed by calculating the agreement between
the different smoothing levels, bins or segmentation thresholds. We used the Concordance
Correlation Coefficient (CCC) proposed by Lin (1989), as it has been shown to be an efficient
calculation of agreement for multivariate and continuous data measured repeatedly by more than
one method [21-23]. Moreover, it is suggested that CCC is not affected by outliers and scaling

factors, in contrast to other agreement measurement methods [24].

One CCC was calculated for each of the pairs produced by combining the different parameters in
each study (segmentation, smoothing, quantisation) (Table 1) and the CCCean Of these pairs is
presented to show the overall agreement between the altered parameters (Tables 3 and 4, and
Appendix).

The scale below was used in order to classify the CCC scores [25]:

Value Strength of Agreement
<0.90 Poor

0.90 - 0.95 Moderate

0.95-0.99 Substantial

>0.99 Almost Perfect

As a result of the high segmentation percentages of 55% and 60% SUV,.x thresholds, some tumour
ROIs were divided into two new regions and therefore had to be excluded in the analysis process for

the precision study.



Results

Smoothing

The mean CCC observed for most of the features with different levels of smoothing showed almost
perfect agreement (37/57 textural features showed a CCC > 0.99) (Fig. 1). More specifically, GLCM,
NGTDM and GLRL features showed the highest CCC scores with respect to different smoothing
levels. The lowest scores were seen in GLSZM features which indicated the greatest effects from
changes of smoothing levels (Tables 3 and 4). Only three out of thirteen GLSZM textural features
presented substantial agreement (Short Zone Emphasis, Zone Percentage and Long Zone High
Emphasis). Despite Fractal Dimension Mean (CCC = 0.85), fractal analysis techniques showed perfect

agreement between different smoothing levels.

Segmentation

The mean CCC for the GLCM and GLRL textural features was slightly below 0.90, indicating only small
effects from different segmentation thresholds on the measurement of these features (Fig. 2).
However, most textural features derived from the high-order (NGTDM and GLSZM) and fractal
analysis methods showed poor agreement between different bin widths. Substantial agreement was
found in GLRL features Short Run High GL Intensity and High Run Emphasis, and a small number of

textural features (7/57) showed moderate agreement within the range of 0.90-0.95.

Quantisation

Most of the features (51/57) showed low CCC scores (below 0.90) and 30 of them showed CCC > 0.1
as a result of varying bin widths (Fig. 3). A minority of 6 out of 57 features showed CCC of higher
than 0.90 (Tables 3 and 4). More specifically, perfect agreement was shown in Coarseness (NGTDM),
substantial agreement in the GLCM features Correlation and Inverse Difference Moment
Normalised, and moderate agreement in Lacunarity (FA), Short Run High GL Intensity (GLRL) and
Inverse Difference Normalized (GLCM). Fractal analysis features were least affected by changes in

bin width with mean CCC = 0.88 (Tables 3 and 4).



Discussion

To date there have been few data reported on the precision of *®F-FDG PET texture features, i.e. the
ability to obtain the same measurement from the scan data when changing parameters such as
smoothing, segmentation and bin widths. This study evaluated the precision error of 57 texture
features derived from "®F-FDG PET images of oesophageal cancer with respect to different values of
these three processing variables. The results show that changing smoothing levels has relatively
small effects on the value of the majority of textural features, mostly demonstrating CCC values >
0.90. Similarly, changes in segmentation thresholds have small effects on most second-order and
GLRL features but greater effects on high-order features. In contrast, changing the bin width
produced poor agreements for most of the second- and high-order features, with the exception of
fractal parameters. Overall, second-order features, as well as GLRL features, showed less sensitivity
to changes in the three processing variables compared to the high-order features (Table 4). In
particular, low CV% was observed for GLCM inverse difference moment normalised and inverse
difference normalised, for GLRL Short Run High GL Intensity and High GL Run Emphasis, as well as for
NGTDM Coarseness.. Moreover, entropy (GLCM) which has previously been reported as showing
good test-retest reproducibility [26] and minimal sensitivity to various reconstruction parameters
[27], showed CCC higher than 0.90 for smoothing and segmentation changes. Despite the large
effect of segmentation on lacunarity and Fractal Dimension Standard Deviation, fractal analysis
features otherwise were robust to smoothing, segmentation and bin width changes.

In a similar study of ®F-FDG PET images in 3 cancer types, Orlhac et al. reported sensitivity of the
majority (19/31) of first-, second- and higher-order features to segmentation methods [28] (40% of
SUV hax Vs Nestle method [29]). This was particularly true in some GLRL features compared to second-
order GLCM features. There was also a marked effect from the resampling formula used and it was
recommended that a bin width of at least 32 should be used to avoid introducing spurious

relationships between texture features and SUV. In our study, NGTDM and GLSZM features were



particularly sensitive to varying the bin width. They also showed the lowest CCC when varying the
SUV nax segmentation thresholds.

In contrast to the high sensitivity to segmentation and bin width changes seen with high-order
statistical features in our study, a number of high-order regional features have shown good test-
retest reproducibility similar to that found with SUVnay in another study of ®F-FDG PET scans in
patients with oesophageal carcinoma [30].

A further study examined the effects of different segmentation algorithms (fixed, adaptive and fuzzy
locally adaptive Bayesian) and partial volume correction on textural features [18]. It was found that
the calculated heterogeneity parameters were more sensitive to segmentation than partial volume
correction. In general, second-order parameters, including entropy and homogeneity, were most
robust.

In a study by Galavis et al., the raw *®F-FDG-PET data of twenty patients diagnosed with different
types of cancer were reconstructed with different acquisition modes and reconstruction parameters
and some variability of textural features was noted [27]. In particular, the study evaluated the
variability of 50 textural features between 2D and 3D acquisition modes and differing reconstruction
algorithms and found that 40 of them showed large variations. The smallest variations were
observed in energy, entropy (first-order), maximal correlation coefficient and low grey-level run
emphasis with intermediate variation in entropy (second-order), sum entropy, high grey-level run
emphasis and grey-level non-uniformity. These features that were included in our study were
relatively robust to smoothing and segmentation changes.

A potential limitation of our study is that only fixed threshold methods of segmentation were used.
Although our study showed that using thresholding as a segmentation method has little effect on
the precision of most textural features, other techniques such as a fuzzy locally adaptive Bayesian
(FLAB) algorithm [18] have been reported to lead to even smaller precision errors. In addition, only
one formula was used to calculate the resampled values in our study and it has previously been

noted that different resampling formulae can impact on texture feature calculations [28]. Similar to



previous studies, we only included *®F-FDG PET scans of oesophageal carcinoma and it is possible
that the effects of smoothing, segmentation and quantisation would be greater in other tumour
types.

A variety of textural features have been described in medical imaging but it is known that there is
often correlation between features [28] suggesting that the number of features used in future
studies could be reduced. Whilst, in general, second-order, GLRL and fractal analysis parameters are
the most robust with regards to the effects of smoothing and segmentation and some second- and
high-order features have shown robustness in terms of test-retest reproducibility [26], acquisition
mode and reconstruction methods [27], there is some variability in the strengths of individual
parameters in the literature and selection of the number of bin widths would appear to be the
dominant factor that requires optimisation and standardisation when considering the use of texture

features in clinical practice or future studies.

Conclusion

There is growing interest in the measurement of intratumoural heterogeneity by textural analysis in
PET and other imaging modalities as potential predictive and prognostic biomarkers. However, it is
important that we understand the precision of these measurements and the effects of different
processing and analytic methods before they become more widely used, particularly in the
multicentre study setting. Whilst smoothing and segmentation methods have relatively small effects
on most texture features, varying the bin width may have a significant effect on precision.

Standardisation is key to successful clinical implementation of texture analysis.
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Figure legends

Fig. 1 Bar chart illustrating the CCC observed for all 57 textural features with different levels of
smoothing. The features are presented with numbers according to table 2.

Fig. 2 Bar chart illustrating the CCC observed for all 57 textural features with different segmentation
thresholds of percentage SUV,,.x. The features are presented with numbers according to table 2.
Fig. 3 Bar Chart illustrating the CCC observed for all 57 textural features with different bin widths.

The features are presented with numbers according to table 2.
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Tables

TABLE 1. Combinations of the parameters used in this study.

Condition SUV max (%) Bin Width  Smoothing (mm)
Segmentation 45 16 2.5
50 16 2.5
55 16 2.5
60 16 2.5
Smoothing 45 16 2.0
45 16 2.5
45 16 3.0
45 16 3.5
45 16 4.0
Bin Widths 45 8 2.5
45 16 2.5
45 32 2.5
45 64 2.5
45 128 2.5

SUV nax — maximum standardised uptake value
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TABLE 2. Analytical table with texture parameters derived after statistical or model based analysis.

Method

Order

Type

Statistical
based analysis

Statistical
based analysis

Second-
order
statistics

Higher-
order
statistics

GLCM

W N A WN R

N NN R R R R R B B R R R
N P O W o0 N O UL D WDN L O

Angular Second Moment
Autocorrelation

Cluster Prominence
Cluster shade

Contrast

Correlation

Difference Entropy
Difference Variance
Dissimilarity

. Energy

. Entropy

. Homogeneity

. Information Measure Correlation 1
. Information Measure Correlation 2
. Difference Moment

. Inverse Difference Moment Normalised
. Inverse Difference Normalised

. Maximum Probability

. Sum Average

. Sum Entropy

. Sum Variance

. Sum Squares Variance

GLRL

23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

Short Run Emphasis

Long Run Emphasis

Grey Level Non-uniformity

Run Length Non-uniformity

Run Percentage

Low Grey Level Run Emphasis

High Grey Level Run Emphasis
Short Run Low Grey Level Intensity
Short Run High Grey Level Intensity
Long Run High Grey Level Intensity
Intensity Variability

Run Length Variability

Long Run Low Grey Level Intensity

15



NGDTM

36. Coarseness

37. Contrast

38. Busyness

39. Complexity

40. Texture Strength

GLSZM

41. Short Zone Emphasis

42. Long Zone Emphasis

43. Intensity Non-uniformity

44. Zone Length Non-uniformity
45. Zone Percentage

46. Low Intensity Zone Emphasis
47. High Intensity Zone Emphasis
48. Short Zone Low Emphasis
49. Short Zone High Emphasis
50. Long Zone Low Emphasis

51. Long Zone High Emphasis
52. Intensity Variability

53. Size zone Variability

Model Fractal FA

based analysis Analysis 54. Fractal Dimension Mean
55. Fractal Dimension Standard Deviation
56. Lacunarity
57. Hurst Exponent

GLCM — grey-level co-occurrence matrix, GLRL — grey-level run length, NGTDM - neighbourhood

grey-tone difference matrix, GLSZM — grey-level size zone matrix, FA - fractal analys



TABLE 3. Concordance Correlation Coefficient for each texture feature depending on changes in

smoothing, segmentation threshold and bin width.

Smoothing Segmentation Bin width

Textural Feature

Cccc CccC CccC
1. Angular Second Moment 0.99 0.93 0.05
2. Autocorrelation 0.99 0.87 0.01
3. Cluster Prominence 0.97 0.89 0.004
4. Cluster shade 0.99 0.79 0.02
5. Contrast 0.99 0.83 0.04
6. Correlation 0.99 0.71 0.98
7. Difference Entropy 0.99 0.78 0.04
8. Difference Variance 0.99 0.83 0.04
9. Dissimilarity 0.99 0.84 0.05
10. Energy 0.99 0.93 0.05
11. Entropy 0.99 0.92 0.05
12. Homogeneity 0.99 0.86 0.07
13. Information Measure Correlation 1 0.99 0.57 0.28
14. Information Measure Correlation 2 0.99 0.81 0.16
15. Difference Moment 0.99 0.86 0.07
16. Inverse Difference Moment Normalised 0.99 0.83 0.96
17. Inverse Difference Normalised 0.99 0.84 0.93
18. Maximum Probability 0.98 0.76 0.06
19. Sum Average 0.99 0.85 0.02
20. Sum Entropy 0.98 0.88 0.02
21. Sum Variance 0.99 0.87 0.01
22. Sum Squares Variance 0.99 0.86 0.01
23. Short Run Emphasis 0.95 0.81 0.16
24. Long Run Emphasis 0.99 0.89 0.01
25. Grey Level Non-uniformity 0.99 0.86 0.61
26. Run Length Non-uniformity 0.99 0.91 0.56
27. Run Percentage 0.99 0.84 0.26
28. Low GL Run Emphasis 0.99 0.93 0.19
29. High GL Run Emphasis 0.99 0.97 0.83
30. Short Run Low GL Intensity 0.96 0.79 0.16
31. Short Run High GL Intensity 0.99 0.97 0.91
32. Long Run Low GL Intensity 0.99 0.90 0.01
33. Long Run High GL Intensity 0.99 0.77 0.11
34. Intensity Variability 0.99 0.83 0.89
35. Run Length Variability 0.99 0.85 0.48




36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

Coarseness

Contrast

Busyness

Complexity

Texture Strength

Short Zone Emphasis

Long Zone Emphasis
Intensity Non-uniformity
Zone Length Non-uniformity
Zone Percentage

Low Intensity Zone Emphasis
High Intensity Zone Emphasis
Short Zone Low Emphasis
Short Zone High Emphasis
Long Zone Low Emphasis
Long Zone High Emphasis
Intensity Variability

Size zone Variability

Fractal Dimension Mean
Fractal Dimension standard deviation
Lacunarity

Hurst Exponent

0.99
0.99
0.99
0.97
0.99
0.95
0.91
0.90
0.92
0.97
0.58
0.92
0.82
0.63
0.85
0.95
0.89
0.91
0.85
0.99
0.99
0.99

0.82
0.80
0.59
0.33
0.61
0.46
0.69
0.84
0.71
0.92
0.42
0.54
0.47
0.54
0.63
0.54
0.81
0.70
0.81
0.65
0.42
0.81

0.99
0.31
0.11
0.01
0.08
0.02
0.01
0.09
0.61
0.38
0.05
0.03
0.03
0.01
0.01
0.22
0.08
0.38
0.85
0.89
0.93
0.85

CCC - Concordance Correlation Coefficient, GL — grey-level
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TABLE 4. Mean, median and range of the CCC for each group of texture features according to

changes in smoothing, segmentation and bin widths

IZ)EE:: Smoothing  Median Range Siim“jg;citl Median Range BI:AZV;:th Median Range CCC
feature Mean CCC CCC CcC cce CcC CcC cce CCC
GLCM 0.99 0.99 0.97-0.99 0.83 0.85 0.57-0.93 0.18 0.05 0.004-0.98
GLRL 0.98 0.99 0.95-0.99 0.87 0.86 0.77-0.97 0.40 0.26 0.01-0.91
NGTDM 0.99 0.99 0.97-0.99 0.63 0.61 0.33-0.82 0.30 0.11 0.01-0.99
GLSZM 0.86 0.91 0.58-0.97 0.64 0.63 0.42-0.92 0.15 0.05 0.01-0.61
FA 0.96 0.99 0.85-0.99 0.67 0.73 0.42-0.81 0.88 0.87 0.85-0.93

CCC - Concordance Correlation Coefficient, GLCM — grey-level co-occurrence matrix, GLRL — grey-

level run length, NGTDM - neighbourhood grey-tone difference matrix, GLSZM — grey-level size zone

matrix, FA - fractal analysis.
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