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Abstract

There has been increasing interest in new economic models that aim to improve quality of

life without increasing consumption. This article provides the first empirical analysis of

how close modern-day economies are to the concept of a “steady-state economy”, and

explores whether there is any relationship between a country’s proximity to such an

economy and its social performance. The analysis is carried out using the Degrowth

Accounts, a set of 16 biophysical and social indicators that are derived from Herman

Daly’s definition of a steady-state economy and the social goals of the degrowth

movement. These indicators are applied to ~180 countries over a 10-year period. The

analysis reveals that the majority of countries in the world are biophysical growth

economies. There are only a small number of countries where resource use is relatively

constant from year to year (e.g. Denmark, France, Japan, Poland, Romania, and the US),

and only four countries experiencing biophysical degrowth (Germany, Guyana, Moldova,

and Zimbabwe). There are no countries that achieve a true steady-state economy, defined

as an economy with a stable level of resource use maintained within ecological limits.

However, a few countries come relatively close, including Colombia, Cuba, Kyrgyzstan,

Romania, and South Africa. In general, countries with stable resource use perform better

on many social indicators than countries with either increasing or decreasing resource

use. This finding runs contrary to conventional economic thought. However, social

performance is also higher in countries with greater per capita resource use. Overall,

these findings suggest that a steady-state economy can be socially sustainable, but

countries need to become much more efficient at transforming natural resources into

human well-being if all seven billion people on Earth are to lead a good life within

ecological limits.

Keywords: indicators; steady-state economy; degrowth; resource use; well-being.

Highlights

 Indicators are developed to show how close countries are to a steady-state economy

 These are used to test the relationship between resource use and social performance

 Social performance is highest in countries with large but stable resource use

 There are no countries that achieve a true steady-state economy

 A steady-state economy can be socially sustainable but resource use must be reduced
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1 Introduction

The scale of the human enterprise has increased at an unprecedented rate since the

beginning of the industrial revolution. Over the last century, the size of the global

economy (as measured by real GDP) increased by a factor of twenty-four (Maddison,

2010). At the same time, global energy use increased by a factor of eleven and material

use increased by a factor of eight (Krausmann et al., 2009). Environmentally-minded

critics of growth argue that the increasing scale of economic activity cannot continue

indefinitely due to finite environmental limits (Rees, 2003), many of which are already

being surpassed (Hoekstra and Wiedmann, 2014; Steffen et al., 2015). Socially-minded

critics argue that even if economic growth could continue, it is no longer a desirable goal

for wealthy nations to pursue because it is failing to improve people’s lives: although per

capita GDP has more than tripled in nations like the US and UK since 1950, measures of

subjective well-being (e.g. happiness) have flat-lined (Layard, 2005; Easterlin et al., 2010).

Finally, practically-minded critics argue that high rates of growth may simply not be

possible in industrialised countries anymore due to structural changes such as an ageing

population and high levels of debt (Gordon, 2012).

These criticisms have led a number of authors to call for a different economic model

whose aim is to improve quality of life without relying on increasing consumption

(Victor, 2008; Jackson, 2009; Chancel et al., 2013). Two ideas that are particularly

important in this discourse are “degrowth” (Latouche, 2009; D'Alisa et al., 2014) and a

“steady-state economy” (Daly, 2008; Czech, 2013; Dietz and O'Neill, 2013). The concept of

a steady-state economy was largely developed by ecological economist Herman Daly in

the 1970s (Daly, 1973; 1977), although it traces its roots as far back as the classical

economists. It may be defined as an economy where the main biophysical stocks and

flows are stabilised, and where material and energy flows are kept within ecological

limits. It is worth stressing that the definition of a steady-state economy is entirely

biophysical. It does not refer to rates of GDP growth (or other socio-economic indicators

for that matter).

The idea of degrowth, on the other hand, largely emerged in France as la décroissance, but

has proliferated in recent years. Since 2007 there have been close to 130 academic articles

published on the topic, and seven special issues in peer-reviewed journals (including two

in this journal). Although definitions of degrowth remain contentious, it has been defined

as an equitable downscaling of economic production and consumption that increases

human well-being and brings material and energy use within ecological limits (Schneider

et al., 2010; Kallis, 2011). While steady-state economists tend to believe market

mechanisms can be used to stabilise resource use, advocates of degrowth question

increased commodification, and are more sceptical of capitalist institutions in general.

Moreover, advocates of degrowth tend to place more emphasis on social outcomes than

their steady-state counterparts. Nevertheless, the two concepts are seen by many as

complementary (Martínez-Alier, 2009; Kerschner, 2010; Kallis et al., 2012). If resource use

and waste emissions exceed ecosystem limits, then a process of degrowth may be needed

before a steady-state economy can be established.

Both of these concepts, and the debates surrounding them, have remained largely

theoretical to date. This study attempts to answer two important empirical questions: (i)
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How close are modern-day national economies to a steady-state economy? (ii) Are

countries that are closer to a steady-state economy better or worse places to live than

those that are further away?

These questions are answered using the Degrowth Accounts, a set of 16 biophysical and

social indicators designed to measure progress in the degrowth transition to a steady-state

economy. The indicators reflect Daly’s biophysical definition of a steady-state economy

and the social goals of the degrowth movement. The conceptual development of the

Degrowth Accounts is discussed in detail in two earlier publications (O'Neill, 2012a;

2015). The purpose of this article is to operationalise these accounts.

The remainder of this article is organised as follows. Section 2 briefly summarises the

structure and indicators contained in the Degrowth Accounts. Section 3 presents an

empirical analysis of these indicators for ~180 countries over a 10-year period. The

analysis shows how close countries are to the biophysical definition of a steady-state

economy (Section 3.1), how close countries are to the social goals of degrowth (Section

3.2), and the relationship between social performance and both biophysical stability and

biophysical scale (Section 3.3). Section 4 then discusses the implications of the empirical

analysis, in particular the findings on growth, degrowth, and stability (Section 4.1),

unemployment (Section 4.2), and democracy (Section 4.3). This discussion is followed by

a summary of the main contributions (Section 4.4) and limitations (Section 4.5) of the

study. Section 5 concludes.

2 The Degrowth Accounts

This section describes the Degrowth Accounts, including the conceptual framework used

to organise the indicators (Section 2.1), their division into Biophysical Accounts (Section

2.2) and Social Accounts (Section 2.3), and the specific indicators that are included

(Section 2.4).

2.1 Conceptual Framework

The 16 indicators in the Degrowth Accounts are organised using Herman Daly’s (1977)

“Ends–Means Spectrum”, which acts as a unifying conceptual framework (Fig. 1). This

framework was originally suggested by Meadows (1998) as the basis of an information

system for sustainable development. Such a framework is needed to help ensure that the

set of indicators is comprehensive, and to interpret the relationships among indicators.

The Ends–Means Spectrum organises items in a hierarchy from ultimate means (the natural

resources that sustain life and all economic transactions) to intermediate means (the

factories, machines, and skilled labour that transform natural resources into products and

services) to intermediate ends (the goals that the economy is expected to deliver) to ultimate

ends (those goals that are desired only for themselves, and are not the means to achieve

any other end). The spectrum effectively divides the indicators into two separate

accounts: biophysical and social. The Biophysical Accounts measure the use of means,

while the Social Accounts measure progress towards ends.
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2.2 Biophysical Accounts

The Biophysical Accounts are constructed around Herman Daly's definition of a steady-

state economy (SSE).1 It is worth noting that Daly’s definition has evolved somewhat over

time. While all of Daly’s definitions contain the same basic components, earlier

definitions (e.g. Daly, 1973; 1977) tend to focus more on the idea of constant stocks, while

more recent definitions (e.g. Daly, 1996; 2008) tend to focus on constant flows. Daly

acknowledges this evolution in one of his more recent definitions:

Following Mill we might define a SSE as an economy with constant population and constant

stock of capital, maintained by a low rate of throughput that is within the regenerative and

assimilative capacities of the ecosystem… Alternatively, and more operationally, we might

define the SSE in terms of a constant flow of throughput at a sustainable (low) level, with

population and capital stock free to adjust to whatever size can be maintained by the

constant throughput beginning with depletion and ending with pollution. (Daly, 2008, p. 3)

In general, Daly’s definitions contain three components: stocks (the absolute size of the

economy in physical terms), flows (the material and energy throughput required to

support the economy), and scale (the size of the economy in relation to ecological limits).

The Biophysical Accounts include three stocks (people, livestock, and built capital), three

flows (material use, energy use, and material outflows), and a single measure of scale

(discussed in Section 2.4.5). The result is a set of seven biophysical indicators.

In order to determine how close a country is to a steady-state economy, two quantities are

calculated: (1) the annual rate of change of the above biophysical stocks and flows, and (2)

the scale of the flows in relation to ecosystem sources and sinks. If an economy manages

to achieve relatively constant stocks and flows over the analysis period, then it is referred

to as a biophysically stable economy. In this context, “stable” does not imply sustainable; it

simply indicates that resource demands are not changing over time. If the economy also

manages to maintain material flows within ecological limits, then it is referred to as a

steady-state economy. If, in addition to these biophysical criteria, the country manages to

achieve a high quality of life for its citizens, then it is referred to as a socially sustainable

steady-state economy. These classifications are consistent with Daly’s definitions, and

earlier conceptual work (O'Neill, 2015).

2.3 Social Accounts

Unlike the idea of a steady-state economy, which is defined in biophysical terms,

degrowth is a multidimensional concept. Demaria et al. (2013) identify six key sources

from which degrowth draws inspiration: ecology, bioeconomics, critiques of

development, democracy, justice, and the meaning of life and well-being. In particular,

degrowth draws on the culturalist critique of development (e.g. Illich, 1973; Castoriadis,

1985; Latouche, 2009), which questions the consumer society and its focus on progress,

science, and technology. To many, degrowth is a mot-obus (missile word) that challenges

the hegemony of growth and the idea of “development” itself (Demaria et al., 2013).

1
Given this fact, they might also be referred to as the Steady-State Economy Accounts―a biophysical 

subset of the full Degrowth Accounts.
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Kallis et al. (2014) stress that degrowth is not just about less, but about different. The

authors state that degrowth “signifies a society with a smaller metabolism, but more

importantly, a society with a metabolism which has a different structure and serves new

functions” (p. 4). These new functions include sharing, simplicity, conviviality, care, and

autonomy, while structures to achieve these functions include cooperatives, work sharing,

public money, and the commons (D'Alisa et al., 2014).

The Social Accounts are constructed around the stated goals of the degrowth movement,

as articulated in the declaration from the first international conference on degrowth, held

in Paris in 2008 (Research & Degrowth, 2010). The declaration was the result of a

workshop entitled “Toward a Declaration on Degrowth”, whose goal was to produce a

statement that would not only reflect the points of view of conference participants, but

also articulate their shared vision of the degrowth movement. Although the goals of

degrowth continue to be refined, the Paris Declaration provides a good starting point for

analysis.

There are 24 individual social goals within the text of the declaration, which have been

grouped and reduced here to seven general goals. These goals are human well-being,

health, equality, increased social capital, participatory democracy, the elimination of

poverty, and decreased working time. Two other goals have been added to the seven

goals from the Paris Declaration. The first is low unemployment, and the second is stable

prices. The result is a set of nine social indicators that measures the functioning of the

socio-economic system, and how effectively it delivers human well-being.

As discussed in O’Neill (2012a), there are two main reasons to include unemployment in

the Social Accounts. The first is the well-being benefit of employment, and the second is

the critique (e.g. by Jackson, 2009) that degrowth will result in job losses. Although full

employment (as currently defined) might no longer be a goal in a degrowth future, it is

still important to track the number of people who are looking for a job but unable to find

one. Price stability is also important to include as it is hard to imagine calling an economy

“socially sustainable” if it does not have relatively stable prices. An extensive survey by

Shiller (1996) found that people have very negative perceptions of inflation. These

include concerns that inflation lowers people’s standard of living, allows opportunists to

take advantage of others, creates a social atmosphere that is harmful to morale, and causes

political instability.

2.4 Specific Indicators

For each of the 16 relatively abstract indicators discussed above (and shown in Fig. 1), one

or more measurable proxies were chosen based on the best data available for a large

number of countries (Table 1). The rationale for the selection of individual indicators is

described in detail in O’Neill (2012b). In general, only indicators that were available for a

large number of countries were considered. Two exceptions are the poverty and working

time indicators, where internationally comparable data were simply not available for very

many countries. In these cases it was necessary to use proxies with data for fewer

countries than the other indicators.
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Ideally, consumption-based indicators that include the hidden flows embodied in trade

would be used to measure material and energy flows within the Biophysical Accounts

(O'Neill, 2015). However, although indicators of the resource use associated with final

consumption are becoming increasingly available (e.g. Peters et al., 2011; Lenzen et al.,

2012; Wiedmann et al., 2014), the uncertainty associated with these is still higher than

territorial measures. In order to maximise the number of countries covered, and minimise

the amount of error in the estimate of time trends, relatively conventional measures were

used for the first instance of the Degrowth Accounts. Material use and material outflows

were both measured using territorial indicators that do not account for trade, while

energy use and biophysical scale were measured using indicators of “apparent

consumption”. The latter indicators account for trade by adding imports and subtracting

exports, but do not include the foreign resources required to produce traded goods.

Following O’Neill (2015), the Biophysical Accounts use aggregated indicators that

measure the quantity of resource use (e.g. tonnes of materials and Joules of energy), as

opposed to its quality.

Some of the indicators in the accounts, such as the measures of population growth and

price stability, are simple indicators where data were readily available. Others, such as

the measures of human well-being and scale, are fuzzier concepts, and were more difficult

to quantify. Although it is beyond the scope of this article to discuss each of the 16

indicators in depth (see O'Neill, 2012b for this discussion), some comments are warranted

on five of the specific indicators: human well-being, equality, democracy, built capital,

and scale. These are the indicators where the choice of a proxy was most difficult, or

where additional information is needed to understand the analysis that follows. For the

full set of 16 indicators (and their proxies), the reader is directed to Table 1.

2.4.1 HumanWell-being

The goal of increasing human well-being is central to degrowth, and is often included in

its definition. For example, Schneider et al. (2010, p. 512) define degrowth as “an

equitable downscaling of production and consumption that increases human well-being

and enhances ecological conditions”, while Kallis (2011, p. 879) envisions “a society with a

stable and leaner metabolism, where well-being stems from equality, relation and

simplicity”.

There are a number of different approaches to defining and measuring human well-being,

both subjective and objective. Subjective approaches include the hedonic approach, which

relates well-being to the balance between positive and negative feelings (Kahneman et al.,

2004); the evaluative approach, which relates well-being to an individual’s appraisal of how

his or her life is going (Layard, 2010); and the eudaimonic approach, which relates well-

being to positive psychological functioning and the realisation of potential (Ryan et al.,

2008). Objective approaches, on the other hand, include the preference satisfaction approach,

which relates well-being to the satisfaction of wants and desires (Harsanyi, 1997); and the

capabilities approach, which relates well-being to an individual’s freedom to choose

between different ways of living (Sen, 1993).

With such a wide array of different approaches, it is difficult to know which to use in the

Social Accounts. Some authors, such as Layard (2009), advocate using a single over-
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arching indicator to measure well-being. Layard claims that a single indicator is

necessary in order to be able to evaluate policy options against one another. Other

authors, such as Michaelson et al. (2009), advocate using a collection of indicators from

multiple approaches in a system of national accounts.

A single subjective measure of well-being was chosen as the ultimate end in the Social

Accounts, while objective measures like health were included as intermediate ends. This

choice was made in part because of the causal relationship between indicators. Although

causality could go both ways, the evidence suggests that health has more of an impact on

subjective well-being than subjective well-being does on health (Dolan et al., 2006;

Deaton, 2008; Graham, 2008).

Ideally, human well-being would be measured using an index that combines a small

number of indicators from the hedonic, evaluative, and eudaimonic approaches. Such an

index would capture whether people were both “feeling good” and “doing well”.

However, the data needed to construct such an index were not available for enough

countries. In the interests of pragmatism, human well-being has therefore been measured

using a single evaluative (i.e. life satisfaction) indicator.

The data used are from the World Database of Happiness (Veenhoven, 2014). For most

countries, these data are based on responses to the question “All things considered, how

satisfied are you with your life as a whole these days?” Respondents were asked to give

their answer on a numerical scale from 0 to 10, where 0 is dissatisfied and 10 is satisfied.2

2.4.2 Equality

Greater social equity is an important objective of the degrowth movement, and is often

viewed as an end in itself, as evidenced by the expression “degrowth for social equity”

(Schneider et al., 2010; my emphasis). According to Demaria et al. (2013, p. 209),

“degrowth implies an equitable redistribution of wealth within and across the Global

North and South, as well as between present and future generations”. For some

advocates, such as Paul Ariès (2005), the most important type of degrowth is degrowth in

inequality.

There are two types of equity that are important to discuss. The first, which is

emphasised in the Paris Declaration, is equity between nations, largely in terms of levels of

resource use. The declaration refers to “right-sizing” national economies, and suggests

that for wealthy nations this implies reducing per capita ecological footprint to the

sustainable global level, while for poorer nations this implies increasing consumption to a

“level adequate for a decent life” (Research & Degrowth, p. 524).

The second type of equity, which is emphasised more by Daly (1977; 2008) and advocates

of a steady-state economy, is equity within nations. Daly argues that without growth, the

only way to alleviate poverty is through redistribution, and that it is therefore necessary

to limit the range of income inequality within society. Wilkinson and Pickett (2009) make

even stronger arguments for reducing income inequality. In their book The Spirit Level,

2
Most questions are of type O-SLW/c/sq/n/10/a (used in the World Values Survey) and O-

SLW/c/sq/n/11/a (used in the Gallup World Poll). In some cases the scale used was 1 to 10, but all results

are standardised to a 0 to 10 scale.
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they show that societies with higher income inequality tend to have more health and

social problems, including higher crime rates, increased mental illness, and decreased

trust.

The focus in the Social Accounts is largely on the second type of equity (i.e. equity within

nations). The reason is that the type of international “resource access equity” described in

the Paris Declaration is already accounted for in the Biophysical Accounts, using the

indicator of sustainable scale (see Section 2.4.5). Equity between nations is also captured,

to some degree, by the inclusion of a measure of absolute poverty within the Social

Accounts (see Table 1).

Although equity within nations could theoretically be measured using a variety of

different variables (e.g. gender, education, or happiness), income inequality has been used

in the Social Accounts because low income inequality is an established goal for a steady-

state economy, and data for this indicator are widely available. The specific indicator

used is the Gini coefficient of net income, which measures inequality in household

disposable income (i.e. income after taxes and transfers). The data used are from Solt’s

(2009) Standardized World Income Inequality Database (SWIID), which provides the

largest set of intercomparable data available.

2.4.3 Democracy

A deepening of democracy is another important goal of the degrowth movement. A

number of degrowth scholars claim that the transition to a more ecologically sustainable

society and the transition to a more participatory and democratic society are mutually

supportive goals that must be achieved together (e.g. Schneider et al., 2010). Cattaneo and

Gavaldà (2010) argue that degrowth must be the outcome of a general transition towards

a more democratic and autonomous society—the result of a collective decision for a better

life. They stress that degrowth must not be an externally-imposed imperative, otherwise

it could lead to some form of eco-dictatorship. Cattaneo et al. (2012) suggest that there is a

continuum of positions on the form of democracy needed for degrowth: while some

argue that degrowth would be possible in a reformed parliamentary democracy, others

call for a radical overhaul of the political system and the establishment of direct

democracy.

References to the role of democracy in achieving a steady-state economy are much harder

to find. It is a topic that Daly does not really discuss, and where it is mentioned by other

authors the focus is often on whether a democratic system could lead to a steady-state

economy. As Victor (2008, p. 193) writes, “The dilemma for policy makers is that the

scope of change required for managing without growth is so great that no democratically

elected government could implement the requisite policies without the broad-based

consent of the electorate. Even talking about them could make a politician unelectable”.

Nevertheless, Lawn (2005) argues against critics who suggest that a steady-state economy

could only be accomplished under an authoritarian regime. He claims that a government

wishing to make the transition to a steady-state economy would be democratically

electable provided that people could be convinced of the severity of the ecological crisis,

the desirability of a steady-state economy, and that their current freedoms would be

preserved.
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Most existing indicators of the strength of democratic institutions are based solely on

expert opinion, and do not differentiate between countries at the top of the scale (i.e. those

deemed most democratic). One exception is the “voice & accountability” indicator from

the World Bank’s (2011) World Governance Indicators. This indicator combines survey

data with expert opinions to measure “perceptions of the extent to which a country’s

citizens are able to participate in selecting their government, as well as freedom of

expression, freedom of association, and a free media” (Kaufmann et al., 2010, p. 4). While

it is questionable whether this indicator adequately captures the deepening of democracy

envisaged by many proponents of degrowth, it is the best indicator available for a large

number of countries, and it has therefore been included in the Social Accounts.

2.4.4 Built Capital

In his definition of a steady-state economy, Daly (1977) refers to a constant stock of

artefacts (i.e. built capital), which he defines as including both producer goods and the

total inventory of consumer goods. Producer goods include the machines and other

infrastructure like buildings, roads, and factories that contribute to the production

process, but do not become embodied in its output. Consumer goods could theoretically

include both durable goods (e.g. automobiles, furniture, and household appliances) and

non-durable goods (e.g. food, beverages, clothing, and shoes). However, many non-

durable goods move through the economy so quickly that it is probably more appropriate

to think of them as a flow than as a stock.

Theoretically, it is possible to calculate whether the stock of built capital is growing in

quantity terms using data from Material Flow Accounting studies (Eurostat, 2001; 2007).

If direct material inputs to the economy are larger than direct material outputs, then the

stock of built capital will increase. If the two quantities are equal, the stock will not

change. However, with the exception of a small number of specific studies (e.g. Matthews

et al., 2000; Pauliuk and Müller, 2014; Wiedenhofer et al., 2015), national material flow

accounts are currently not comprehensive enough, particularly on the outflows side, to

allow for the calculation of net additions to stock. Therefore it is necessary to consider

other methods for calculating the change in the stock of built capital over time.

One approach would be to use traditional economic data such as the World Bank’s (2014)

data on gross fixed capital formation. However, there are two problems with using these

data to measure change in the stock of built capital: (1) they measure the economic value

of the stock, not its physical quantity, and (2) they do not account for depreciation. It is

likely for these reasons that there is no significant correlation between the World Bank

data and the limited biophysical data that are available to measure net additions to stock

(O'Neill, 2012b).

The approach used in this analysis therefore relies on night-time lights data. Nocturnal

lighting is one of the hallmarks of humanity’s presence on earth, and the density of

lighting has been shown to match the density of infrastructure (Elvidge et al., 2007). In

order to calculate national trends, annual “sum-of-lights” data published by Elvidge et al.

(2011) were used. These data capture both changes in the intensity and area of nocturnal

lighting, based on satellite imagery from the National Geophysical Data Center. They

therefore capture both densification and expansion of infrastructure. Change in night-
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time lighting is a very rough approximation of change in built capital, but one that is more

consistent with the biophysical definition of a steady-state economy than monetary

measures such as gross fixed capital formation (O'Neill, 2012b).

2.4.5 Scale

Daly suggests that the maximum sustainable scale for the economy should be determined

based on either the capacity of ecosystem sources to regenerate materials, or the capacity

of ecosystem sinks to assimilate wastes—whichever limit is reached first (Daly, 2010). On

the source side, only the flow of renewable materials (i.e. biomass and water) is relevant

for assessing the scale of economic activity, as these are the only materials that ecosystems

regenerate. The flow of non-renewable materials (i.e. minerals and fossil fuels) is largely

irrelevant on the source side, since ecosystems do not regenerate these materials (except

over geological time periods), and hence there is no ecosystem threshold to compare them

to.

Human appropriation of net primary production (HANPP; Vitousek et al., 1986; Haberl et

al., 2007; O'Neill et al., 2007) is an indicator that could be used to assess the scale of

biomass use relative to ecosystem sources. HANPP measures the amount of biomass that

human beings either (1) harvest, or (2) make unavailable through land cover change. It

may be compared to the potential net primary production that would be available in the

absence of human disturbance, to arrive at a measure of the magnitude of human activity

with respect to available biomass flows. The most detailed HANPP study to date

(Krausmann et al., 2013) indicates that human beings currently appropriate about 25% of

global potential net primary production.

Daly (1991, p. 245) suggests that HANPP is “[p]robably the best index of the scale of the

human economy as a part of the biosphere”. However, the problem with using HANPP

as an indicator of scale is that HANPP does not provide a clear sustainability threshold.

Although 100% appropriation would clearly be destructive because it would leave no

resources for other species, levels much lower than this may not be sustainable either

(Haberl et al., 2004). Based on the precautionary principle, Weterings and Opschoor

(1992) argue that the level of HANPP should be “small” compared to natural processes,

and propose 20% appropriation as a sustainability threshold. However, this number is

not based on scientific criteria, and it is debatable how to set a meaningful lower threshold

(Haberl et al., 2004).

With respect to water, the blue water footprint (Hoekstra and Hung, 2002; Hoekstra et al.,

2011), which measures the consumption of surface and ground water, is an indicator that

could theoretically be used to assess the scale of water use. Gerten et al. (2013) suggest

that global blue water use should not exceed 1100-4500 billion m3 per year. However,

there is currently no complementary measure of national water availability/regeneration

to compare the blue water footprint to.

While on the source side only the flow of renewable resources is relevant for assessing

sustainability, the same is not true on the sink side. On the sink side, all outflows must be

considered. Given the sheer number and wildly different characteristics of these

materials, it might seem to be an almost impossible task to estimate whether material

outflows are within the assimilative capacity of ecosystem sinks.
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However, the dominant material outflow from industrial economies is CO2—a pollutant

with a clear link to a global environmental problem, namely climate change. In a study of

five industrial economies, Matthews et al. (2000) found that CO2 emissions accounted for

more than 80% of total material outflows by weight, making the atmosphere the “largest

dumping ground for industrial wastes” (p. xii). As the authors explain, “Modern

industrial economies, no matter how high-tech, are carbon-based economies, and their

pre-dominant activity is burning material” (p. 23).

There is a growing consensus that global warming must be limited to no more than 2 °C

above pre-industrial levels if dangerous climate change is to be avoided. Based on a

comprehensive probabilistic analysis, Meinshausen et al. (2009) conclude that if

cumulative global CO2 emissions were limited to 1000 Gt over the period 2000–2050, the

probability of exceeding 2 degrees of warming would be 25% (i.e. relatively low). These,

or other similar data, could be used to construct national carbon budgets, acknowledging

that there are many different ways that “carbon space” could be allocated among nations

(Opschoor, 2010). National carbon budgets could be compared to national CO2 emissions

data to arrive at an indicator of the scale of waste outflows in comparison to ecosystem

sinks. While such an approach would not account for all waste emissions from industrial

economies, it would relate the largest of these to an established limit on the sink side.

While the separate indicators discussed above have a certain appeal, there are problems

with implementing them in practice, particularly with regard to establishing

sustainability thresholds for the source indicators. For the first instance of the Degrowth

Accounts, a hybrid indicator that combines information on both sources and sinks is

therefore used in order to measure maximum sustainable scale. This indicator is the

ecological footprint (Wackernagel and Rees, 1996). Although the method used to

calculate the footprint has been criticised by a number of authors (van den Bergh and

Verbruggen, 1999; Fiala, 2008; Wiedmann and Barrett, 2010), it remains the only indicator

of resource use and waste emissions that has a clear sustainability threshold for

individual nations.

The ecological footprint measures the area of biologically productive land that a country

needs to produce the biomass it consumes, and assimilate the CO2 emissions it generates.

The footprint does not include the flow of non-renewable materials such as minerals, but

it does include fossil fuels in terms of the CO2 emissions that are produced during their

combustion. These emissions are translated into the area of forested land necessary to

sequester the CO2 emitted (Ewing et al., 2010).

The ecological footprint may be compared to biocapacity (the supply of biologically

productive land) to arrive at a ratio of the scale of economic activity in relation to what the

environment can sustain. At the national level, a country’s footprint may either be

compared to its national biocapacity (the area of biologically productive land within the

country’s borders), or to the concept of a “fair earthshare” (the area of biologically

productive land that would be available to each person if global biocapacity were divided

equally among all people). “Fairness” in this sense is entirely anthropocentric; it does not

make any allowance for other species.
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From a technical perspective there is no right or wrong answer to which of these two

approaches should be taken. Either approach, if adopted by all nations, would lead to

ecological sustainability (assuming we accept the ecological footprint as a meaningful

measure of sustainability). However, given the strong focus on equity in the degrowth

movement, it is probably more appropriate to compare the ecological footprint to a fair

earthshare. The Paris Declaration explicitly mentions the goal of “right-sizing” national

economies, suggesting that “in countries where the per capita footprint is greater than the

sustainable global level, right-sizing implies a reduction to this level within a reasonable

timeframe” (Research & Degrowth, 2010, p. 524). The ratio of per capita ecological

footprint to a fair earthshare has therefore been used as the indicator of scale in the

Biophysical Accounts.3 The data are from the National Footprint Accounts, as published

by the Global Footprint Network (GFN, 2010).

3 Analysis

This section presents and analyses the data in the Degrowth Accounts. Section 3.1

analyses the data in the Biophysical Accounts, starting with the indicators used to

measure biophysical stability, followed by the indicator used to measure biophysical

scale. Two methods are employed to assess how close countries are to biophysical

stability: (1) a multi-indicator categorisation approach, and (2) an index of biophysical

stability. Following this, Section 3.2 presents the data in the Social Accounts. To help

assess the relative social performance of different countries, the data are normalised and

aggregated to create an overall index of social performance. Finally, Section 3.3 brings the

Biophysical and Social Accounts together to investigate the relationship between resource

use and social performance. Tests are performed to see whether there is any relationship

between biophysical stability and performance on each of the social indicators, and then

biophysical scale and each of the social indicators. Multiple regression analysis is used to

assess whether the stability findings are robust to the inclusion of scale.

3.1 How Close Are Countries to a Steady-State Economy?

To determine how close countries are to a steady-state economy, the seven indicators in

the Biophysical Accounts are analysed over a 10-year time period (1997–2007), for 181

countries. This time period was chosen to be long enough to observe trends, but not so

long as to introduce a significant constraint on the number of countries that could be

analysed. Importantly, the analysis period ends before the beginning of the global

financial crisis. This period was chosen in part to avoid introducing an additional

complicating factor into the analysis of the relationship between biophysical trends and

social performance.

There are two types of indicators in the Biophysical Accounts: (1) indicators that measure

the rate of change of stocks and flows, and (2) indicators that measure the scale of the

economy in relation to the capacity of ecosystems. Although the ecological footprint is

primarily used as an indicator of scale in the Biophysical Accounts, it is also included as a

rate-of-change indicator for completeness.

3
A “fair earthshare” is equal to 1.8 global hectares per person in the year 2007. This value is obtained by

dividing global biocapacity by global population.
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3.1.1 Calculating Rates of Change

The rate of change for each of the seven biophysical indicators was estimated over the 10-

year analysis period (1997–2007) using log-linear regression, following a method

suggested by Gujarati (1995, pp. 169–171). The method uses all data points in the period

to calculate the compound annual rate of change, and is therefore superior to simpler

approaches that use only the endpoints. Following Equation 1, the compound annual rate

of change r was calculated as:

100]1)[exp(  mr (1)

where m is the slope of the best-fit line generated using ordinary least squares regression,

after log-transforming the data.

There is clearly value in having some measure of the level of uncertainty in the trend. The

standard measure of goodness-of-fit for a regression (R2) is of little use here, however,

because R2 is zero whenever the rate of change is zero (the desired state in a steady-state

economy). Therefore the standard error of the slope was used to measure the uncertainty

in the trend.

A high standard error in the slope could either indicate some form of discontinuity in the

data, or simply the absence of a consistent trend. Either way, it could be argued that rates

of change with a high standard error should be excluded from the analysis of how close

countries are to biophysical stability. As a cut-off, all data points with a standard error

greater than 2% were excluded.4 For the “cleanest” of the indicators (population) no data

points were excluded using this threshold, whereas for the “noisiest” of the indicators (the

ecological footprint), 13 data points were removed.

Two different approaches were used to assess how close countries are to biophysical

stability: (1) a multi-indicator categorisation approach, and (2) an index of biophysical

stability.

3.1.2 Categorisation Approach

In the first method, a country’s performance on each of the seven indicators was classified

as either “degrowth”, “stable”, or “growth” depending on the value of the indicator. In

general, a rate of change was classified as degrowth if it was less than −1% per year, stable 
if it was between −1% and +1%, and growth if was greater than +1% per year.  The one 
exception is the rate of change of population where thresholds of −0.5% and +0.5% were 
used, due to the lower range and lower standard error for this indicator.

Each country was then placed into one of five categories based on which of these three

classifications dominated (Table 2). In general, if four or more of the classifications were

of one type (e.g. “stable”) then the economy was categorised as that type (i.e. “stable”).

Two shoulder categories (“partial degrowth” and “partial growth”) were used to capture

economies that fell between types. A total of 174 countries were classified into these five

groups, while the remaining seven countries were classified as “mixed”. In general, the

4
The 2% cut-off is somewhat arbitrary, but matches the size of the groups that were used to categorise

economies, and serves to remove any extreme outliers.
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“mixed” countries were missing data for one or more of the indicators, which made it

difficult to categorise them.

Fig. 2 presents the rate-of-change data and categorisations for a selection of the 181

countries in the Biophysical Accounts (see Supplementary Data for all results). The

results show that the vast majority of countries in the world are biophysical growth

economies. These countries account for roughly 80% of global population. Moreover,

there are 32 countries (accounting for 12% of global population) where all seven

biophysical indicators are increasing. The world as a whole is also a growth economy,

with high rates of growth in five of the seven indicators.

There are 22 countries that have relatively stable stocks and flows, and another 24 close to

this situation (i.e. countries categorised as either “partial degrowth” or “partial growth”).

The majority of the countries that are classified as “stable” are located in Europe, although

a handful of Latin American countries also make the list.

There is only one country in the world (Japan) that achieves relative stability in all seven

of the stocks and flows, while five countries (Denmark, France, Poland, Romania, and the

US) achieve stability in six out of the seven. Interestingly, the one indicator that does not

meet the stability criterion in the US is population, which is growing at 1.1% per year.

There are four countries in the world (Germany, Guyana, Moldova, and Zimbabwe)

which achieve biophysical degrowth in the majority of the indicators, and another five

countries that straddle the boundary between degrowth and stable (Lithuania, Slovakia,

Sweden, the Ukraine, and the UK). There are a total of seven countries in the world that

are either degrowing or stable in all indicators (Belgium, Denmark, Germany, Japan,

Moldova, Romania, and Zimbabwe). The UK performs well in general, achieving

degrowth or stability in six out of the seven indicators. The one indicator that is

increasing in the UK is the ecological footprint, which is growing at 1.2% per year.

3.1.3 Biophysical Stability Index

The second method that was used to assess how close countries are to biophysical

stability was to create a composite indicator (or index) from the seven rate-of-change

indicators. As discussed in O’Neill (2012a), there are dangers associated with aggregating

individual indicators together to create an index. In such a process, information is

inevitably lost, which may invite overly simplistic policy conclusions. However, the

largest danger—that of mixing social and environmental objectives in a single measure—

was avoided by creating a purely biophysical index in which the data were normalised as

percentage rates of change. The index adds value by providing a single measure of

stability, thus making the results easier to interpret and communicate.

There were 137 countries for which clean data (i.e. standard error < 2%) were available for

all seven of the indicators. The Biophysical Stability Index (BSI) was calculated by taking

the arithmetic mean of the absolute values of the indicators. In developing this index, a

number of different methods of aggregating the data were explored (including taking the

geometric and quadratic mean). These different methods did not significantly change the

results of the analysis, however, and so the simplest approach was applied (the arithmetic
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mean) following standard index construction methods (OECD, 2008). Each of the

indicators was weighted equally.

The average of the absolute values was used, rather than the raw values, in order to create

an index that does not allow negative rates of change on some indicators to cancel out

positive rates of change on others. Unlike the multi-indicator approach used to categorise

countries, the BSI does not distinguish between growing and degrowing economies. It

simply measures how close economies are to biophysical stability. This approach is

consistent with the definition of a steady-state economy, which is concerned with stability

rather than growth or degrowth.

The results of the index-based analysis (Table 3 and Supplementary Data) paint a similar

picture to the categorisation analysis. The top ten countries on the BSI list are all

identified as biophysically stable economies using the categorisation method. Both

methods identify Japan as having the most biophysically-stable economy in the world.

Japan has the lowest BSI score and is the only country that achieves a stable classification

on all seven indicators. Although Japan tops the list, seven of the top ten countries on the

BSI list are in Europe. While Switzerland achieved stability in only five of the seven

indicators using the categorisation method, it finishes second on the BSI list because these

five rate-of-change indicators are all very close to zero.

The country furthest away from biophysical stability is Turkmenistan, followed by

Vietnam and then Angola. The majority of countries at the bottom of the list (i.e. those

with the highest rates of increase of stocks and flows), are relatively poor developing

nations, although a few wealthier countries in the Middle East are also found near the

bottom. China has one of the highest rates of biophysical growth in the world, finishing

at number 125 on the list.

3.1.4 Scale and Proximity to a Steady-State Economy

A steady-state economy is not just an economy where stocks and flows are stable over

time. It is also an economy where the level of flows is within the carrying capacity of

ecosystems. The indicator of scale used in the Biophysical Accounts is the ratio of per

capita ecological footprint to a fair earthshare (FES), calculated for the year 2007.

Countries were placed into three categories based on their performance on this indicator:

small, medium, and large (Table 4).

Roughly half of the global population live in countries with an ecological footprint above

a fair earthshare, while the other half live in countries where the footprint is at or below a

fair earthshare. A relatively small number of people (10% of the global population) live in

countries where the footprint is roughly equal to a fair earthshare. The countries with the

lowest per capita ecological footprint tend to be relatively poor countries in Africa and

Asia, while those with the highest footprint tend to be relatively wealthy countries in the

Middle East and Europe (Fig. 2). There is a diverse mix of countries with a per capita

ecological footprint close to a fair earthshare, although the majority are in Africa, Latin

America, and Western Asia.

Having calculated indicators of both stability and scale, it is now possible to assess

whether there are any countries that are close to a steady-state economy. The data reveal
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that the majority of countries that have achieved biophysical stability have done so at a

level of resource use that is substantially above a fair earthshare (Fig. 2). While we might

refer to these as “biophysically stable economies”, they are not “steady-state economies”

because their level of resource use is beyond what is globally sustainable. There are only

a handful of countries that achieve something approaching both biophysical stability and

medium scale. These include Colombia, Cuba, Kyrgyzstan, Romania, and South Africa.

3.2 How Close Are Countries to the Social Goals of Degrowth?

Of the 181 countries included in the analysis, social data were available for between 48

and 181 depending on the individual indicator. In general, data were widely available for

seven of the nine social indicators. The two exceptions were the poverty indicator (which

was only available for 131 relatively poor countries) and the working time indicator

(which was only available for 48 relatively wealthy countries).

Where possible, the social indicators were calculated using data covering the same 10-

year period (1997–2007) as the biophysical data. For some indicators, data were not

available for this exact period. In these cases, data for the closest corresponding period

were used. If data were available for multiple years within the analysis period, then the

average value over the period was calculated.

On their own, the nine indicators in the Social Accounts are difficult to interpret,

particularly since some of them (e.g. the indicators of democracy and social capital) are

dimensionless indices. Without some kind of summary indicator that normalises and

aggregates the data, it is difficult to say how countries are performing overall on the social

objectives described in the Paris Declaration.

In order to assess the relative social performance of different countries, an index based on

the social indicators was created. The index includes all of the social indicators, with the

exception of the poverty and working time indicators, which were available for a much

smaller number of countries than the others.

The Social Performance Index (SPI) was calculated for countries where all seven of the

included indicators were available. The index was calculated by normalising each

indicator so that it was on a zero to ten scale (with zero representing the worst score and

ten representing the best score for the indicator), and then taking the arithmetic mean of

these seven values. Standard index construction methods were used (OECD, 2008), and

an equal weight was given to each indicator.

There were 108 countries for which all seven social indicators were available. Table 5

presents the SPI and normalised sub-indicators for a selection of these countries (see

Supplementary Data for all results). The countries that achieve the highest scores on the

SPI are almost exclusively wealthy European nations, with Switzerland, Denmark, and

Iceland topping the list. Nine of the top ten social performers (and sixteen of the top

twenty) are European countries. Japan is the only non-European country to finish in the

top ten. By contrast, the countries that achieve the lowest scores on the SPI are almost

exclusively poor African nations, with Zambia and Kenya finishing at the bottom of the

list. Nine of the bottom ten social performers (and fourteen of the bottom twenty) are

African countries. Iraq is the only country in the bottom ten that is not located in Africa.
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3.3 Resource Use and Social Performance

Having calculated indicators to measure both biophysical stability and biophysical scale,

as well as indicators to measure performance on the main social objectives described in

the Paris Declaration, it is now possible to use these indicators to investigate the social

performance of countries that are closer to a steady-state economy, in comparison to those

that are further away.

3.3.1 Visualising Country Performance

An earlier article (O'Neill, 2012a) suggested plotting biophysical scale versus individual

rate-of-change indicators as a way to visualise how close countries were to a steady-state

economy. Such an approach would place countries into one of four quadrants on a two-

dimensional plot: desirable growth, undesirable growth, desirable degrowth, and undesirable

degrowth. Countries at the centre of the plot (where the two axes met) would approach a

steady-state economy for the indicators considered.

In Fig. 3, countries are plotted using this method and the ecological footprint data from

the Biophysical Accounts. The results suggest a rather uneven distribution of countries

among the four quadrants. In general, there are more countries experiencing undesirable

growth than desirable growth, and almost no countries experiencing degrowth (whether

desirable or not).

In Fig. 3, life satisfaction data from the Social Accounts are also included by colour-coding

the points for each country. Countries are coded as happy (life satisfaction greater than 7

out of 10), relatively happy (6 to 7), relatively unhappy (5 to 6), and unhappy (less than 5). The

four-quadrant plot clearly suggests a correlation between biophysical scale and human

well-being. Countries with a large per capita ecological footprint tend to score highly on

life satisfaction (most of the blue points are near the top of the plot), while countries with

a small per capita footprint tend to score poorly (most of the grey points are near the

bottom). In this plot, however, there is no obvious relationship between the rate of

change of per capita ecological footprint and life satisfaction.

It is worth noting that Fig. 3 only considers a single biophysical indicator (the ecological

footprint) and a single social indicator (life satisfaction). The next two subsections

investigate the relationship between resource use and social performance across multiple

indicators. Statistical techniques are used to test for a relationship between biophysical

stability and social performance, and then test for a relationship between biophysical scale

and social performance. Finally, a test is performed to see whether biophysical stability is

robust to the inclusion of scale.

3.3.2 Biophysical Stability and Social Performance

To test for a relationship between biophysical stability and social performance, countries

were placed countries into four groups based on their performance on the biophysical

rate-of-change indicators. A comparison of means was then performed to test whether

there was a statistically significant difference between the groups in terms of their average

scores on the nine social indicators.
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Countries were placed into the following groups: partial degrowth, stable, partial growth,

and growth. These groups correspond to the groups used in the earlier rate-of-change

categorisation (Table 2), except that the “degrowth” and “partial degrowth” groups have

been merged into a single “partial degrowth” group due to the small number of countries

in these two groups. The four resulting groups include 174 of the 181 countries in the

accounts. The seven countries categorised as “mixed” were not included in the analysis.

The comparison of means was performed using all available data for each of the nine

social indicators, and statistical significance was tested using analysis of variance

(ANOVA).

In general, countries classified as biophysically stable perform better on the social

indicators than countries in the two shoulder groups (“partial degrowth” and “partial

growth”), who in turn perform better than countries in the “growth” group (Fig. 4). There

is a statistically significant relationship between the biophysical stability groups and five

of the social indicators (life satisfaction, healthy life expectancy, Gini coefficient, voice &

accountability, and poverty). The strongest relationships involve the Gini coefficient and

voice & accountability indicators.

Interestingly, countries in the two shoulder groups (“partial degrowth” and “partial

growth”) perform similarly to each other on the social indicators. In fact, there is not a

statistically significant difference between the two shoulder groups for any of the social

indicators. By contrast, there is almost always a significant difference between the

“stable” group and the “growth” group. The biophysically stable economies have higher

life satisfaction, better health, greater equality, stronger democracy, and less poverty than

the growing economies. Average life satisfaction in biophysically stable economies is a

full point higher than in growing economies (6.8 versus 5.7 on the original scale ten-point

scale), while healthy life expectancy is almost ten years longer (68 versus 58 years).

Finally, there is no statistically significant relationship between biophysical growth and

the unemployment rate. The average unemployment rate in biophysically stable

economies (7.9%) is almost the same as the average unemployment rate in growing

economies (7.3%). The variation in the unemployment rate within the four groups is

greater than the variation among them.

3.3.3 Biophysical Scale and Social Performance

In order to investigate whether there is a relationship between biophysical scale and social

performance, a second comparison of means was performed. This time countries were

classified into four groups based on their performance on the biophysical scale indicator

(i.e. the ratio of per capita ecological footprint to a fair earthshare). The groups were small

(less than 0.8 times a fair earthshare), medium (0.8 to 1.2 times a fair earthshare), large (1.2

to 2.5 times a fair earthshare), and very large (greater than 2.5 times a fair earthshare).

These groups correspond to the groups used in the previous scale categorisation (Table 4),

except that the “large” group has been split into two separate groups due to the sizeable

number of countries it contains. The four resulting groups include 180 of the 181

countries in the accounts.

In general, the larger a country’s per capita ecological footprint, the better its social

performance (Fig. 5). There is a statistically significant relationship between biophysical
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scale (as measured by per capita ecological footprint) and all nine of the social indicators.

The strongest relationship is with healthy life expectancy, while the weakest relationship

is with unemployment.

The relationship between biophysical scale and four of the indicators (life satisfaction,

healthy life expectancy, voice & accountability, and poverty) appears to be monotonic,

with higher biophysical scale associated with better scores on these indicators. On

average, countries with a “very large” ecological footprint enjoy life satisfaction values

more than two full points higher, and healthy life expectancies almost 20 years longer,

than countries with a “small” footprint.

For three of the indicators (Gini coefficient, safety & trust, and unemployment), there

appears to be a V-shaped relationship between scale and social performance. In all three

cases the best performance is achieved at very large scale, and the worst performance is

achieved at medium scale. For example, the average Gini coefficient is almost 12 points

lower in countries with very large scale than in countries with medium scale, while the

average unemployment rate is close to 3% lower. Interestingly, the unemployment rate in

countries with small scale is also relatively low.

For the two remaining social indicators (inflation and working hours) the best

performance is achieved at very large scale, with worse (and statistically

indistinguishable) performance at the other scales. For example, the inflation rate is about

3% lower on average in countries with very large scale than countries with medium scale,

while average working hours are almost 200 hours less per year. Unfortunately there are

no working hours data available for countries with small biophysical scale (and only six

countries at medium scale), which limits the conclusions that can be drawn from this

indicator.

3.3.4 Robustness of Stability to the Inclusion of Scale

The results thus far suggest a relationship between social performance and both

biophysical stability and biophysical scale. Countries where stocks and flows are

relatively constant appear to be better places to live than countries where stocks and flows

are either growing or degrowing. At the same time, countries with a larger per capita

ecological footprint appear to be better places to live than countries with a smaller per

capita footprint. An important question that remains to be answered is whether

biophysical stability is actually a significant predictor of social performance, or just a

correlate of biophysical scale.

Multiple regression analysis was used to address this question. Each social indicator was

regressed against both the indicator of scale (per capita ecological footprint) and the

Biophysical Stability Index. Two regression models were fitted to the data for each of the

social indicators: a linear model of the form y = b0 + b1x1 + b2x2, and a semi-logarithmic

model of the form y = b0 + b1ln(x1) + b2ln(x2). Of the two models, the one with the highest

R2 value and the most normally-distributed residuals was chosen as the more accurate

reflection of the relationship between social performance and resource use.

The results show that the scale indicator (per capita ecological footprint) is a statistically

significant predictor of all of the social indicators (Table 6). With larger scale, comes
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better social performance. However, for three of the social indicators (unemployment

rate, inflation rate, and working hours), the regression models explain very little of the

variance in the data. The unemployment rate, in particular, appears to be almost

completely unrelated to biophysical quantities.

There are four social indicators (life satisfaction, healthy life expectancy, voice &

accountability, and poverty) where both scale and stability are significant to the model.

The t-value for scale is larger than the t-value for stability in each model, but stability is a

significant predictor of performance nonetheless. In all four cases, greater biophysical

stability (i.e. a lower rate of change of stocks and flows) is associated with better social

performance. For both healthy life expectancy and voice & accountability, more than 50%

of the variance in the data is explained by the two biophysical indicators.

Interestingly, the four indicators where stability is significant are also the four indicators

where the best fit for scale is semi-logarithmic. For these indicators, it may be the case

that as per capita resource use increases, the stability of stocks and flows becomes a more

important determinant of social performance than additional resource use. For the two

remaining social indicators (Gini coefficient and safety & trust), scale is significant to the

model, but stability is not.

4 Discussion

This section discusses the main implications of the empirical results. These include the

general findings regarding growth, degrowth, and stability (Section 4.1), as well as the

findings on unemployment (Section 4.2) and democracy (Section 4.3). The main

contributions of the study are summarised in Section 4.4, while its limitations are

discussed in Section 4.5.

4.1 Growth, Degrowth, and Stability

In his most famous work, The Wealth of Nations, Adam Smith expounds the virtues of the

“progressive state” (economic growth), and laments the alternative of the “stationary” or

“declining” state. He writes:

It deserves to be remarked, perhaps, that it is in the progressive state, while the society is

advancing to the further acquisition, rather than when it has acquired its full complement of

riches, that the condition of the labouring poor, of the great body of the people, seems to be

the happiest and the most comfortable. It is hard in the stationary, and miserable in the

declining state. The progressive state is in reality the cheerful and the hearty state to all the

different orders of the society. The stationary is dull; the declining, melancholy (Smith, 1776,

p. 120).

However, in contrast to Smith’s views, the results reported here suggest that it is much

better to live in a society that has acquired “the full complement of riches”, and has

stopped increasing these riches, than to live in a society that is still “advancing to further

acquisition”. Countries with a larger per capita ecological footprint are, in general, better

places to live than countries with a smaller per capita ecological footprint. Greater per

capita resource use is associated with higher life satisfaction, better health, greater

equality, more social capital, stronger democracy, less poverty, fewer working hours,

and—to some extent—lower inflation.
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Furthermore, although the empirical analysis shows that the level of resource use is a

more significant predictor of social performance than its rate of change, the rate of change

of stocks and flows predicts social performance as well, but not in the direction suggested

by Smith. Countries with stable stocks and flows tend to have higher life satisfaction,

longer healthy life expectancies, stronger democracies, and less poverty than those with

either increasing or decreasing stocks and flows, all else being equal.

These findings should be interpreted with some caution, however. They suggest that,

given two countries with a similar level of resource use, we would expect social

performance to be higher in the one where resource use was more stable over time. They

also suggest that, given two countries with stable resource use, we would expect social

performance to be higher in the one with greater resource use. They do not necessarily

suggest that it is possible to substitute for a higher level of resource use simply by

stabilising stocks and flows.

The empirical analysis suggests that there are very few countries experiencing biophysical

degrowth, and thus it is difficult to draw any firm conclusions about the social

performance of degrowing economies. Nevertheless, the data suggest that countries

experiencing partial growth and countries experiencing partial degrowth are

indistinguishable from each other in terms of their social performance. Stability appears

to be more important for achieving positive social outcomes than either growth or

degrowth.

This tentative finding has both positive and negative implications for advocates of

degrowth. On the one hand, it suggests that degrowth may be no worse than growth

(from a social perspective), and thus there is less to fear from a degrowth transition to a

steady-state economy than people might think. On the other hand, if lower social

performance is associated with degrowth than with stability, then it may still be difficult

to find support for a degrowth transition to a steady-state economy, especially if the end

point of that transition is a much lower level of resource use than wealthy countries enjoy

at present.

The empirical analysis identified around twenty countries that have achieved relatively

stable stocks and flows over the 10-year analysis period. However, the majority of these

countries have done so at a level of resource use that is well above a fair earthshare.

While we might refer to these as “biophysically stable economies”, they are not “steady-

state economies” because the level of resource use that they enjoy is above what is

globally sustainable.

Research on social metabolism (e.g. Fischer-Kowalski and Haberl, 2007; Krausmann et al.,

2008; Haberl et al., 2011) describes two major transitions that have occurred (and are still

occurring) in human societies. The first is the transition from a hunter-gatherer regime to

an agrarian regime, and the second is the transition from an agrarian regime to an

industrial regime. Although it is tempting to view the biophysically stable economies

identified in the analysis as potential models of sustainability, these economies may

simply be experiencing the completion (or final stages) of the transition to an industrial

regime. Biophysical stability at a high level of resource may be “business as usual”—the

inevitable outcome of the transition to an industrial society. If this is the case, then a third
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major transition is still required in these countries in order to reduce resource use to a

sustainable level. This could either be the degrowth transition to a steady-state economy,

or the advent of a “green economy”(UNEP, 2011) powered by more efficient technologies.

If one believes that decoupling human well-being from GDP is relatively hard, but

decoupling GDP from resource use is relatively easy, then the solution is the green

economy. If, however, one believes that the reverse is true, then degrowth is the solution.

The fact that around twenty countries have managed to stabilise resource use, even if it is

at a level that is too high, is an important finding. It suggests that continuous growth is

not needed in order to maintain a high level of social performance. A biophysically stable

economy can also be socially sustainable. Furthermore, as Daly (1977) points out, the first

step in achieving a steady-state economy is to stabilise resource use at existing or nearby

levels. The second step is to decide whether the optimum level of resource use is greater

than or less than the present level. In Daly’s words, “[W]e cannot go into reverse without

first coming to a stop” (p. 52).

4.2 Unemployment and Growth

Another very interesting finding is that the unemployment rate is largely unrelated to the

rate of change of biophysical stocks and flows. In some ways this finding flies in the face

of conventional economic theory which posits that economic growth is necessary to

prevent rising unemployment. It calls into question the concern that the stabilisation of

consumer demand, coupled with steadily increasing labour productivity, would

inevitably lead to job losses in a steady-state economy unless some preventive action were

taken. This concern has led a number of authors to suggest that special policies would be

needed to maintain full employment in a steady-state economy. These include working

time reduction (Lintott, 2004; Schor, 2005; Kallis et al., 2013), a job guarantee (Lawn, 2004;

Alcott, 2013), or the shift towards lower productivity sectors of the economy (Jackson and

Victor, 2011; Nørgård, 2013).

Some countries, such as Germany, already use the sorts of policies advocated for a steady-

state economy to prevent unemployment from rising (e.g. working time reduction;

Crimmann et al., 2010). Others, such as Japan, may simply have different cultural values

that discourage businesses from laying off workers during an economic downturn (The

Economist, 2006). Interestingly, it would seem that subjective measures such as life

satisfaction are easier to predict across a wide range of countries than objective indicators

like the unemployment rate. All in all, these findings may give some support to

ecological economist Blake Alcott’s claim that “Ultimately society, not the economy,

determines how many people are out of work” (Dietz and O'Neill, 2013, p. 127).

It is important to note, however, that the findings for unemployment are based on a cross-

sectional analysis. Further research needs to be done using time series data for individual

countries to test, for example, whether there is a biophysical equivalent of Okun’s Law

(the observed relationship between change in GDP and change in unemployment).

4.3 Democracy and Degrowth

Another interesting finding of the empirical analysis is that countries with stable stocks

and flows tend to have stronger democratic institutions. These results challenge the idea
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that a steady-state economy could only be achieved under an authoritarian regime (a

topic discussed by Lawn, 2005). Instead, the results suggest that biophysical stability and

participatory democracy may be compatible aims, which is good news for achieving a

socially sustainable steady-state economy.

In part, the findings also support the view held by many degrowth scholars that the

transition to a more ecologically sustainable society and the transition to a more

democratic society are mutually supportive goals (Cattaneo and Gavaldà, 2010; Schneider

et al., 2010; Cattaneo et al., 2012). The problem for advocates of degrowth, however, is

that it is not just biophysical stability and strong democracy that seem to go hand in hand,

but also biophysical scale and strong democracy. Strong democracies are characterised by

both stable stocks and flows, and high resource use. This creates something of a Catch-22:

while strong democratic institutions might be compatible with a steady-state economy

(once achieved), such institutions could also make the degrowth transition to such an

economy less likely to occur in the first place.

Of course, the results presented here are derived from an analysis of the relationship

between resource use and social performance in countries where the main aim is

economic growth. This relationship could look very different in a society where economic

growth was no longer part of the social imagination. Matthey (2010) presents some

experimental evidence to support this idea. She shows that the less people aspire towards

a high level of consumption, the smaller the loss in their well-being when material

aspirations are not fulfilled. She suggests that degrowth would be easier to achieve if

people’s material aspirations were moderated, for example by limiting advertising.

4.4 Contributions of this Study

This study makes a number of important contributions. Drawing on previous conceptual

work (O'Neill, 2012a; 2015), it translates Daly’s (2008) biophysical definition of a steady-

state economy, and the stated social goals of the degrowth movement (Research &

Degrowth, 2010), into a set of 16 measureable indicators. In doing so it presents the first

empirical analysis of how close countries are to a socially sustainable steady-state

economy, and provides a common information system to measure important elements of

both degrowth and a steady-state economy. This information system builds on

Kerschner’s (2010) work showing the complementary nature of these two ideas. The

biophysical indicators aim to measure what would be held steady in a steady-state

economy, while the socials indicators aim to measure what would not be held steady, but

would be encouraged to improve over time.

The study offers two novel methods to assess how close different economies are to the

biophysical stability objective of a steady-state economy: (1) a multi-indicator

categorisation approach, and (2) a composite indicator. These methods show which

economies are growing, which are degrowing, and which are stable, based on the rates of

change of seven biophysical indicators. The study also provides a composite indicator to

measure progress towards the social objectives of the degrowth movement, as articulated

in the Paris Declaration.
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Perhaps most importantly, though, the study compares the social performance of

countries that are closer to, and further away from, the idea of a steady-state economy. It

suggests that a biophysically stable economy can also be socially sustainable, although the

level of resource use accompanying stability may be problematic. Finally, the analysis

suggests important relationships between individual biophysical and social indicators.

These include a positive relationship between strong democracies and biophysical

stability, and no relationship between biophysical growth rates and the level of

unemployment.

4.5 Limitations

Perhaps the most important limitation of this analysis relates to the concept of indicators

themselves. Indicators are only partial reflections of reality, based on uncertain and

imperfect models. They are not the “real system”, and this must be kept in mind when

interpreting the results of any indictor analysis, including this one. That said, we need

indicators to summarise and condense the enormous complexity of the real world into a

manageable amount of information (Meadows, 1998).

Some of the results of the analysis, such as the finding that the US is a biophysically stable

economy, and the UK is a partially degrowing one, may come as a bit of a surprise. These

findings might make some members of the steady-state and degrowth communities

question whether the indicators that were chosen are appropriate. One of the difficulties

with trying to measure how close countries are to a steady-state economy is that not all of

the data needed are currently available. A consumption-based approach should ideally

be used to measure flows (O'Neill, 2015), and yet the approach taken here, which aims to

minimise uncertainty and maximise country coverage, only partially accounts for

consumption. The ecological footprint and energy use indicators measure apparent

consumption, but the material use and CO2 emissions indicators are territorial measures.

The incorporation of new consumption-based indicators such as the “material footprint”

(see Wiedmann et al., 2014) could cast some countries in a very different light.

Similarly, the analysis also neglects global power relations and path dependency. It says

nothing about how some countries have managed to stabilise resource use. Is it through

strong environmental policy, lower rates of GDP growth, or offshoring environmental

impacts to other countries? This question should be investigated in future analyses,

particularly as consumption-based indicators become more available.

The indicator chosen to measure biophysical scale (i.e. the ratio of per capita ecological

footprint to a fair earthshare) also represents a compromise. The footprint was chosen

because it relates national resource use to a clear sustainability threshold, and such a

threshold is needed in order to identify whether the sustainable scale criterion associated

with a steady-state economy is being met. However, as an aggregated indicator of

resource use, the footprint provides no information on when specific ecological limits

related to key ecosystem services might be reached (Wiedmann and Barrett, 2010). Future

research should aim to develop new measures of sustainable scale based on indicators

such as HANPP, water use, CO2 emissions, and other planetary boundaries (e.g. Steffen et

al., 2015).
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As new data become available, it will be possible to update the accounts and see whether

countries such as the US and UK perform as well when more comprehensive resource use

indicators are applied. The results presented in this article are a “first pass”—an attempt

to survey a large number of countries to see which ones might be closest to a steady-state

economy. Armed with the results from this study, however, it becomes possible to

identify individual countries for further analysis using more comprehensive indicators.

5 Conclusion

This study aimed to answer two questions: (i) How close are modern-day national

economies to a steady-state economy? (ii) Are countries that are closer to a steady-state

economy better or worse places to live than those that are further away?

These questions were investigated using a collection of 16 indicators applied to 181

countries over a 10-year period. The results show that most countries in the world are

biophysical growth economies, although there are around twenty countries that achieve

relatively stable stocks and flows over the analysis period. There is only one country in

the world (Japan) that achieves relative stability in all seven of the biophysical indicators,

while five countries (Denmark, France, Poland, Romania, and the US) achieve stability in

six out of the seven. There are no countries in the world that achieve a true steady-state

economy (i.e. stable stocks and flows at a level of resource use that is environmentally

sustainable). However, a small number of countries come relatively close, including

Colombia, Cuba, Kyrgyzstan, Romania, and South Africa.

Countries with stable stocks and flows tend to be better places to live than countries with

either growing or degrowing stocks and flows. Biophysically stable economies are more

democratic and more equal, and their citizens are happier and healthier than those in

growing or degrowing economies. This is encouraging news for achieving a steady-state

economy. However, social performance is also higher in countries with greater per capita

resource use, and a high level of social performance is in general only attained at a level of

resource use that is too high to be environmentally sustainable (as measured by the

ecological footprint at least).

Indicators such as the ecological footprint suggest that resource use in wealthy nations

must be reduced if these nations are to achieve a steady-state economy. However, the fact

that social performance is in general lower in countries where biophysical scale is smaller

presents a challenge to the degrowth agenda. If all seven billion people on Earth are to

lead a good life within ecological limits, then we need to become much more efficient at

translating resource use into human well-being.

This article challenges the idea, going back at least as far as Adam Smith, that growth is

synonymous with positive social outcomes. The finding that biophysical stability and

high social performance are compatible increases the viability of the steady-state

alternative. The article has not shown, however, that a high level of social performance

can be achieved at an environmentally sustainable level of resource use. Further research

is needed to understand the relationship between resource use and human well-being,

and the extent to which this relationship is mediated by different policies, aspirations, and

institutions. Such research is important because degrowth is not about scaling back
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resource use within the current economic regime. It is about creating a new economic

model with different structures and objectives, where very different understandings of

“the good life” could emerge.
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Figures

Fig. 1. The indicators in the Degrowth Accounts. The indicators are divided into two separate

accounts (biophysical and social) and are organised along a spectrum from means to ends.
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Fig. 2. The Biophysical Accounts. Data are for a selection of countries. See Supplementary Data for

full results. Note: “Change in Stocks” and “Change in Flows” data measure annual percentage rates

of change, calculated over the 10-year analysis period (1997–2007). “Scale” data measure the ratio

of per capita ecological footprint to a fair earthshare for the year 2007. Rate-of-change values are

classified as degrowth (yellow), stable (green), and growth (red). Scale values are classified as small

(yellow),medium (green), and large (red). The boundaries between colours are at -1% and +1% for

all rate-of-change indicators, with the exception of population, where -0.5% and +0.5% are used

instead. The boundaries between colours for the scale indicator are at 0.8 and 1.2 times a fair

earthshare.

Scale

Country People Livestock Lights Materials Energy CO2 EF EF:FES

Germany 0.06 -1.11 -1.74 -2.38 0.14 -1.02 0.03 2.85

Guyana 0.11 3.12 -1.98 -4.27 2.07 -1.06 -1.29 1.33

Moldova -1.58 -3.29 -2.94 -0.65 0.37 -0.26 -1.50 0.78

Zimbabwe 0.22 -1.03 -3.88 -2.01 -1.96 -4.69 -0.87 0.70

Netherlands 0.51 -1.92 -1.79 0.24 1.51 -0.08 1.14 3.47

Slovakia 0.04 -3.94 -3.78 1.81 0.49 -0.89 2.08 2.28

Sweden 0.37 -1.44 -3.24 3.58 -0.56 -0.62 1.46 3.30

United Kingdom 0.43 -1.81 -1.44 -2.37 -0.05 -0.09 1.22 2.74

Belgium 0.40 -2.10 -2.00 0.05 0.45 -1.22 0.93 4.49

Colombia 1.62 0.52 -1.48 2.03 0.79 -0.35 0.62 1.05

Cuba 0.20 -0.99 2.38 -1.50 -1.70 0.56 0.88 1.04

Denmark 0.32 0.08 -1.76 0.82 -0.60 -0.76 0.01 4.63

France 0.58 -0.87 -0.13 0.31 0.85 -0.08 0.53 2.81

Japan 0.11 -0.72 -0.96 -0.03 0.49 0.15 -0.26 2.65

Kyrgyzstan 1.18 1.49 -0.96 0.78 -0.92 1.27 0.18 0.70

North Korea 0.64 3.61 0.48 1.82 0.99 0.24 1.09 0.74

Paraguay 2.01 0.24 -0.41 0.97 0.37 -0.70 -1.48 1.79

Poland -0.12 -0.21 1.10 0.59 -0.40 -0.64 0.50 2.44

Romania -0.46 -1.05 0.53 0.39 -0.55 -0.85 0.57 1.52

South Africa 1.39 -0.26 0.90 0.99 2.27 1.53 -0.36 1.30

Switzerland 0.61 -0.15 -0.11 0.40 0.09 -0.36 1.39 2.81

United States 1.06 0.15 -0.95 0.51 0.64 0.64 0.98 4.48

Belarus -0.48 -1.90 -2.36 2.94 1.61 1.33 -0.51 2.13

Bulgaria -0.70 -2.61 1.81 1.23 0.42 0.13 2.23 2.28

Congo (Dem. Rep.) 2.89 -2.05 1.79 2.23 0.86 0.17 0.72 2.28

Czech Republic -0.05 -3.23 -1.47 1.15 1.49 -0.20 1.50 3.21

Lebanon 1.46 1.53 -1.15 1.06 -1.57 -0.49 0.26 1.63

Russia -0.44 -3.46 -1.43 3.43 1.60 0.78 1.12 2.47

Australia 1.21 -0.75 0.00 2.29 2.08 1.14 0.74 3.84

Austria 0.46 -1.31 0.36 1.33 1.42 1.76 1.46 2.97

Bangladesh 1.71 1.48 -0.35 3.03 7.40 6.60 2.73 0.35

Bhutan 2.82 0.32 .. 2.41 9.50 4.55 1.75 2.51

Brazil 1.34 2.79 0.59 3.66 2.28 1.30 0.81 1.63

Canada 1.00 1.40 -2.10 0.51 1.30 1.68 1.36 3.93

China 0.73 0.49 4.99 5.87 9.12 7.75 3.46 1.24

Egypt 1.91 2.78 3.09 2.82 4.72 4.71 1.99 0.93

Greece 0.26 -0.10 2.33 1.57 2.09 1.54 2.57 3.02

India 1.65 -0.17 0.71 2.71 4.54 4.15 1.59 0.51

Indonesia 1.33 1.47 0.88 3.94 4.24 5.02 0.78 0.68

Ireland 1.78 0.16 1.95 4.54 3.14 1.62 2.45 3.53

Mexico 1.22 0.51 0.80 1.36 2.25 2.04 1.43 1.68

Nigeria 2.45 2.14 0.32 2.42 2.85 2.00 2.61 0.81

Pakistan 2.34 3.03 1.45 2.75 3.67 5.18 1.93 0.43

Peru 1.40 1.93 1.51 5.44 3.04 3.66 0.83 0.86

Saudi Arabia 2.56 1.27 3.35 2.42 4.81 6.95 10.57 2.88

Spain 1.16 1.28 1.31 3.63 3.69 3.27 1.87 3.04

Tanzania 2.69 2.50 0.10 3.01 7.97 9.47 1.75 0.66

Thailand 1.00 0.33 1.36 2.95 5.20 4.29 2.53 1.33

Turkey 1.42 -0.88 2.14 2.87 4.05 3.23 2.53 1.51

Vietnam 1.35 4.03 7.99 7.70 9.58 10.98 5.39 0.79

World 1.28 0.82 0.17 2.35 2.61 2.68 1.90 1.51

Change in Stocks (% per year) Change in Flows (% per year)
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Fig. 3. The rate of change of ecological footprint vs. biophysical scale (as measured by the ratio of

per capital ecological footprint to a fair earthshare). In this visualisation, a steady-state economy is

reached at the centre of the plot, where the two axes intersect. Points are colour-coded according

to life satisfaction.
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Fig. 4. Means plots (with standard errors) for the nine indicators in the Social Accounts, grouped

according to biophysical stability. The vertical axis is oriented so that a value at the top is ‘good’.

Note: PD = Partial Degrowth, S = Stable, PG = Partial Growth, G = Growth. F is the ANOVA F-statistic

for the comparison of means, *** p < .001, ** p <.01, * p < .05, ‘ns’ not significant.

1400

1600

1800

2000

PD S PG G

0.40

0.45

0.50

0.55

PD S PG G

-0.5

0.0

0.5

1.0

PD S PG G

Voice & accountability

0

5

10

15

20

25

PD S PG G

2

4

6

8

PD S PG G

6

8

10

12

PD S PG G

28

33

38

43

PD S PG G

55

60

65

70

PD S PG G

5.0

5.5

6.0

6.5

7.0

7.5

PD S PG G

Life satisfaction Health Gini coefficient

Inflation rate Poverty Working hours

Safety & trust Unemployment rate

F = 3.57 *

F = 7.94 *** F = 10.89 ***

F = 1.49 ns F = 10.87 *** F = 0.23 ns

F = 1.08 ns F = 5.72 **

F = 1.82 ns



– 36 –

Fig. 5. Means plots (with standard errors) for the nine indicators in the Social Accounts, grouped

according to biophysical scale. The vertical axis is oriented so that a value at the top is ‘good’. Note:

S = Small, M = Medium, L = Large, VL = Very Large. F is the ANOVA F-statistic for the comparison of

means, *** p < .001, ** p <.01.
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Tables

Table 1. Indicators and the proxies used to measure them in the Degrowth Accounts.

Indicator Proxy Source Description

Human well-

being

Life satisfaction World Database of

Happiness (Veenhoven,

2014)

Response to the question “All things considered,

how satisfied are you with your life as a whole these

days?”

Health Healthy life

expectancy at birth

World Health

Organization (United

Nations, 2010)

Number of years a newborn could expect to live in

full health, taking into account time lived in less than

full health due to disease and/or injury

Equality Gini coefficient Standardized World

Income Inequality

Database (Solt, 2009)

Measure of inequality in household disposable

income (i.e. income after tax transfers)

Social capital Index of

interpersonal safety

and trust

Institute of Social

Studies (ISS, 2011)

Composite indicator that includes measures of social

trust and reported levels of crime victimisation

Democracy Index of voice and

accountability

Worldwide Governance

Indicators (World Bank,

2011)

Composite indicator that measures the extent to

which a country’s citizens are able to participate in

selecting their government, as well as freedom of

expression, freedom of association, and a free media

Low

unemployment

Unemployment rate World Development

Indicators (World Bank,

2014)

Share of total labour force that is without work but

available for and seeking employment

Stable prices Inflation rate World Development

Indicators (World Bank,

2014)

Annual percentage change in the consumer price

index

No poverty Human Poverty

Index (HPI-1)

United Nations

Development

Programme (UNDP,

2009)

Composite indicator that measures deprivations in

three areas: health, education, and living standards

Decreased

working time

Annual working

hours

International Labour

Organization (ILO,

2011)

Total number of hours actually worked during a year

per employed person

People Δ Human 
population

United Nations

Population Division

(United Nations, 2009)

Total population (both sexes combined)

Livestock Δ Livestock 
population

Food and Agriculture

Organization (FAOSTAT,

2011)

Number of livestock units (a standardised unit

obtained by multiplying the number of animals by a

conversion factor that takes into account the feed

requirements of each type of animal)

Built capital Δ Night-time lights National Geophysical 
Data Center (Elvidge et

al., 2011)

Intercalibrated sum-of-lights, capturing both changes

in the intensity and area of nocturnal lighting

Material use Δ Domestic material 
extraction

Global Material Flows

Database (SERI, 2010)

Mass of domestically extracted biomass, minerals,

and fossil fuels

Energy use Δ Total primary 
energy supply

Energy Information

Administration (EIA,

2011)

Apparent consumption of technical energy

Material

outflows

Δ CO2 emissions Carbon Dioxide

Information Analysis

Center (Boden et al.,

2010)

Total CO2 emissions from fossil-fuel burning, cement

production, and gas flaring

Scale Ratio of per capita

ecological footprint

to fair earthshare

Global Footprint

Network (GFN, 2010)

Compares a country’s ecological footprint to the

area of biologically productive land that would be

available to each person if global biocapacity were

divided equally among all people

Note:  The ∆ symbol signifies that a biophysical indicator is an annual rate of change. 
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Table 2. Categorisation of countries based on the rate of change of the seven stock and flow

indicators in the Biophysical Accounts.

Category Criteria Number of
Countries

% of
People

Degrowth ≥ 4 degrowth classifications 4 1.5

Partial Degrowth ≥ 5 stable or degrowth classifications 5 1.9

Stable ≥ 4 stable classifications  22 11.8

Partial Growth ≥ 5 stable or growth classifications 19 3.9

Growth ≥ 4 growth classifications 124 80.2

Mixed All others 7 0.7
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Table 3. The Biophysical Stability Index (BSI) and sub-indicators. Data are for a selection of

countries. See Supplementary Data for full results.

Country Change in Stocks (%/year) Change in Flows (%/year) BSI

People Livestock Lights Materials Energy CO2 EF

1 Japan 0.11 -0.72 -0.96 -0.03 0.49 0.15 -0.26 0.39

2 Switzerland 0.61 -0.15 -0.11 0.40 0.09 -0.36 1.39 0.44

3 France 0.58 -0.87 -0.13 0.31 0.85 -0.08 0.53 0.48

4 Poland -0.12 -0.21 1.10 0.59 -0.40 -0.64 0.50 0.51

5 Denmark 0.32 0.08 -1.76 0.82 -0.60 -0.76 0.01 0.62

6 Romania -0.46 -1.05 0.53 0.39 -0.55 -0.85 0.57 0.63

7 New Zealand 1.12 -0.05 -0.64 1.02 1.02 0.78 -0.19 0.69

8 United States 1.06 0.15 -0.95 0.51 0.64 0.64 0.98 0.70

9 Italy 0.42 -1.14 0.62 0.07 1.08 0.74 1.12 0.74

10 Hungary -0.26 -0.92 -1.43 1.81 0.99 -0.70 0.03 0.88

11 Paraguay 2.01 0.24 -0.41 0.97 0.37 -0.70 -1.48 0.88

12 Germany 0.06 -1.11 -1.74 -2.38 0.14 -1.02 0.03 0.93

13 Kyrgyzstan 1.18 1.49 -0.96 0.78 -0.92 1.27 0.18 0.97

14 Belgium 0.40 -2.10 -2.00 0.05 0.45 -1.22 0.93 1.02

15 Netherlands 0.51 -1.92 -1.79 0.24 1.51 -0.08 1.14 1.03

16 Colombia 1.62 0.52 -1.48 2.03 0.79 -0.35 0.62 1.06

17 United Kingdom 0.43 -1.81 -1.44 -2.37 -0.05 -0.09 1.22 1.06

18 Uruguay 0.15 0.91 -2.51 2.64 0.06 0.96 -0.21 1.06

19 Lebanon 1.46 1.53 -1.15 1.06 -1.57 -0.49 0.26 1.07

20 Norway 0.67 -0.42 -0.05 0.71 0.49 3.05 2.19 1.08

… … … … … … … … … …

125 China 0.73 0.49 4.99 5.87 9.12 7.75 3.46 4.63

… … … … … … … … … …

128 Albania 0.18 -1.44 6.20 6.09 3.88 10.55 5.49 4.83

129 Sierra Leone 3.31 3.24 9.12 4.17 4.06 9.82 1.16 4.98

130 Chad 3.48 2.85 4.66 2.48 3.10 16.83 2.78 5.17

131 Benin 3.30 3.18 1.74 2.27 11.30 12.36 3.00 5.31

132 Sudan 2.18 2.21 6.58 2.41 12.22 10.54 2.00 5.45

133 Oman 1.79 2.70 5.75 2.59 7.16 9.96 8.24 5.46

134
Trinidad &
Tobago 0.37 6.40 3.73 8.68 8.66 6.68 4.02 5.50

135 Angola 2.94 1.38 6.50 5.79 8.27 13.24 3.80 5.99

136 Vietnam 1.35 4.03 7.99 7.70 9.58 10.98 5.39 6.72

137 Turkmenistan 1.42 9.35 3.10 9.52 14.41 4.70 5.53 6.86

Note: Data show annual percentage rates of change for the seven stock and flow indicators, as well

as the BSI, and are calculated over the 10-year analysis period (1997–2007).



– 40 –

Table 4. Categorisation of countries based on the scale of resource use (per capita ecological

footprint) relative to a fair earthshare.

Category Criteria Number of
Countries

% of
People

Small < 0.8 FES 48 38.0

Medium 0.8 to 1.2 FES 34 10.4

Large > 1.2 FES 98 51.6

Table 5. The Social Performance Index (SPI) and sub-indicators. Data are for a selection of countries.

See Supplementary Data for full results.

Country Life Sat. Health Gini Trust Voice Unemp. Inflat. SPI

1 Switzerland 9.14 9.72 8.35 10.00 9.71 7.94 8.76 9.09

2 Denmark 9.54 8.89 10.00 9.35 10.00 6.98 7.12 8.84

3 Iceland 9.38 9.44 9.07 9.68 9.75 8.73 5.46 8.79

4 Norway 8.87 9.17 9.49 8.82 9.87 7.86 7.25 8.76

5 Sweden 8.80 9.44 9.87 7.84 9.87 5.76 8.07 8.52

6 Netherlands 8.35 9.17 8.95 8.11 9.94 7.81 6.93 8.46

7 Finland 8.93 8.89 9.41 9.09 9.98 4.65 7.76 8.39

8 Luxembourg 8.52 9.17 8.71 7.14 9.63 8.19 6.97 8.33

9 Austria 8.38 8.89 8.86 7.82 9.28 7.36 7.39 8.28

10 Japan 6.48 10.00 6.99 9.30 7.98 7.15 10.00 8.27

11 Belgium 7.94 8.89 8.96 8.82 9.36 5.19 7.26 8.06

12 New Zealand 8.17 9.17 6.41 8.47 9.97 6.59 6.88 7.95

13 Ireland 8.43 9.17 7.19 9.00 9.32 6.61 5.85 7.94

14 Germany 7.57 9.17 8.49 8.02 9.40 4.70 7.88 7.89

15 Malta 7.55 8.89 8.29 8.53 8.91 5.64 6.87 7.81

16 Canada 8.42 9.17 7.25 7.38 9.70 5.49 6.99 7.77

17 Cyprus 7.34 8.33 8.46 8.16 8.28 7.20 6.51 7.76

18 Australia 8.64 9.44 7.25 7.04 9.45 6.07 6.34 7.75

19 United Kingdom 7.61 8.89 6.25 7.62 9.23 6.58 7.85 7.72

20 France 6.67 9.17 8.57 7.23 8.82 4.48 7.59 7.51

… … … … … … … … … …

24 United States 8.13 8.33 5.43 6.72 8.96 6.87 6.64 7.30

… … … … … … … … … …

39 China 6.14 7.22 4.73 8.14 0.33 7.82 8.50 6.13

… … … … … … … … … …

99 Ethiopia 2.45 2.78 6.26 4.79 1.64 3.37 4.80 3.73

100 Burkina Faso 2.71 0.83 1.24 0.84 3.80 9.24 7.10 3.68

101 Malawi 5.95 1.11 3.08 4.31 3.90 5.27 1.61 3.60

102 Cote d'Ivoire 2.87 1.94 2.79 1.94 1.26 7.48 6.43 3.53

103 Botswana 3.31 2.50 0.43 4.71 6.93 2.07 3.84 3.40

104 South Africa 5.28 2.22 0.00 2.06 7.12 0.93 4.93 3.22

105 Cameroon 1.97 1.39 2.29 0.52 1.70 6.67 7.06 3.09

106 Iraq 3.26 3.89 6.48 3.70 0.00 1.51 1.16 2.86

107 Kenya 1.50 2.22 1.92 0.29 3.75 4.47 3.76 2.56

108 Zambia 3.79 0.00 1.16 3.55 3.79 3.63 1.39 2.47

Note: All results are normalised to a 0–10 scale, where 10 is the best score achieved, and 0 is the

worst.
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Table 6. Multiple regression models for all social indicators as a function of scale (per capita

ecological footprint) and stability (Biophysical Stability Index).

Dependent variable Best-fit
Model

N Adj.
R
2

Independent
variable

β t

Life satisfaction Log 123 .396 Constant 20.30 ***

PC EF .526 6.26 ***

BSI -.174 -2.07 *

Healthy life expectancy Log 133 .597 Constant 35.71 ***

PC EF .655 10.45 ***

BSI -.209 -3.33 **

Gini coefficient Linear 121 .313 Constant 19.46 ***

PC EF -.571 -6.38 ***

BSI -.003 -.03 ns

Interpersonal safety and trust Linear 121 .358 Constant 14.67 ***

PC EF .645 7.95 ***

BSI .145 1.79 ns

Voice and accountability Log 133 .517 Constant 1.24 ns

PC EF .570 8.30 ***

BSI -.253 -3.68 ***

Unemployment rate Linear 114 .027 Constant 11.98 ***

PC EF -.221 -2.12 *

BSI -.174 -1.67 ns

Inflation rate Linear 114 .198 Constant 12.71 ***

PC EF -.519 -5.39 ***

BSI -.170 -1.77 ns

Human Poverty Index Log 100 .466 Constant 5.80 ***

PC EF -.547 -7.22 ***

BSI .308 4.06 ***

Working hours Linear 44 .219 Constant 19.02 ***

PC EF -.481 -3.13 **

BSI .047 .31 ns

Note: *** p < .001, ** p < .01, * p < .05, ‘ns’ not significant. N is the number of data points in each

regression and R
2
is the adjusted coefficient of determination for the best-fit model. All regression

coefficients β are standardised.


