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Abstract

Regenerative chatter is a self-excited vibration that can occur during milling and other 

machining processes. It leads to a poor surface finish, premature tool wear, and potential 

damage to the machine or tool. Variable pitch and variable helix milling tools have been 

previously proposed to avoid the onset of regenerative chatter. Although variable pitch tools 

have been considered in some detail in previous research, this has generally focussed on 

behaviour at high radial immersions. In contrast there has been very little work focussed on 

predicting the stability of variable helix tools. In the present study, three solution processes 

are proposed for predicting the stability of variable pitch or helix milling tools.

The first is a semi-discretisation formulation that performs spatial and temporal discretisation 

of the tool. Unlike previously published methods this can predict the stability of variable pitch 

or variable helix tools, at low or high radial immersions.

The second is a time-averaged semi-discretisation formulation that assumes time-averaged

cutting force coefficients. Unlike previous work, this can predict stability of variable helix 

tools at high radial immersion.

The third is a temporal-finite element formulation that can predict the stability of variable 

pitch tools with a constant uniform helix angle, at low radial immersion. 

The model predictions are compared to previously published work on variable pitch tools, 

along with time-domain model simulations. Good agreement is found with both previously 

published results and the time-domain model. Furthermore, cyclic fold bifurcations were 

found to exist for both variable pitch and variable helix tools at lower radial immersions.
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Nomenclature
a direction coefficient (subscripts x and y denoting two directions)

a average direction coefficient for 1 time step (subscripts x and y denoting directions)

A state matrix for the complete system

Ad state matrix for the system delays

Am state matrix for the discretised structural dynamics

As state matrix for the structural dynamics

At state matrix for the time finite element analysis method

b depth of cut (m)

B input matrix for the complete system 

Bd input matrix for the system delays

Bm input matrix for the discretised structural dynamics

Bs input matrix for the structural dynamics

Bt delayed state matrix for the time finite element analysis method

C output matrix for the complete system

Cd output matrix for the system delays

Cs output matrix for the structural dynamics

D feedthrough matrix for the complete system

Dd feedthrough matrix for the system delays

f force (N) (subscripts n,t,x,y denote normal, tangential, x or y direction)

F total force (N) (subscripts x,y denote x or y direction)

g unit step function

h unit step function

j index denoting flute (tooth) number

k index denoting discrete-time step number

Kr radial relative cutting stiffness (-)

Kt tangential cutting stiffness (Nm
-2

)

l index denoting axial layer number

L number of axial discretisation layers

n index denoting discrete local time step within a tool revolution

N number of discrete-time steps per revolution

Nt Number of flutes (teeth) on the tool

Q mapping operator in the time finite element method

R state matrix to generate forces based upon state variable 
T sampling time (s)

u relative vibration (m) (subscripts x, y, denote the x or y direction)

wl,j chip thickness for layer l and flute j (m)

w0 feed per tooth (m)

xd state variable to determine the delay state 
xm state variable for the discretised structural dynamics

xs state variable for the structural dynamics

z axial position on flute, for the time-finite element method

 state variable defining the difference between current and previous vibrations

 spindle speed (rpm)

 average direction coefficient for 1 revolution (subscripts x and y denoting directions)

l,j flute angle for layer l and tooth j (rad)

 matrix of time delays between flutes
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1 Introduction

Despite recent developments in novel manufacturing methods, machining remains one of the 

most widely used manufacturing processes [1]. The productivity of machining is 

fundamentally limited by the onset of regenerative chatter [2]. In particular, regenerative 

chatter can occur when the depth of cut is too large with respect to the dynamic properties of 

the machine, tool, or workpiece [3]. Regenerative chatter leads to an undesirable surface 

finish, increased tool wear, and the possibility of damage to the machine itself. Consequently 

the metal removal rate of the machining process is limited.

As a result, there has been a great deal of research which has aimed to enhance our 

understanding of the regenerative chatter problem, and to provide methods for enhancing the 

chatter stability of machining systems. Perhaps the most logical and widely used approach has 

been to optimise the cutting conditions by determining the so-called stability lobe diagram [3, 

4]. With reference to the example in Figure 1, it can be seen that the regenerative chatter 

stability is a function of depth of cut and spindle speed. Stable cutting can be achieved by 

increasing the spindle speed which has the additional benefit of increasing the material 

removal rate (i.e. productivity). 

An alternative approach is to increase the damping of the machine, tool, or workpiece, so as 

to increase the depth of cut at which chatter occurs. Increasing the damping can be achieved 

by passive [5, 6], semi-active [7-9] or fully active [10-12] means. Another seemingly elegant 

method is to attempt to break up the mechanism of regenerative chatter by rapidly varying the 

spindle speed [13, 14]. In practice, however, this requires very high torque from the machine 

in order to overcome the inertia of the drive system.

For milling problems, the regenerative affect can also be disrupted by changing the pitch 

and/or helix angle of the tool flutes, as illustrated in Figure 2. For variable pitch tools at high 

radial immersion, an analytical solution was developed by Altintas et al [15]. More recently, 

this has enabled the optimisation of tool geometry [16]. A novel mathematical approach has 

also been developed [17] which is well suited to the optimal design of variable pitch tools.

In recent years, the behaviour of milling tools at low radial immersions has been studied in 

detail. In this configuration, the milling tool is often not engaged in the workpiece. This 

�interrupted cutting� can lead to different regenerative chatter behaviour that is characterised 
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by a period doubling or flip bifurcation as opposed to the usual secondary Hopf bifurcation. 

The stability of interrupted cutting has been studied by Merdol and Altintas [18] (who used a 

Fourier series expansion of the periodic cutting forces), Insperger et al [19, 20] ( who used a 

semi-discretisation approach) and Mann et al [21] who used a temporal finite element 

method). It should be noted that to the authors� knowledge none of this previous work has 

demonstrated the existence of cyclic fold bifurcations, and it has focussed on regular pitch 

and regular helix tools.

Furthermore, to the authors� knowledge there has been very little work to predict the stability 

of variable helix tools in either high or low radial immersions. One exception is the work by 

Turner et al [22]. They proposed that variable helix tools could be modelled by taking the 

average pitch for each flute, and then applying the variable pitch stability analysis from 

reference [15]. They showed that the results were acceptable when the axial engagement of 

the tool was low so that the variable pitch approximation remained valid. They also proposed 

that differences between experimental results and time-domain simulation results could be 

attributed to the process damping phenomenon.

The present contribution proposes three model formulations that will be referred to as semi-

analytical formulations. The first is a semi-discretisation method, motivated by [19, 20] but 

suitable for variable pitch/helix tools. The second is a time-averaged semi-discretisation

simplification that has similar assumptions to reference [15]. The third is a temporal finite 

element method based upon reference [23], that is capable of modelling variable pitch tools at 

low radial immersions with a uniform constant helix angle. Compared to earlier work, the 

novel contribution of these methods is that they can predict the stability of:

 Variable pitch tools at low radial immersion

 Variable helix tools at low radial immersion

 Variable helix tools at high radial immersion

The remainder of this paper is organised as follows. First, the mechanism of regenerative 

chatter is described schematically before presenting the three analysis methods. Results for 

high radial immersion are then compared to previously published work on variable pitch 

tools. Results at low radial immersion are then compared to previously published work on 

uniform pitch tools with a constant uniform helix angle. A low radial immersion variable 
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pitch scenario is then presented, and the results compared to time-domain simulations. 

Finally, variable helix scenarios are presented for low and high radial immersions, and 

compared to time-domain simulations.

2 Regenerative chatter

Before presenting the theoretical basis for the proposed modelling methods, it is worthwhile 

to briefly summarise the mechanism of regenerative chatter, for the sake of completeness. 

Consider a milling tool (such as that shown in Figure 2), that is up-milling a workpiece. The 

forces and displacements on a plane normal to tool axis are shown schematically in Figure 3. 

The forces acting on each tooth can be considered to be a function of the thickness of the chip 

being removed by that tooth. These forces will cause a relative motion between the tool and 

the workpiece in the x and y directions. This relative motion imparts a wavy surface finish on 

the just-cut workpiece, and as the tool rotates this wavy surface is cut by the next tooth. The 

chip thickness is therefore a function of the current relative displacement and that when the 

previous tool was cutting the workpiece at this location. The result is a natural feedback 

process, or self-excited vibration, that can be represented by the schematic block diagram in 

Figure 4. 

In the following sections, models will be developed in order to predict the stability of this 

self-excited behaviour for variable pitch and/or helix milling tools.

3 Semi-discretisation method

In this method, the semi-discretisation method [19, 20] is adopted, but reformulated with a 

state-space approach to enable its use on variable pitch and variable helix tools. The 

methodology can be separated into three aspects: discretisation, cutting force modelling, and 

state-space formulation. These aspects will now be described.

3.1 Discretisation

Returning to Figure 2, it can be seen that for variable helix tools the delay between each flute 

varies along the axial depth of the tool. This can be tackled by discretising the tool into L

axial layers with depth b=b/L, and discretising in the time domain so that N time steps occur 

in one tool revolution. For consistency with the literature on discrete-time systems [24], the 

sampling time period is defined as T, and the integer variable k=1,2,�, is used to define the 

value of discrete time, kT. Certain variables are periodic with each tool revolution, which is in 
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contrast to regular pitch tools that are usually considered periodic with each tooth-pass. The

integer variable n=1,2,�,N will be used to define the discrete local time nT within each tool 

revolution.

The relationship between spindle speed  (rad/s) and sampling time period T is therefore:



N

T
2

(1)

As the tool rotates through one complete revolution, the angular position of each axial layer of 

each flute varies periodically as follows:

    Nn
N

n
TnT jljl ,...,2,1       

2
0,, 

 (2)

where l,j(0T) defines the flute geometry of the tool as an angle (in units of radians) from the 

tool axis to the flute�s cutting edge, for each axial discretisation layer l and each flute j.

The pitch between one tooth and the next is given by:

    
     t

t

t

jll

jljl

jl Nj
Nj

Nj

TT

TT
,...,1       

200

00

,1,

,1,

, 






 




 (3)

where Nt is the number of teeth on the tool. The corresponding time delay between one flute 

and the next can be described by integer multiples of the sample time T:















2

round
,

,

jl

jl NT (4)

where the function round represents the rounding of a real number to the nearest integer.

An example is shown in Figure 5. Here, the 16mm diameter tool has two teeth that are 150° 

and 210° apart at the tool tip. The teeth have helix angles of 50° and 40°. A sample time T is 

chosen that is N=60 times greater than the spindle speed, so that the tool circumference (0 to 

360°) can be represented in delay coordinates (0, 1, �, 60). The fluted region of the tool is 

divided into five equally sized axial layers of depth b=0.002m. For each slice l of the tool, 

the delay between one tooth and the next can be obtained by rounding the physical flute 

position l,j(0T) into an integer delay coordinate. For this example the time delays  are 

therefore:
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 
tNL

T



























2139

2238

2337

2436

2535

Ĳ (5)

3.2 Cutting force modelling

A discretised axial layer of the milling cutter that is engaged in the workpiece is considered in 

Figure 3.  Assuming a circular tool path and a feed per tooth w0, the chip thickness for tooth j

on layer l is given by [25-27]:

     
       
       

Nn

k

nTkTukTu

nTkTukTu

nTwnTgw

jljlyy

jljlxx

jljljl

,...,2,1

,...2,1

cos

sin

sin

,,

,,

,0,,















(6)

where ux and uy are the relative vibrations between the tool and workpiece in the x and y

directions respectively. The function g is a unit step function which has value unity when 

flute j at layer l is engaged in the workpiece:

   
 
   or   0

1

,,

,

,

exjljlst

exjlst

jl nTnT

nT
nTg








 (7)

Here, st and ex define the angles at which the teeth enter and leave the workpiece. As with 

previous literature [25] the static component w0sin(l,j) in (6) is neglected in the stability 

analysis because it does not contribute to the regenerative effect. Clearly, the chip generation 

process depends upon the difference between current relative displacements ux, uy, and 

displacements at previous time points. Unlike uniform pitch tools, however, the time delay 

is not constant for each tooth or axial layer. Consequently, it is useful to define an 

intermediate state variable  that describes the difference between the current discrete-time

displacements and the N previous discrete-time displacements within the last revolution:

     
     nTkTukTukT

nTkTukTukT

yyny

xxnx




(8)

The vector  T

yx
ǻǻǻ   has size [2Nx1], and each element describes the vibration relative 

to a previous sample time in the tool revolution.
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Returning to Figure 3, it is commonly assumed [23, 25] that the forces acting on each flute are 

proportional to the chip thickness, giving:

jltrjln

jltjlt

fKf

wbKf

,,,,

,,,



 
(9)

which leads to corresponding forces in the x and y directions:

   
   jljlnjljltjly

jljlnjljltjlx

fff

fff

,,,,,,,,

,,,,,,,,

cossin

sincos








(10)

Substituting (6) and (9) into (10) gives:

          
          jlyyyyjlxxyxtjly

jlyyxyjlxxxxtjlx

kTukTuakTukTuabKf

kTukTuakTukTuabKf

,,,,

,,,,








(11)

where the instantaneous time varying directional coefficients are:

       
       
       
       jlrjljlyy

jlrjljlyx

jlrjljlxy

jlrjljlxx

Kga

Kga

Kga

Kga

,,,

,,,

,,,

,,,

2cos12sin

2sin2cos1

2sin2cos1

2cos12sin

















(12)

The averaged directional coefficients within each discretisation time step T can be obtained by 

integration. In general:

  





N

N

ad
N

ga













2

(13)

where the limits of the integration are chosen so that they span an angle 2/N, which is the 

angle by which the tool rotates for each discrete-time step. This gives:

     
 

     
 

     
 

     
  NnT

NnTrrjlyy

NnT

NnTrjlyx

NnT

NnTrjlxy

NnT

NnTrrjlxx

jl

jl

jl

jl

jl

jl

jl

jl

KK
N

ga

K
N

ga

K
N

ga

KK
N

ga





















































,

,

,

,

,

,

,

,

2sin22cos
4

2cos22sin
4

2cos22sin
4

2sin22cos
4

,

,

,

,

(14)

Note that these direction coefficients vary periodically with each revolution of the tool. The 

resulting average forces within each discretisation step are therefore:
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            
            jlyyyyjlxxyxtjly

jlyyxyjlxxxxtjlx

kTukTuakTukTuabKkTf

kTukTuakTukTuabKkTf

,,,,

,,,,








(15)

These forces can be summed for all teeth and all axial discretisation layers to give the 

resultant forces, Fx and Fy, in the x and y directions. A corresponding matrix formulation can 

then be developed by using the variable  introduced in (8):

 
   

 
 



















kT

kT
nT

kTF

kTF

y

x

y

x
R (16)

The elements of the periodic time-varying matrix R are populated as follows:

      

      

      

      







 


 


 

 









t

t

t

t

N

j

L

l

jlyyjltkN

N

j

L

l

jlyxjltkN

N

j

L

l

jlxyjltk

N

j

L

l

jlxxjltk

nTakhbKnTr

nTakhbKnTr

nTakhbKnTr

nTakhbKnTr

1 1

,,,2

1 1

,,,1

1 1

,,,2

1 1

,,,1

,
2

1

,
2

1

,
2

1

,
2

1









(17)

where h is a unit step function that defines the appropriate delay term:

  
T

k

T
k

kh
jl

jl

jl
,

,

,

0

1
, 







 (18)

3.3 State-space formulation

Returning to Figure 3, the relative motion between the tool and workpiece in the x and y

directions have been defined as ux and uy, respectively. In the present work these are assumed 

to be the same for all axial layers of the tool. This relative motion arises due to the structural 

dynamics of the tool or workpiece, which can be represented in state-space form as:

  

 
ss

ssss

xC

BxAx
























12

1

y

x

y

x

D

u

u

F

F


(19)

where the subscript s denotes the structural dynamics, and D is the total number of states used 

to model the vibration in the x and y directions.
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Discretising the continuous time dynamics (19) gives:

     
 

 
   kT
kTu

kTu

kTF

kTF
kTTkT

m

y

x

y

x

mmm

xC

BxAx

s

m




















(20)

where Am and Bm are given by the matrix exponential:

     

    
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Meanwhile, the relationship between the relative vibration u and the delay state  can be 

represented in discrete-time state-space form as:
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The terms in (22) are:
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The schematic block diagram shown in Figure 4 can now be replaced by the mathematical 

model shown in Figure 6. Combining (20), (22) and (16) gives:
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where:
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Consequently the states of the system vary between one tool revolution and the next tool 

revolution as follows:

 
              

 



















kT

kT
TTNNT

NTkT

NTkT

d

m

d

m

x

x
BCABCABCA

x

x
1 (26)

The asymptotic stability of the system is therefore governed by the eigenvalues or 

characteristic multipliers of           TTNNT BCABCABCA  1 . Characteristic 

multipliers (CM�s) with magnitude greater than unity indicate an asymptotically unstable 

system, i.e. chatter, and the value of the maximum CM as it crosses the unit circle indicates 

the type of bifurcation which occurs [28]. For a secondary Hopf or Neimark bifurcation, the 

maximum CM crosses the unit circle with a non-zero imaginary component, and quasi-

periodic motion occurs. For a period doubling or flip bifurcation, the maximum CM crosses 

the unit circle at -1, and period two motion occurs. For a saddle-node or cyclic fold 

bifurcation, the maximum CM crosses the unit circle at +1, and period one motion occurs. 

Cyclic fold bifurcations are often associated with the �jump phenomenon� where the periodic 

motion is replaced by another remote solution as the control parameter (i.e. depth of cut) is 

increased [28]. To the authors� knowledge, cyclic fold bifurcations have not been observed in 

previous work on milling chatter, except where it arises due to tool runout [29]. However, it 

should be noted that Insperger and Stepan [30] identified similar behaviour during turning 

operations with a periodically varying spindle speed. 

4 Time averaged semi-discretisation approach

In this section, the semi-discretisation method will now be simplified slightly. A considerable 

amount of computation time is required to compute the product 

          TTNNT BCABCABCA  1 in Eq. (26) when the order N is large. This 

issue can be avoided if the time varying direction coefficients are averaged across an entire 

tool revolution. In general:



12

   
ex

st

ad
N

ad
N

g














22

2

0

(27)

This is equivalent to the assumption used by Budak and Altintas [31] who expressed the 

direction coefficients as a Fourier series and selected only the first term in the series. The 

resulting time-averaged direction coefficients are:
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It should be noted that these differ from the values given by Altintas [25] by a factor of Nt, 

because in the present formulation the summation for all teeth occurs separately. Since these 

coefficients are no longer periodically time varying, Eq. (16) can be rewritten with a constant 

value for R:
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Where the constant elements of R are:
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The state-space representation of the system is now given by:
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where:
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Consequently, stability can be determined directly from the eigenvalues of (A+BC).

The advantages of this time-averaged semi-discretisation formulation are twofold. First, the 

computation time is faster as previously mentioned. Second, the formulation is equivalent to 

the method of Altintas and Budak [31] in that the direction coefficients are time-averaged in 

the same fashion. This allows the axial and temporal discretisation methodology to be 

validated by a direct comparison with published work on variable pitch tools.

5 Time Finite Element Formulation

A key issue with the previous two methods is that they perform axial discretisation of the tool, 

as well as discretisation in the time domain. Although the convergence of time domain semi-

discretisation was investigated by reference [19], axial discretisation has not previously been 

considered for semi-analytical models. It is therefore important to compare the stability 

predictions with those from alternative models that do not perform axial discretisation of the 

tool. Recent work by Patel, Mann, and Young [23] has investigated the stability of uniform

pitch tools at low radial immersions, and shown that the constant helix angle of the tool has a 

significant effect on the period doubling bifurcation behaviour. This method performed 

analytical integration over the axial length of the tool, and the approach will now be extended 

to consider the case of a variable pitch tool, under the assumption that only one flute is 

engaged in the workpiece at any one point in time. For the sake of brevity, a full derivation is 

not presented here. Instead, the theory described by [23] is briefly outlined, with emphasis on 

modification of the approach for the case of variable pitch tools. It should be noted that this 

will enable the constant helix angle of a variable pitch tool to be considered, but the approach 

is not yet suitable for variable helix angle tools.

Patel et al [23] considered a single-degree of freedom vibration aligned with the tool feed 

direction (i.e. the x-direction of Figure 3). They showed that the cutting force in the x-

direction can be written as a continuous function of the axial position z and time delay  as:
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The limits of integration were shown to be piecewise continuous and can be summarised 

graphically with the help of Figure 7.  In the first regime (Figure 7a) a flute is entering the cut, 

whilst in the second regime (Figure 7b) a flute is in the middle of the cut (and may or may not 

be engaged in the workpiece across its entire length). In the third regime (Figure 7c) the tool 

leaves the cut, and this is followed by a period of time where there are no cutting forces and 

the tool experiences a free vibrational decay (Figure 7d). This process is then repeated for the 

next flute on the tool (Figure 7e). 

For a uniform pitch tool, the solution to the equation of motion is periodic for each flute 

(Figure 7a to d). Whilst an analytical solution for the free decay behaviour (Figure 7d) is 

straightforward, the behaviour during cutting is described by a delay-differential equation 

which is solved with an approximation method. Patel [23] and previous authors [29] have 

applied the temporal finite element analysis (TFEA) method, which allows the delay-

differential equation to be transformed into a discrete map.

To implement the TFEA method, the delay-differential equation is first written in state-space 

form as:

          ttttt tt yByAy (34)

Where At is the state matrix and Bt is the delayed state matrix. An assumed solution is used 

for the states y and the delayed states y(t-). The method of weighted residuals is then applied 

to the assumed solution, so as to minimise its error [32]. The results from each temporal 

element can then be combined, along with the equation describing the free-decay behaviour, 

to form a discrete map in the form:

,...2,1          1   jjj Qyy (35)

which describes the states of the system for each tooth pass j as a function of the states for the 

previous tooth pass j-1.

It transpires that this procedure can be readily extended to the problem of variable pitch tools 

provided that only one tool is in contact with the workpiece at any one point in time. The 

method of Patel et al [23] is simply applied to each flute of the tool in turn. The matrix Q will 

be different for each flute because each flute will have its own delay term  in (34).
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Consequently, Eq. (34) and (35) must be rewritten for each flute, leading to the behaviour 

from one tool revolution to the next:

ttt NjNNj  yQQQy 11 (36)

The stability of the system can therefore be determined by the eigenvalues or characteristic 

multipliers of the product 11 QQQ tt NN .

6 Results: uniform and variable pitch tools

So far, two modelling approaches have been proposed for predicting the stability of variable 

helix tools, and one method for predicting stability for variable pitch tools with a constant 

uniform helix angle, at low radial immersion. The predictions from these models will now be 

compared to previously published results and time-domain simulations.

6.1 High radial immersion

To illustrate the performance of the approach on standard and variable pitch milling tools, the 

work of Budak, Engin and Altintas [15] is reconsidered. In [15] and [17], a milling tool was 

investigated under the conditions described in Table 1. Analytical solutions were developed 

for the uniform pitch and variable pitch tools, and (for the variable pitch tool) these were 

compared to substantial experimental data as well as time-domain model results. It was 

demonstrated that the analytical method provided very accurate prediction of the chatter 

stability. In Figure 8 the results using the time-averaged semi-discretisation approach are 

compared to Altintas�s analytical method, using the same parameters as their experimental 

work [17]. It can be seen that the time-averaged semi-discretisation approach agrees closely 

with the results of prior work. 

For the uniform pitch tool, Altintas�s analytical result does not require an iterative method and 

so the result can be computed very quickly � 0.2 seconds on a 1.7GHz laptop. Meanwhile, the 

time-averaged semi-discretisation solution took 30 seconds. The difference between the two 

approaches can be attributed to the convergence issues when using the time-averaged semi-

discretisation approach, along with the effect of the interpolation or contouring between the 

data points.

For the variable pitch tool, Altintas�s method requires an iterative approach to search for an 

admissible real-valued eigenvalue for each data-point on the curve. Consequently the solution 
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time is much slower and depends to a large extent on the efficiency of the programming code. 

For the code used in the present study the solution was obtained in 70 seconds. In contrast, the 

time-averaged semi-discretisation approach still took 30 seconds, since the problem 

formulation is essentially the same as for a uniform pitch tool. Furthermore, the time-

averaged semi-discretisation approach allows the user to specify the spindle speed at which 

the results are computed. In contrast, Altintas�s variable pitch solution gives this information 

as an output, and as a result the data points on Figure 8b are not regularly spaced.

This agreement between the proposed time-averaged semi-discretisation model and the work 

of others serves to validate the time-averaged semi-discretisation approach for a variable pitch 

problem at high radial immersion. 

6.2 Lower radial immersions

At lower radial immersions, a semi-discretisation approach is more appropriate than the fully 

discrete method since it is able to capture the period-doubling, or flip bifurcations, that give 

rise to periodic loss of contact for different flutes of the tool. Recent work [23] has 

demonstrated experimentally the stability of uniform pitch tools at low radial immersions, 

with special emphasis on the role of a constant uniform helix angle on the stability boundary. 

The cutting scenario considered in reference [23] is summarized in Table 2, and in the present 

contribution this work is extended to consider the variable pitch tool (also described in Table 

2). 

For the uniform pitch tool the original TFEA solution [23] is compared to the time-averaged 

semi-discretisation and semi-discretisation methods in Figure 9a. It can be seen that the semi-

discretisation method agrees closely with the TFEA method, and is able to predict the so-

called �islands of instability� that were obtained in reference [23]. This is a useful result since 

the semi-discretisation predictions required axial discretisation of the tool, and yet they agree 

closely with an experimentally validated model that did not require axial discretisation. It 

should be noted that these islands of instability arising due to period doubling bifurcations 

were first observed by Zatarain et al [33].

It can be seen from Figure 9a that the time-averaged semi-discretisation method gives 

stability boundaries that resemble those from the TFEA and semi-discretisation methods, but 
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that the prediction cannot model the islands of instability. This is due to the time-averaged 

cutting force model which is not able to predict the onset of period-doubling bifurcations.

For completeness, the prediction from the semi-discretisation method is compared to Patel 

and Mann�s experimental data [23] in Figure 9b. This experimental data focussed on the 

island of instability, and it can be seen that the predicted stability boundary agrees closely 

with the experimental data.

For a variable pitch tool the new TFEA solution is compared to the time-averaged semi-

discretisation and semi-discretisation methods in Figure 10a. Again, the semi-discretisation

and TFEA solutions agree closely, whilst the time-averaged semi-discretisation method fails 

to predict the period-doubling bifurcations. 

The behaviour shown in Figure 10a has not yet been compared to experimental data. 

Consequently, the variable pitch scenario was also compared to a time-domain simulation. 

This simulation used the model described in reference [34], which is a kinematic model of the 

milling process based upon reference [35] but implemented in Simulink. The model was 

configured to use 20 axial discretisations of the tool, 500 simulated tool revolutions, and 2048 

time steps per revolution, and the convergence of the solution was verified. Once per 

revolution samples of the simulated vibration were plotted to explore the stability of the 

simulated response, along with recordings of the chip thickness. The simulation was repeated

for 32 different spindle speeds and 31 different depths of cut between 0.5mm and 16mm.

The results from the time-domain simulation are compared to the semi-analytical  methods in 

Figure 10b. It can be seen that the time domain model agrees very closely with the proposed 

semi-analytical methods. Of particular interest, however, is the behaviour in the regions 

indicated as �A� and �B� on Figure 10b. This behaviour is explored in detail in Figure 11, 

which shows the eigenvalues (Characteristic Multipliers) obtained using the semi-

discretisation method, along with the 1/revolution samples from the time-domain simulation. 

The 1/revolution samples were obtained by performing a separate simulation at each depth of 

cut, and plotting the 1/revolution displacement for the last 10 cycles of the tool. If the 

simulated response is stable then these last 10 cycles should have reached a steady-state 

forced-vibration condition, which means that they should all have the same 1/revolution 

sampled value, and should appear as a discrete point on the diagram. In Figure 11b, this can 

be seen to occur for depths of cut up to 6mm. Beyond this point, period two motion can be 
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seen to occur: the 1/rev samples alternate between two values indicating a period doubling or 

flip bifurcation. This bifurcation is accurately predicted by the semi-discretisation method: the 

characteristic multipliers (Figure 11a) cross the unit circle at -1 when the depth of cut 

increases from 6 to 7mm. As the depth of cut in increased further, the time-domain simulation 

shows a secondary Hopf bifurcation at 12mm. 

Figure 11c and d correspond to case �B� on Figure 10. In this case, the semi-discretisation

characteristic multipliers indicate a cyclic-fold bifurcation between 4mm and 5mm. This is 

particularly interesting since to the authors� knowledge there have been no previous reports 

(analytical or experimental) of this particular behaviour during milling. It is however 

acknowledged that cyclic fold bifurcations can occur if tool runout is considered, and that 

similar bifurcation behaviour has been observed for variable speed turning operations [30].

The existence of a cyclic fold bifurcation cannot be directly shown from the bifurcation 

diagram shown in Figure 11d, since the post-bifurcation behaviour still exhibits period one 

motion. However, Figure 11d shows a secondary Hopf bifurcation at 14mm, and at this 

bifurcation there is a sharp discontinuity in the value of the 1/rev samples, which is indicative 

of the �jump phenomena� associated with cyclic fold bifurcations [28].

In Figure 12 the behaviour for cases �A� and �B� are further explored by plotting the simulated 

chip thickness for the final two simulated tool revolutions. The tooth number of each of the 

three teeth is labelled to help illustrate the periodicity of the solution. For case �A� (Figure 

12a) at 5.5mm depth cut, the simulated response is stable and periodic with each tool 

revolution. At 7.5mm depth cut, the response is periodic over two tool revolutions and one of 

the flutes has lost contact with the workpiece on alternate revolutions. This clearly indicates a 

period-doubling bifurcation. For case �B� (Figure 12b) at 2mm depth cut, the response is 

stable and periodic with each tool revolution. However, when the depth of cut is increased to 

3mm, one of the flutes loses contact with the workpiece during the cut (Tooth 1 at samples 

400 to 440, and 2450 to 2490). This behaviour repeats itself every tool revolution. 

Consequently the loss-of-contact is associated with a cyclic fold bifurcation, rather than a 

period doubling bifurcation.

Returning to Figure 10b, this loss-of-contact behaviour can be seen superimposed on the 

stability predictions. It can now be seen that the cyclic-fold bifurcation that is predicted by the 

TFEA and semi-discretisation methods is associated with a period-one loss-of-contact in the 
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time domain simulation. Further work is needed to explore this issue in detail, but based upon 

the findings here, an interesting corollary emerges: Period doubling bifurcations are 

associated with a flute of the tool failing to engage in the workpiece during alternating 

revolutions [29], whilst the cyclic fold bifurcation appears to be associated with a lack of 

engagement for every revolution.

To summarise the results so far, the fully discrete method has been shown to match 

experimentally validated work on uniform and variable pitch tools at high radial immersion. 

Meanwhile, the semi-discretisation method matches experimentally validated work on 

uniform pitch tools with a constant uniform helix angle at low radial immersion. The method 

also agrees closely with the proposed variable pitch TFEA method, as well as a 

comprehensive time domain simulation. 

In the next section, the time-averaged semi-discretisation and semi-discretisation methods 

will be compared to time domain simulations for variable helix tools.

7 Results: Variable helix tools

As for the earlier results, a single-degree-of-freedom flexure was considered and the tool itself 

assumed to be rigid. Two cutting scenarios were considered: a three-flute variable pitch tool 

with a 1mm radial immersion down-milling cut, and a two flute variable pitch tool with a full 

immersion cut. The details are shown in Table 2. Comprehensive time-domain simulations 

were performed over an appropriate range of spindle speeds and depths of cut. As before, 

1/revolution sampling was performed to determine the existence of period doubling or 

secondary Hopf bifurcations, and the simulated chip thickness was examined to determine 

any stable loss-of-contact.

The results for the three-flute tool at low radial immersion are shown in Figure 13. The semi-

discretisation approach indicates a region of instability that is governed by secondary Hopf 

bifurcations which has a different shape to that of the classical stability lobes for a regular tool 

(Figure 1). The unstable region is also in contrast to the islands of instability observed by 

Patel [23] and Zatarain [33] which are associated with period doubling bifurcations rather 

than secondary Hopf bifurcations. The time-averaged semi-discretisation prediction agrees 

reasonably closely with the semi-discretisation prediction, but can only predict the existence

of secondary Hopf bifurcations. The corresponding time-domain simulation results are shown 

in Figure 13b. The secondary Hopf and period doubling bifurcations agree closely with those 
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from the semi-analytical methods, but there are more scenarios where a cyclic fold bifurcation

occurs. As mentioned earlier, further work is needed to properly characterise this stable loss-

of-contact behaviour.

The results for the two-flute tool at full radial immersion are shown in Figure 14. In this case, 

only secondary Hopf bifurcations were observed in the semi-analytical methods and also in 

the time-domain simulation. The semi-discretisation predictions agree closely with the time-

domain simulation, but the time-averaged semi-discretisation method does not predict the 

same stability boundary. For this example, the region of instability around 1400rpm, 2mm is 

clearly an isolated island of instability due to secondary Hopf bifurcations. Again, this is in 

contrast to the period doubling islands of instability described by Patel [23] and Zatarain [33].

8 Discussion

The new theoretical formulations have shown strong agreement with previously published 

work as well as with time-domain simulations. However, various aspects of the results are 

worthy of further discussion.

First, from a practical aspect, the stability of variable pitch / helix tools could be strongly 

influenced by issues such as milling tool run-out or eccentricity, and nonlinearity in the 

relationship between cutting force and chip thickness. Furthermore, the as-manufactured tool 

geometry (pitch and helix angles) may differ from that used for the stability prediction. 

However, predictions investigated by the authors to date have suggested that the stability 

boundaries for variable pitch and variable helix tools tend to change smoothly as the tool 

geometry is modified. Although the models have been shown to compare well with previous 

experimental data on variable pitch tools (at high radial immersion), and regular helix tools 

(at low radial immersions), it is clear that more experimental testing is needed. This is 

particularly true for the case of variable helix tools, where the models have only been 

validated against time-domain simulations. This will be the subject of future work.

From a process design aspect, the stability of variable helix tools has been shown to exhibit 

some interesting and unusual behaviour that could be of interest to the machinist. In 

particular, it has been shown that such tools can re-stabilise at higher depths of cut, suggesting 

that greater productivity can be achieved. However, this behaviour is strongly related to the 

structural dynamics of the system, suggesting that the tools are most likely to be of use for 

very specific applications, rather than general machining. Meanwhile, variable pitch tools 
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have been shown to suffer from additional unstable behaviour as their radial immersion is 

reduced. Unfortunately this period-one instability seems to coincide with the increased 

stability that was achieved by introducing the variable pitch geometry. For example, in Figure 

9 at around 2500 rpm the stable depth is about 4mm, and for the equivalent variable pitch tool 

(Figure 10) this is increased to 8mm, except for the region of period-one instability. This 

suggests that great care must be exercised when using variable pitch tools at a low radial 

immersion.

From a nonlinear dynamics aspect, more work is needed to explore the behaviour associated 

with the cyclic fold bifurcation in variable pitch tools. However, numerical or experimental 

investigation of cyclic fold bifurcation would require a simulation or experiment whose 

parameters (depth of cut and spindle speed) could be slowly varied during the (simulated) cut 

run so as to obtain a bifurcation diagram. This would be a challenging exercise for both 

physical experiments and numerical simulations.

Finally, it is interesting to note that the time-averaged semi-discretisation method was 

reasonably accurate for the variable pitch tool at low radial immersions, but less accurate for 

the full radial immersion case. This result is counter-intuitive since it would be expected that 

the time-averaged cutting force coefficients were a better approximation as the cut became 

less interrupted (i.e. at higher radial immersion). One possible explanation is as follows. The 

existence of islands of secondary Hopf bifurcation instability, such as that shown in Figure 

14, show that the stability of the tool can both increase and decrease as the depth of cut is 

increased. Consequently there can be regions where the stability of the tool has a local 

minima, without actually becoming unstable. In these regions, the error due to the use of 

time-averaged cutting force coefficients may cause the local minima to be unstable.

9 Conclusions

This work has proposed three alternative model formulations for regenerative chatter in 

milling. Unlike previously published work, the models are between them able to predict the 

stability of:

 Variable pitch tools at low radial immersion,

 Variable helix tools at low radial immersion,

 Variable helix tools at high radial immersion.



22

Although new experimental data has not been presented, good agreement was found with 

previously published work [15] on variable pitch tools at high radial immersion. Good 

agreement was also found with previously published work [23] that considered the constant 

uniform helix angle of a uniform pitch tool. Furthermore, all the models were compared 

against a comprehensive set of time-domain simulations. However, experimental work is 

needed to investigate the effect of issues such as run-out, and sensitivity to the as-

manufactured tool geometry.

Of the three models presented, the TFEA method was the most efficient numerically, but its 

application is currently limited to variable pitch tools at low radial immersion. The semi-

discretisation method was applicable to all types of tools, but was numerically intensive. The 

time-averaged semi-discretisation method was faster to compute, but the approximations in 

the cutting force coefficient led to greater deviation compared to time-domain or previous 

experimental data.

The stability predictions have indicated that at low radial immersions variable pitch tools 

suffer from an additional region of instability that may reduce the advantage gained by 

introducing the pitch variation. Meanwhile, variable helix tools exhibit islands of instability, 

suggesting that large productivity improvements could be possible by increasing the axial 

depth of cut. However, this behaviour is dependant upon the tool geometry and structural 

dynamics of the system. Consequently the tools may only be useful for specific machining 

problems.

For a variable pitch and helix tools at low radial immersion, previously unreported cyclic-fold 

bifurcations were predicted. In the time-domain model this bifurcation was found to be 

associated with tooth loss-of-contact that repeated periodically with every revolution of the 

tool. This is in contrast to the behaviour observed in a period-doubling bifurcation, where 

tooth loss-of-contact occurs periodically with every two revolutions of the tool. However, the 

loss-of-contact behaviour was found to be more widespread in the time-domain simulation 

results that for the predictions from the semi-discretisation method.
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Tool diameter (mm) 19.05

Number of flutes 4

Variable flute pitch 70°-110°-70°-110°

Uniform flute pitch 90°-90°-90°-90°

Helix angle 30°

Radial immersion (mm) 9.525

Milling mode Down milling

Kt (MPa) 697

Kr (-) 0.367

x-direction modes

Natural frequencies (Hz) 441.64 563.6 778.56

Modal effective masses (kg) 11.125 1.4986 13.063

Damping ratios (-) 0.028722 0.055801 0.058996

y-direction mode

Natural frequency (Hz) 516.21

Modal effective mass (kg) 1.199

Damping ratio (-) 0.025004

Table 1: Tool and cutting parameters for the uniform tool and variable pitch tool studies.



Flute pitch Flute Helix

Uniform pitch tool 120°-120°-120° 30°-30°-30°

Variable pitch tool 120°-100°-140° 30°-30°-30°

Variable helix tool 1 120°-100°-140° 25°-30°-35°

Variable helix tool 2 180°-180° 30°-55°

Tool diameter (mm) 19.05

Radial immersion (mm) 1.00  (19.05 for Variable helix tool 2)

Kt (MPa) 550

Kr (-) 0.3636

x-direction mode

Natural frequency (Hz) 169.3

Modal effective mass (kg) 6.5363

Damping ratio (-) 0.0056

Table 2: Tool and cutting parameters for the flexure studies.
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Figure 1: Typical stability lobe diagram depicting the relationship between spindle speed, depth of cut, 

and chatter. 
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Figure 8: Comparison of stability predictions.  

 time-averaged semi-discretisation method; method of Altintas [15]. 

(a) Uniform pitch tool; (b) Variable pitch tool. 
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Figure 9: Stability lobes for the single-degree of freedom flexure considered by Patel and Mann [23].  

(a) New model formulations 

(b) Comparison of the time-averaged semi-discretisation method with the experimental data in [23]. 

         semi-discretisation method 

  time-averaged semi-discretisation method –  TFEA method. 

 stable experimental tests;  unstable tests;  tests that were not clearly stable or unstable. 
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(a) Semi-analytical methods  

(b) Comparison with time-domain simulations.  

          semi-discretisation method 

  time-averaged semi-discretisation method �  TFEA method. 

The solid markers represent time-domain simulation results, and indicate the lowest depth of cut that 

showed a particular behaviour at each spindle speed.  secondary Hopf bifurcation;  cyclic fold 

bifurcation;  period doubling bifurcation. 
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Figure 11: Stability analysis for the semi-discretisation and time-domain methods.  

(a) Characteristic multipliers at 2875rpm (case ‘A’), b=1,2,…,9mm (b) 1/rev samples of steady-state 

vibration at 2875rpm. 

(c) Characteristic multipliers at 2510rpm (case ‘B’), b=1,2,…,6mm (d) 1/rev samples of steady-state 

vibration at 2510rpm. 
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Figure 12: Chip thickness prediction (for one axial slice of the tool) from the time-domain simulation. The 

�flute number� is shown for each tooth to indicate the periodicity of the solution 

(a) 2875 rpm (case �A�).  - - - b=5.5mm;  � b=7.5mm. 

(b) 2510 rpm (case �B�). - - - b=2mm; � b=3mm. 
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Figure 13: Stability predictions for a three-flute variable helix tool at 5.25% radial immersion. 

 (a) semi-analytical methods (b) time domain simulation.  � time-averaged semi-discretisation method;  

  and markers: semi-discretisation method 

 secondary Hopf bifurcation;  period doubling bifurcation;  cyclic fold bifurcation. 
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Figure 14: Stability predictions for a two-flute variable helix tool at 100% radial immersion. 

(a) analytical methods (b) time domain simulation.  

 secondary Hopf bifurcation (semi-discretisation method and time-domain model); 

 secondary Hopf bifurcation (time-averaged semi-discretisation method); 


