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Summary

Within this article I investigate a number of the conceptual issues that arise when

attempting to translate Herman Daly�s definition of a steady-state economy into a set of

national biophysical indicators. Although Daly�s definition gives a high-level view of what

would be held steady in a steady-state economy, it also leaves many questions unanswered.

How should stocks and flows be aggregated? What is the role of international trade? How

should non-renewable resources be treated? And where does natural capital fit in? To help

answer these questions, I relate Daly�s definition to key concepts and terminology from

Material and Energy Flow Accounting. I explore topics such as aggregation, international

trade, the relevance of throughput, and hidden flows. I conclude that a set of biophysical

accounts for a steady-state economy should include three types of indicators (stocks, flows,

and scale), track how stocks and flows are changing over a 5�10 year period, use aggregated

data that measure the quantity of resource use (rather than its quality), measure both total

and non-renewable resource use, adopt a consumption-based approach, include hidden

flows, and exclude indicators that measure characteristics of the stock of natural capital (with

the notable exception of indicators that measure the regenerative and assimilative capacities

of ecosystems).
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<heading level 1>Introduction

Following the beginning of the global financial crisis in 2008, there has been

increasing interest in economic models that do not rely on growth to improve quality of life.

Within the past six years there have been three international conferences on degrowth, and

one on the steady-state economy, as well as a number of government-sponsored �beyond

growth� events in countries such as Austria and France. The result is an emerging set of

proposals on how to manage an economy without growth (e.g., Daly 2008; Dietz and O'Neill

2013; Jackson 2009; Latouche 2009; Victor 2008).

The idea of a steady-state economy (SSE) was largely developed by ecological

economist Herman Daly in the 1970s, although it traces its roots as far back as the classical

economists. It may be defined as a socioeconomic system where the main biophysical stocks

and flows are stabilized, and where material and energy flows are kept within ecological

limits (Daly 1977, 1993, 1996, 2008). It is worth stressing that Daly�s definition of a steady-

state economy is entirely biophysical. It does not refer to rates of GDP growth (or other

socio-economic variables for that matter).

The idea of degrowth is a bit more contentious, but has been defined as �an equitable

downscaling of economic production and consumption that increases human well-being and

enhances ecological conditions� (Schneider et al. 2010, 511). Advocates of degrowth tend to

place more emphasis on social outcomes than their steady-state counterparts, as evidenced

by the long list of social objectives included in the declaration from the first degrowth

conference (Research & Degrowth 2010). Nevertheless, the two concepts are seen by many

as complementary. If resource use and waste emissions exceed ecosystem limits, then a

process of degrowth may be needed before a steady-state economy can be established (Kallis

2011; Kerschner 2010; Martínez-Alier 2009; Schneider et al. 2010).

In an earlier article, I analyzed four indicator approaches that could be used to

measure how close modern economies are to a socially sustainable steady-state economy

(O'Neill 2012). I concluded that separate biophysical and social indicators represent the best

approach, but a unifying framework based on ends and means is needed to choose

appropriate indicators and interpret the relationships between them (Figure 1). I proposed

creating a set of biophysical indicators to measure how close countries are to Daly�s

definition of a steady-state economy, and a set of social indicators to measure how well

countries are doing on the social objectives described in the declaration from the first

degrowth conference.
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Within this article I investigate a number of the conceptual issues that arise when

attempting to translate the definition of a steady-state economy into a set of biophysical

indicators. These issues primarily relate to the construction of the Biophysical Accounts in

Figure 1. To aid in my analysis, I relate Daly�s definition to key concepts and terminology

from Material and Energy Flow Accounting. I divide the definition of a SSE into three

separate components (stocks, flows, and scale). Following this, I investigate how to

aggregate stocks and flows, whether renewable and non-renewable resources should be

treated differently, the role of international trade, the relevance of hidden resource flows,

and the role of the stock of natural capital. Finally, I present a list of criteria that a set of

indicators designed to measure how close countries are to a steady-state economy should

aim to satisfy.

<heading level 1>Defining a Steady-State Economy

Herman Daly�s definition of a steady-state economy has evolved somewhat over

time. Although all of his definitions contain the same basic elements, earlier definitions (e.g.,

Daly 1977, 1993) tend to focus more on the idea of �constant stocks�, while more recent

definitions (e.g., Daly 1996, 2008) focus more on �constant flows�. Daly acknowledges this

evolution in one of his more recent definitions:

Following Mill we might define a SSE as an economy with constant population and constant
stock of capital, maintained by a low rate of throughput that is within the regenerative and
assimilative capacities of the ecosystem� Alternatively, and more operationally, we might
define the SSE in terms of a constant flow of throughput at a sustainable (low) level, with
population and capital stock free to adjust to whatever size can be maintained by the constant
throughput beginning with depletion and ending with pollution. (Daly 2008, 3)

In general, all of Daly�s definitions contain three basic components: stocks (the

physical size of the economy), flows (the throughput required to support the economy), and

scale (the size of the economy in relation to the environment). There are three stocks that are

relevant to the definition: the stock of built capital (e.g., buildings, transportation

infrastructure, machinery, durable goods), the stock of people (i.e., the human population),

and the stock of domesticated animals (i.e., livestock). There are three flows that are

relevant: the flow of material inputs from the environment to the economy, the flow of

material outputs from the economy back to the environment, and the energy used by the

economy. And finally, there are two measures of scale that are relevant: the ratio of material

inputs to the capacity of ecosystem sources to regenerate materials, and the ratio of material

outflows to the capacity of ecosystem sinks to assimilate wastes (Figure 2).
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I propose three definitional distinctions based on these quantities. If an economy

manages to stabilize the stocks and flows pictured in Figure 2, then I refer to it as a �stable

economy�. If the economy also manages to maintain material flows within ecological limits,

then I refer to it as a �steady-state economy�. If, in addition to these biophysical criteria, the

economy achieves a high quality of life for its citizens, then I refer to it as a �socially

sustainable steady-state economy�.

In practice, it is unlikely that a country would manage to stabilize all relevant stocks

and flows concurrently. Boulding (1975, 92) writes that �All stocks� do not have to be

stationary at the same time, and we can postulate a number of quasi-stationary states in

which some elements of the system are stationary while others are not.� Presumably,

though, the more stocks and flows that were stabilized, the closer a given economy would be

to a steady-state economy.

It may turn out that certain quantities, such as the stock of built capital, are too

difficult to measure, or are adequately captured by other indicators. Nevertheless, I would

urge a certain amount of caution in excluding these quantities. The environmental pressure

exerted by a growing stock of built capital may be adequately captured by flow indicators,

but at the moment we don�t have the necessary data on stocks to test this hypothesis. There

is, however, an emerging body of literature on the measurement and modelling of physical

stocks (e.g., Matthews et al. 2000; Müller 2006; Pauliuk and Müller 2014). An accounting

system that tracked changes in stocks, as well as changes in flows, would allow a number of

potential relationships to be investigated.

It is worth pointing out that both material and energy flows are included in Daly�s

definition of a steady-state economy. Although material flows may seem to have more

obvious environmental impacts, energy flows should not be ignored. Physically speaking,

energy is the ability to do work. Environmentally speaking, it has been called the �master

resource� (Simon 1996, p. 162). Our ability as a species to modify our environment is directly

related to the amount of energy we have at our disposal. Although different sources of

energy (e.g. coal, nuclear, hydro, and wind) have different environmental impacts, all else

being equal as we use more energy we also use more materials, produce more wastes, and

modify the landscape to a greater extent. As Paul Ehrlich and colleagues put it:

[N]o way of mobilizing energy is free of environmentally damaging side effects, and the uses
to which energy from any source is put usually have negative environmental side effects as
well. Bulldozers that ran on hydrogen generated by solar power could still destroy wetlands
and old-growth forests (Ehrlich et al. 1997).
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Finally, it is worth touching on just how long stocks and flows need to remain stable

for an economy to be considered a steady-state economy. There is a difficult trade-off here.

On the one hand, the time period needs to be long enough for us to be confident that the

various biophysical quantities are indeed stable. From an ecological perspective, this might

mean a human generation or more. On the other hand, if we are trying to manage the

national economy and direct it towards a SSE, then we cannot afford to wait 20 years to see if

a given set of policies is working. Current economic aggregates that are used to manage the

economy (e.g., GDP) are produced on a quarterly basis, while biophysical aggregates (e.g.

domestic material consumption) tend to be calculated annually. To observe any kind of

meaningful trend probably requires at least five data points, so I would argue that at least

five years of biophysical data are needed to assess whether a country is stabilizing its

resource use. In practice, though, it�s not just the number of data points that is important,

but how well a trendline fits these data points. A decade or more of clearly trending data

may be needed to confidently describe an economy as a steady-state economy.

<heading level 1>The Issue of Aggregation

Daly (1996, 31) states that in a SSE �aggregate throughput is constant�, but he does

not specify how this aggregation should be performed. There are a number of possible ways

that stocks and flows could be aggregated, such as by weight, volume, area (e.g., ecological

footprint), energy content, or monetary value. Victor (2009) is critical of these simple

methods, however, claiming that aggregation in monetary terms is not consistent with Daly�s

biophysical definition of a SSE, and that aggregation in physical terms overlooks important

differences in the composition of stocks and the environmental impact of flows. Van den

Bergh (2011) makes a similar objection against using simple aggregated indicators to

measure degrowth. He writes:

[O]ne should be careful with the precise definition of physical degrowth. We certainly do not
want to focus on reducing some simplified, aggregate measure of total tons of materials and
substances in the economy (whether stocks or flows). Not everyone agrees with this�witness
the popular notions of factor X (X=4, 10, etc.), MIPS, ecological rucksack and TMR promoted
by the Wuppertal Institute. Counting total material flows is a nice pastime activity, but we
should instead be concerned with environmentally relevant substances/materials and assign
these appropriate weights in any aggregation process. All in all, it is not clear what aggregate
physical quantity should exactly degrow�there is a measurement or indicator problem here.
(van den Bergh 2011, 884)

These critiques raise an important question: what is the main objective of a steady-

state economy? Is it to reduce environmental impact, or environmental pressure? The

� 5 �



distinction between these two concepts is made in the DPSIR indicator framework used by

the European Environment Agency. DPSIR is a causal framework for describing the

interactions between society and the environment, categorizing these as Driving forces,

Pressures, States, Impacts, and Responses. According to the DPSIR framework, social and

economic developments exert pressure on the environment and, as a consequence, the state

of the environment changes. This change leads to impacts that may (or may not) elicit a

societal response. Pressures include the use of resources, the emission of wastes, and the use

of land. Impacts refer to changes in the functioning of the environment, including changes to

ecosystem health, resource availability, and biodiversity (EEA 2003).

The implicit suggestion made by Victor (2009) and van den Bergh (2011) is that the

focus of a steady-state economy should be to reduce and stabilize environmental impact.

However, I would argue that the goal of a steady-state economy is to reduce and stabilize

environmental pressure. Conventional environmental policy is failing to solve major

environmental problems such as climate change and biodiversity loss because it does not

address the driving forces and pressures that are causing these problems (Haberl et al. 2009;

Spangenberg 2007). A SSE attempts to reduce the pressure on the environment by limiting

the aggregate quantity of material and energy use, thus making environmental policy

objectives more achievable. The objective of a SSE is not to solve problems related to the

quality (or composition) of resource use. Issues relating to the substitution of specific

materials for one another are the role of conventional environmental policy, which would

still be needed in a SSE. The objective of a SSE is to address the overall scale of the

production and consumption system�to hold quantity steady while allowing quality to

improve�and for this purpose I believe that highly aggregated indicators that measure

environmental pressure are appropriate.

The simplest interpretation of Daly�s definition would therefore measure stocks and

flows in terms of their basic physical magnitudes, i.e. mass and energy content. In fact,

Neumayer (2010) claims that the concept of Material Flow Accounting was inspired by

Daly�s definition of a steady-state economy and his �emphasis on the growing scale or

material throughput of the economy as the main cause of environmental degradation�

(Neumayer 2010, 175). While not without limitations, aggregate material use is a well-

established indicator of environmental pressure. As Krausmann et al. (2009) write:

Clearly, the environmental pressures and sustainability problems associated with the
extraction and use of materials are extremely heterogeneous. They differ largely by material
and vary over time with technological change. Aggregate materials use indicators� cannot
capture the full environmental effect of shifts in the composition of materials use or of
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technological fixes. But even though there is no simple one to one relation between aggregate
materials use and environmental deterioration, the size and composition of materials use
serves as a proxy for environmental pressures resulting from human activities. (Krausmann
et al. 2009, 2703)

Moreover, there is empirical evidence to support the notion that larger aggregate

resource use leads to greater environmental impacts. Environmentally-weighted Material

Consumption (EMC) is an indicator that aims to measure the total environmental impact of

material flows. To calculate this indicator, mass data from material flow accounts are

multiplied by environmental impact data from life-cycle assessment studies. Based on an

EMC study conducted in the Netherlands, van der Voet et al. (2004) find that while the mass

flows of an individual material are not indicative of its environmental pressure, the same is

not true when materials are aggregated. They write, �On a more aggregate level of groups of

materials, mass-based and impact-based indicators appear to point in the same direction. At

the least, therefore, the relevancy of the mass-based indicators cannot be dismissed easily�

(van der Voet et al. 2004, 134).

Based on a larger study of 28 European countries, van der Voet et al. (2005, 69)

conclude that there is a �rather high� degree of correlation between aggregate material flows

(as measured by domestic material consumption [DMC]) and aggregate environmental

impact (as measured by EMC). The correlation coefficient between the two quantities is 0.73,

indicating that around 53% of the variation in EMC is explained by DMC, and vice versa.

Therefore the use of environmental pressure indicators such as the total weight of material

flows may also go some way towards satisfying the environmental impact agenda

articulated by authors such as Victor (2009) and van den Bergh (2011). Such indicators also

have the advantage of being more transparent than environmental impact indicators.

Although aggregation might seem to be less of an issue for energy flows than

material flows, a number of methods for aggregating energy from different sources do exist.

Since all forms of energy can be converted to heat, the simplest aggregation method involves

adding up energy flows in terms of their heat content. The advantage of the heat content

approach is that it uses a simple and well-defined accounting system based on the

conservation of energy, and the heat contents of fuels are easily measured (Cleveland et al.

2000). The heat content approach does not, however, take into account qualitative

differences between different energy carriers. The method implicitly assumes that �all Joules

are equal�, although from a socio-economic perspective they may not be.

In order to account for differences in energy quality, alternative measures such as

exergy have been devised. Exergy measures the maximum amount of useful work that could
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theoretically be performed by a given amount of energy. While energy is always conserved

in any process (this is the First Law of Thermodynamics), the same is not true of exergy.

Exergy is not conserved, but is partially �used up� in any transformation (Ayres and Warr

2009). The main reason to consider using an approach that takes energy quality into account

would be to link socio-economic performance to a physical measure of resource use. This

was the objective of a study by Ayres and Warr (2009), for example, who were able to

explain past U.S. economic growth using a production function that includes capital, labor,

and exergy, and which does not require the exogenous technological progress factors used in

conventional models.

Although it is hoped that a better understanding of economic systems will be

obtained by analyzing the relationships between biophysical and social indicators, such an

analysis is not the primary purpose of the indicators in the Biophysical Accounts. The

primary purpose of these indicators is to determine how close national economies are to a

SSE. In this context it is not important whether energy is being used to perform useful work,

or squandered as waste heat, since both of these processes exert pressure on the

environment. Thus, as with material flows, I would argue that energy flows should be

aggregated in terms of quantity (i.e., heat content in Joules), as opposed to quality.

<heading level 1>Renewable and Non-renewable Resources

A related issue that is worth considering is whether renewable and non-renewable

resource flows should be treated differently in the definition of a SSE. Daly�s three principles

for sustainable resource use provide some guidance. These principles state:

1. Limit the use of all resources to rates that ultimately result in levels of waste that can

be absorbed by the ecosystem.

2. Exploit renewable resources at rates that do not exceed the ability of the ecosystem to

regenerate the resources.

3. Deplete non-renewable resources at rates that, as far as possible, do not exceed the

rate of development of renewable substitutes. (Daly 1990, 2005)

The principles imply that it is necessary to distinguish between renewable and non-

renewable resources entering the economy, since the rules for their sustainable use are

different. While a steady-state economy implies a constant rate of total resource use,

maintained within the regenerative capacity of ecosystems, it effectively implies a declining

rate of non-renewable resource use if the economy is to be sustainable in the long run.
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However, it is important not to confuse the stability of resource flows with their scale.

I would characterize an economy with a constant level of total resource use (i.e. renewable

plus non-renewable) as a �stable economy�, and one worth being able to identify. In such an

economy the resource flow available to meet society�s needs would be constant, as would the

level of pressure exerted by the economy on the environment (all else being equal). A stable

economy would not necessarily be sustainable, however, unless the rate of renewable

resource use was kept within the regenerative capacity of ecosystems, and the rate of non-

renewable resource use decreased over time. Resource use in such an economy might

resemble the scenario depicted in Figure 3.

It is worth noting that if (a) total resource use is constant, and (b) non-renewable

resource use is decreasing at a rate of X% per year, then renewable resource use must be

increasing at X% per year. In other words, conditions (a) and (b) are effectively equivalent to

Daly�s third principle of not depleting non-renewable resources faster than renewable

substitutes can be developed.1 Perhaps more importantly, these two conditions are also

easier to measure.

As Krausmann et al. (2009) show, global economic growth has been associated�not

only with rising material use�but also with a shift from renewable to non-renewable

resource use. In a SSE this trend would need to be reversed. However, the substitution of

non-renewable resources by renewable resources could cause renewable resource use to

increase further beyond the regenerative capacity of ecosystems. Some authors, such as

Haberl et al. (2007), already caution about the limited possibility of substituting renewable

resources such as biomass for non-renewable resources such as fossil fuels. Renewable

resource extraction may not be sustainable if it jeopardizes ecosystem services or

biodiversity. Thus, it seems likely that degrowth in total (i.e. renewable plus non-renewable)

resource use will be needed in order to achieve a SSE that can be maintained over the long

term.

On the outflow side it is not particularly important whether wastes come from a

renewable or a non-renewable source. It is more important to distinguish where these

materials are deposited (e.g., in land, water, or air). Like inflows, the stability of outflows

remains an important criterion for ensuring that environmental pressure does not increase

over time. However, the most important issue is for total outflows to remain within the

assimilative capacity of ecosystems (Figure 4).
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<heading level 1>The Issue of Trade

In order to make the case for a SSE, Daly and others often use a figure showing the

global economy embedded within the biosphere (see Figure 2). While this global picture is

useful for describing the basic idea of a SSE, it is not sufficient for describing a SSE at the

national level. A definition of a SSE at the national level is needed because economic policy

is not managed globally, but nationally.

The methods and terminology of Material and Energy Flow Accounting (MEFA) are

particularly useful for exploring some of the different ways that a SSE could be defined at the

national level. MEFA is a framework for analyzing the flow of physical inputs into an

economy, the accumulation of stocks within the economy, and the flow of physical outputs

to other economies or back to nature (Haberl et al. 2004). It is based on the concept of �social

metabolism� (Ayres and Simonis 1994; Fischer-Kowalski 1998), which views an economy as

a metaphorical organism that functions by appropriating materials and energy from the

environment, and returning these back in an altered form. The MEFA framework includes

established standards of Material Flow Accounting (MFA; Eurostat 2001, 2007), and

proposed methods of Energy Flow Accounting (EFA; Haberl 2001).

Figure 5 shows the physical flows between a national economy, its environment (i.e.

national territory), and the rest of the world. It introduces a number of quantities that are

drawn from Material and Energy Flow Accounting, which I use to illustrate some of the

general issues surrounding trade. With respect to materials, these quantities include:

 Domestic material extraction (DME) � The raw materials that are extracted from within

a country�s borders and used as material inputs to the national economy.

 Material imports (IM) � Products at all stages of processing (from basic commodities to

highly processed goods) that are imported and used in the national economy.

 Direct material input (DMI) � All materials, whether extracted in the national territory

or imported, that enter the national economy for further use in production or

consumption processes.

 Domestic processed output (DPO) � The outflow of waste materials that are released

back into the national territory after having been used in the national economy.

 Material exports (XM) � Products at all stages of processing that are exported from the

national economy.

 Direct material output (DMO) � All materials, whether wastes or exports, that leave

the national economy.
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In general, for each of the above material flow quantities, there is a corresponding

energy flow quantity drawn from Energy Flow Accounting. Domestic energy extraction (DEE)

parallels domestic material extraction (DME), energy imports (IE) parallel material exports (IM),

and so on.

It seems reasonable that for a national economy to be called a SSE, the stock of built

capital, people, and domesticated animals within its physical borders should be stable over

time. However, exactly which flows should remain constant, and what sources and sinks

they should be compared to, is not so clear. Below, I discuss four possible options for

defining a national SSE. The first of these ignores trade, while the other three include it. The

four options are: (1) stable domestic extraction and domestic outflows, (2) stable direct inputs

and direct outputs, (3) stable consumption, and (4) stable throughput. Note that the

important issue of whether to include hidden flows in the definition of a SSE is discussed

separately in a later section.

<heading level 2>Stable Domestic Extraction and Domestic Outflows

The first option would be to define a SSE in terms of the material and energy

extracted within a country�s borders, and the wastes released within its borders. In other

words, to define it based on stable domestic material extraction (DME), domestic energy

extraction (DEE), and domestic processed output (DPO). Trade (i.e. imports and exports)

would be completely ignored.

In this approach, the scale of economic activity in relation to ecosystem capacity

could be calculated on the input side by comparing domestic material extraction to sources

within the country�s borders. On the output side, scale could be calculated either by

comparing domestic processed output to national sinks (e.g., for pollutants remaining within

the country�s borders), or by comparing it to some assigned share of global sinks (e.g., for

pollutants crossing national borders, such as CO2).

The main problem with the domestic extraction and outflows approach, however, is

that a country could be importing a large and increasing volume of materials and energy,

and still be considered a SSE if domestic extraction were not increasing. If the goods

consumed in the country were produced abroad, then the waste outflows generated during

their production would not be counted in the importing country�s accounts either. Given the

increasing shift of manufacturing from developed to developing countries, a national SSE

definition based solely on domestic extraction and domestic outflows would favor

developed countries, and seemingly allow them to skirt responsibility for the environmental
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impact of their resource consumption. It is debatable whether such an approach would

really capture what is meant by a SSE.

<heading level 2>Stable Direct Inputs and Direct Outputs

The second option would be to define a SSE in terms of all of the material and energy

inputs entering the economy (whether extracted domestically or imported), and all of the

material outputs leaving it (whether as wastes or as products for export). In other words, to

define it based on stable direct material input (DMI), direct energy input (DEI), and direct

material output (DMO). In general, the relationship between the quantities discussed so far

(and shown in Figure 5) is:

DMI = DME + IM (1)

DEI = DEE + IE (2)

DMO = DPO + XM (3)

where IM is material imports, IE is energy imports, XM is material exports, and XE is energy

exports.

What is accounted for in this approach is the total amount of material and energy

entering the national economy (regardless of where it comes from), and the total amount of

material leaving the economy (regardless of where it goes). With this approach, a country

could reduce its domestic extraction, while increasing imports, and still remain a SSE.

Similarly, it could emit less waste domestically, and export more products to other countries,

and still remain a SSE.

A potential problem with the direct input/output approach, however, is that the

resource flows accounted for may not necessarily benefit the people living in the country in

question, and therefore it is debatable whether they should be held responsible for these

flows. Resources could be extracted within a country�s borders, but then exported (i.e. sold

and consumed elsewhere). Or, resources could simply pass through the economy, first being

imported and then re-exported (the so-called �Rotterdam effect�). Moreover, the approach

results in double counting, as a raw material imported into Country A but exported to

Country B as a finished product would be counted as an input to both economies. While

DMI, DEI, and DMO could be used to assess the stability of total material and energy flows

entering and leaving a particular economy, they could not be used to assess the scale of

economic activity in relation to ecosystem capacity due to this double counting problem.

� 12 �



Separate indicators (such as those described in the previous section) would still be needed to

assess scale.

<heading level 2>Stable Consumption

The third option would be to define a SSE using a consumption-based approach. If

the economy is viewed as a system for transforming natural resources into human well-being

(as the ends�means framework shown in Figure 1 suggests), then it may make more sense to

account for resource use according to who benefits from the resources�in other words, by

who consumes them. Following the standards of Material and Energy Flow Accounting,

material and energy consumption indicators may be defined as follows:

DMC = DME + (IM - XM) = DPO + NAS (4)

DEC = DEE + (IE - XE) (5)

where DMC is domestic material consumption, DEC is domestic energy consumption,2 and NAS is

net additions to the stock of built capital. DMC represents the flow of material inputs to a given

economy that are either converted into wastes by the economy or accumulate as stocks

within the economy. Since all stocks will eventually turn into emissions and wastes at some

point in time, Weisz et al. (2006) note that DMC may also be interpreted as an indicator of the

waste potential of a national economy.

In practice, material consumption indicators such as DMC are normally calculated in

input units (i.e., as tons of biomass, minerals, and fossil fuels entering the economic system).

These data could be compared to some assigned share of global sources to arrive at a

measure of economic activity in relation to ecosystem capacity�on the input side at least.

However, material consumption indicators such as DMC could not be meaningfully

compared to national or global sinks since only part of what is counted as consumption

enters the waste stream in a given year (the rest accumulates as a stock). Therefore, a

material outflow indicator (such as DPO) would still be needed to construct a measure of

scale on the output side

Although a consumption-based approach might seem to be an improvement on the

purely territorial approach discussed above, there are still some sticky issues. A country

could have low and stable levels of consumption, but extract a high and increasing volume

of resources. If these resources were exported, they would not be counted in the accounts of

the extracting country. They would, instead, be counted in the accounts of the country

where they were consumed. The intention of a consumption-based approach is to assign the
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responsibility for a given resource flow to the people who benefit from that flow. However,

it could be argued that the extractors of a resource also benefit from the flow produced

because they earn an income when they export it. It is therefore tempting to propose some

form of shared responsibility between extractors and consumers (e.g., Lenzen et al. 2007).

However, I would argue that the extractors do not actually benefit until they spend their

income. Only then are they receiving goods and services in return for the resources that they

have extracted.

<heading level 2>Stable Throughput

The fourth, and final, option would be to define a SSE in terms of stable

�throughput�. Daly often uses this term when defining a SSE, which lends some weight to

using a throughput measure. However, it is difficult to know whether Daly is using the term

in the technical sense that is used in Material Flow Accounting, or as shorthand for some

other quantity.

From a Material Flow Accounting perspective, throughput is the flow of matter or

energy that goes through the economy within a certain period of time�generally the

accounting period of one year. Eurostat (2001) proposes a method of defining and

calculating material throughput (MT) that equates throughput to direct material input minus

net additions to stock:

MT = DMI - NAS = (DME + IM) - NAS = DPO + XM = DMO (6)

The corresponding relationships for energy throughput (ET) would be:

ET = DEI = DEE + IE = DEC + XE (7)

These relationships are shown in Figure 6. Both throughput measures are equivalent to

quantities that have already been presented and discussed. Material throughput is

equivalent to domestic material output (DMO) and energy throughput is equivalent to

domestic energy input (DEI).

Daly speaks of ensuring that throughput is �within the regenerative and assimilative

capacities of the ecosystem� (Daly 2008, 3). However, material throughput (as defined

above) cannot be directly compared to the regenerative and assimilative capacities of

ecosystem sources and sinks. Comparing material throughput to either sources or sinks

would result in double counting since exports are not subtracted from imports. Moreover,

throughput omits flows from nature that accumulate as stocks, making it incomparable with

ecosystem sources. In short, material throughput is not directly comparable to ecosystem
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sources and sinks because�by Eurostat�s (2001) definitions at least�material throughput

does not include all of the flows between the economy and the environment.

Daly appears to have a somewhat looser interpretation of the meaning of throughput

than the one shown in Figure 6. He writes:

Throughput is the entropic physical flow of matter-energy from nature�s sources, through the
human economy and back to nature�s sinks; it is necessary for maintenance and renewal of the
constant stocks� But throughput is not itself capable of directly yielding service. It must first
be accumulated into a stock of artifacts; it is the stock that directly yields service. Stocks may
be thought of as throughput that has been accumulated and �frozen� in structured forms
capable of satisfying human wants. (Daly 1993, 326-327)

Daly appears to consider material throughput to be any material input that

eventually becomes a material outflow, regardless of how long the material is captured as a

stock in the economy. In the language of Material Flow Accounting, Daly�s quantity is not

really material throughput, but either direct material input (DMI) or domestic material

consumption (DMC). Which one, of course, depends on how exports are treated in a SSE�a

topic that Daly does not discuss.

<heading level 2>Which Approach to Choose?

In the sections above I have discussed four possible options for defining a national

SSE. I propose adopting a consumption-based approach for three main reasons:

1. A consumption-based approach assigns responsibility for resource flows to those

who benefit from using the resources.

2. A consumption-based approach helps to link together the indicators in the ends�

means framework (Figure 1). If there is any relationship between resource use and

social performance, then a consumption-based approach would be the most likely

approach to reveal it.

3. A consumption-based approach allows for greater consistency between the indicators

that are used to measure the stability of flows and those that are used to measure the

scale of economic activity in relation to the capacity of ecosystem sources and sinks.

That said, there is undoubtedly value in complementing consumption indicators with

territorial measures (e.g., domestic extraction and domestic outflows) to ensure that

countries are held accountable for the activities that take place within their own borders.

While international demand may drive resource extraction in a country, it is still up to that
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country whether they choose to extract and sell their national resources, and which methods

and technologies they employ.

<heading level 1>Hidden Flows

The grey box shown in Figure 5 illustrates the system boundary between a national

economy, its territory, and the rest of the world. The flows that enter the economy are

referred to as used extraction in MEFA because they are used to produce the goods and

services consumed, and they are ascribed economic value. Not all used extraction is

accounted for in indicators such as domestic material consumption (DMC), however.

Although DMC includes the raw materials that are extracted from within the national

environment, as well as the products that are imported minus those that are exported, it does

not include the upstream resource requirements associated with imports and exports (so

called embodied flows). These flows are accounted for in other indicators such as raw material

consumption (RMC), however, which accounts for all raw materials required to satisfy a

country�s final demand for goods and services, regardless of where the materials are

extracted from.

Wiedmann et al. (2013) show that the choice of whether to include embodied flows

can change whether nations are observed to be achieving an absolute reduction in resource

use or not. Although decoupling between GDP and DMC has been observed in a number of

countries, this is not the case when RMC is calculated and embodied flows are accounted for.

Consumption-based indicators that account for the energy and materials embodied in trade

may help resolve important debates on the linkage between economic activity and resource

use.

Materials and energy may also be extracted from the environment without ever

entering the economy. Examples include soil and rock that are excavated during

construction, biomass that is killed but not harvested (e.g., discarded by-catch and wood

harvesting losses), and overburden from mining and quarrying. These flows are referred to

as unused extraction in MEFA, and they can occur in either the country under consideration or

its trading partners. If unused extraction is added to raw material consumption, the result is

referred to as total material consumption (TMC). Empirical studies show that unused

extraction can be very large. For example, data from the Global Material Flows Database

(SERI, 2010) suggest that unused extraction accounts for about 40% of global material

extraction.
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An important issue to consider is whether or not these two types of hidden flows

(embodied flows and unused extraction) should be included in the definition of a SSE. It

seems relatively clear that if trade is to be considered at all, then the embodied material and

energy flows needed to produce the traded products should be included. Measures of

apparent consumption such as DMC are, in effect, inconsistent accounting quantities that

favor foreign production over domestic production. Wiedmann et al. (2013) show that the

upstream flows associated with traded products are three times larger than the physical flow

of products themselves. Without an indicator such as RMC, it is not possible to tell whether

developed countries are offshoring their pressure on the environment to developing

countries.

The question of whether to include unused extraction is a bit trickier. On the one

hand, it seems reasonable to draw a hard boundary between the economy and the

environment and exclude unused flows because they do not cross this boundary. If the

economy is viewed as a system for transforming natural resources into human well-being (as

the ends�means framework shown in Figure 1 suggests), then the Biophysical Accounts

should include only those resources that actually enter the economic system. Flows that

enter the economic system are transformed into goods and services and therefore have the

potential to contribute to the intermediate and ultimate ends of the economy, whereas

unused flows do not. In short, if the objective is to create a system of accounts that sheds

light on the social implications of different patterns of resource use, then it would be more

appropriate to measure used extraction than total extraction.

However, there is also a strong argument to be made for including unused flows in

the definition. Unused flows are a by-product of economic activity, and they exert a

pressure on the environment. Omitting unused flows could result in an artificially low

estimate of the scale of economic activity in relation to what ecosystems can support. For

example, the used extraction of biomass (e.g., fish capture) might be lower than the

maximum sustainable yield, but the total extraction of biomass (including by-catch as well)

might be higher. Moreover, unused extraction may grow larger over time as we deplete the

more accessible resources. Leaner ores with more slag and overburden may replace richer

mines as they become exhausted. In short, if the objective is to create a system of accounts

that assesses environmental sustainability, then unused flows should be included.

Given that the primary objective of the Biophysical Accounts is to measure how close

countries are to a SSE, and sustainable scale is a critical part of the definition of a SSE, I

would argue that unused flows should ideally be included in the accounting system
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(although I acknowledge that they are difficult to measure in practice).3 This does not

necessarily imply that unused flows should be included in all applications to which the

accounting system is put, however. When examining the relationship between resource use

and social performance, it may be more appropriate to exclude unused flows.

<heading level 1>Natural Capital

A SSE is defined as an economy in which the stocks of built capital, people, and

domesticated animals�and the material and energy flows required to support them�are

held constant, and where these flows are kept within ecological limits. But what is the role

of the stock of natural capital in this definition?

Daly and Farley (2004, 17) define natural capital as �a stock that yields a flow of

natural services and tangible natural resources. This includes solar energy, land, minerals

and fossil fuels, water, living organisms, and the services provided by the interactions of all

of these elements in ecological systems.� Although the stock of natural capital generates a

flow of natural resources that enter the economic system, I would argue that the stock of

natural capital itself lies outside of the system boundaries of the economy. One of the main

reasons for establishing a SSE is to preserve the stock of natural capital, which is seen as

complementary to the stocks within the economic system (and necessary for their

maintenance). The hope is that by stabilizing the scale of the economic system, the stock of

natural capital, and the services that it provides, can be maintained.

I would therefore argue that indicators relating to the stock of natural capital itself

should not necessarily be included in an accounting system for a SSE, with the notable

exception of indicators that measure the regenerative and assimilative capacities of

ecosystems. These latter indicators are required to determine whether the scale of material

flows between the environment and economy is sustainable�one of the main criteria for a

SSE.

This is not to say that there is no value in developing an accounting system to

monitor changes in the stock of natural capital and the services provided by it�clearly there

is. Indicators that measure natural capital could, for example, be compared to biophysical

indicators that measure the size of the economy to test whether an increase in the size of the

economy results in a decrease in natural capital (as the concept of �strong sustainability�

predicts; see Neumayer 2010). However, an accounting system for natural capital would be

complementary to the one I have proposed, which focuses on the biophysical requirements

and social performance of the economic system.
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<heading level 1>Conclusions

The definition of a steady-state economy developed by Daly (1977, 1993, 1996, 2008),

provides a high-level description of what would be held steady in a SSE, but it also leaves a

number of questions unanswered. This article has discussed some of the ways that specific

aspects of the definition could be interpreted, with the eventual aim of developing a set of

biophysical indicators capable of measuring what is meant by a steady-state economy.

Biophysical accounting has come a long way over the past two decades, both in terms of

producing physical accounts within whole-economy models (e.g. Turner et al. 2011), and in

turning monetary input�output accounts into physical accounts (e.g. Wiedmann et al. 2013).

Measuring how close national economies are to biophysical stability is now possible, but

indicators must be chosen carefully. Based on the discussion in this article, I suggest that a

system of Biophysical Accounts designed to measure progress towards a national SSE

should:

 Include indicators for the three main components of the definition (stocks, flows, and

scale)

 Show how stocks and flows are changing over a sufficiently long time period (5�10

years)

 Use aggregated indicators that measure the quantity of resource use (as opposed to its

quality)

 Adopt a consumption-based approach, but also track territorial measures

 Measure total (i.e. renewable plus non-renewable) resource use, and non-renewable

resource use

 Include hidden flows where possible (in particular embodied flows)

 Leave out indicators that measure characteristics of the stock of natural capital, with

the notable exception of indicators that measure the regenerative and assimilative

capacities of ecosystems

There are undoubtedly other ways that the definition of SSE could be interpreted

than what I have put forward. Other interpretations might draw the system boundary in a

different way (for example attaching less importance to what is happening to the stock of

built capital, and more importance to what is happening to the stock of natural capital).

Nevertheless, I believe that my interpretation is a reasonable one that helps resolve a number

of outstanding issues, and allows an operational set of indicators to be constructed.
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These indicators would help define the quantities that should be held steady in a

steady-state economy�a relatively small list of biophysical stocks and flows. Of course, a

great many things would not be held constant in such an economy, and could be encouraged

to develop and improve. These include human well-being, equity, democratic institutions,

social capital, technology, and culture.

The establishment of a SSE would greatly reduce the pressure on ecosystems by

limiting the quantity of resource use. However, a SSE would not solve problems related to

the quality (or composition) of this resource use. Even in a world where aggregate resource

use was constrained, conventional environmental regulation would still be needed to limit

the use of harmful substances, protect species at risk, maintain soil fertility, and manage land

cover change. In short, a SSE is best viewed as a necessary, but not sufficient, condition for

sustainability.
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Notes

1. There is still the danger, however, that the supply of non-renewable resources could run

out before they are replaced by renewable substitutes (i.e. if X is too low).

2. Although the methods of Energy Flow Accounting proposed by Haberl (2001) make

provision for tracking energy stocks within the economy, I would argue that the energy

consumption measure that is most relevant to a SSE is energy that is actually used.

Therefore, I make a simplification and equate DEC to the energy that is degraded in quality

and lost from the economic system. (From an accounting perspective, however, stock

changes must still be included to close the energy balance.)

3. Including unused flows is problematic, in part, because of the difficulty in establishing an

unequivocal system boundary between the ecosystem and society. There are large

uncertainties associated with unused flows, and as one reviewer of this article pointed out,

including them in the accounting system could result in substantial distortions.
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Figure Captions

Figure 1: A conceptual framework for a set of indictors to measure how close national

economies are to a socially sustainable steady-state economy. Source: reproduced from

O�Neill (2012), based on Daly (1977) and Meadows (1998).

Figure 2: The stocks, flows, and scale quantities that relate to Daly�s definition of a steady-

state economy. Stocks are shown within the grey box representing the economy, flows are

shown as arrows, and scale may be visualized as the relationship between arrows and

dashed ovals. Source: reproduced from O�Neill (2012), based on Goodland (1991, 17).

Figure 3: Resource use in an economy that satisfies both the stability and scale criteria (on

the input side) for a steady-state economy.

Figure 4: Total material outflow in an economy that satisfies both the stability and scale

criteria (on the outflow side) for a steady-state economy.

Figure 5: The stocks, flows, and scale relationships for a national economy, taking

international trade into account.

Figure 6: The definition of material and energy throughput.
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