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Purpose: Ultrashort echo time (UTE) MRI has been proposed as a way to produce segmented at-
tenuation maps for PET, as it provides contrast between bone, air, and soft tissue. However, UTE
sequences require samples to be acquired during rapidly changing gradient fields, which makes the
resulting images prone to eddy current artifacts. In this work it is demonstrated that this can lead to
misclassification of tissues in segmented attenuation maps (AC maps) and that these effects can be
corrected for by measuring the true k-space trajectories using a magnetic field camera.
Methods: The k-space trajectories during a dual echo UTE sequence were measured using a dynamic
magnetic field camera. UTE images were reconstructed using nominal trajectories and again using
the measured trajectories. A numerical phantom was used to demonstrate the effect of reconstructing
with incorrect trajectories. Images of an ovine leg phantom were reconstructed and segmented and the
resulting attenuation maps were compared to a segmented map derived from a CT scan of the same
phantom, using the Dice similarity measure. The feasibility of the proposed method was demonstrated
in in vivo cranial imaging in five healthy volunteers. Simulated PET data were generated for one
volunteer to show the impact of misclassifications on the PET reconstruction.
Results: Images of the numerical phantom exhibited blurring and edge artifacts on the bone–tissue
and air–tissue interfaces when nominal k-space trajectories were used, leading to misclassification of
soft tissue as bone and misclassification of bone as air. Images of the tissue phantom and the in vivo
cranial images exhibited the same artifacts. The artifacts were greatly reduced when the measured
trajectories were used. For the tissue phantom, the Dice coefficient for bone in MR relative to CT
was 0.616 using the nominal trajectories and 0.814 using the measured trajectories. The Dice coeffi-
cients for soft tissue were 0.933 and 0.934 for the nominal and measured cases, respectively. For air
the corresponding figures were 0.991 and 0.993. Compared to an unattenuated reference image, the
mean error in simulated PET uptake in the brain was 9.16% when AC maps derived from nominal
trajectories was used, with errors in the SUVmax for simulated lesions in the range of 7.17%–12.19%.
Corresponding figures when AC maps derived from measured trajectories were used were 0.34%
(mean error) and −0.21% to +1.81% (lesions).
Conclusions: Eddy current artifacts in UTE imaging can be corrected for by measuring the
true k-space trajectories during a calibration scan and using them in subsequent image recon-
structions. This improves the accuracy of segmented PET attenuation maps derived from UTE
sequences and subsequent PET reconstruction. © 2014 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1118/1.4837315]
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1. INTRODUCTION

The first whole-body hybrid PET-MR scanner has recently
been introduced into clinical practice.1 Such systems of-
fer several advantages over PET/CT scanners, including im-
proved soft tissue contrast and reduced radiation dose. The
latter also provides the potential for motion compensated
PET reconstruction to be performed.2, 3 However, deriving
attenuation maps using hybrid PET-MR systems remains
challenging.4, 5 Accurate attenuation correction (AC) is of
great importance in PET, especially for lesions near bones.6

In hybrid PET/CT systems, AC maps can be derived from
CT images by scaling Hounsfield units (HU) to the equivalent
attenuation coefficients at 511 keV.7 However, deriving AC
maps using MR imaging requires more sophisticated meth-
ods because no direct relationship exists between MR sig-
nal intensity and PET attenuation coefficients. In particular,
cortical bone and air have low intensity in conventional MR
sequences, but have very different attenuation coefficients in
PET.

Several methods for producing AC maps from MRI
have been proposed, which can be broadly categorized into
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nonlinear registration-based and segmentation-based meth-
ods. In nonlinear registration-based methods, an existing tem-
plate AC map is transformed to match the anatomy of a
new patient using a transform derived using nonlinear im-
age registration.8–12 The template AC map can be created us-
ing previously acquired CT (Refs. 8 and 12) or transmission
scans9–11 of one or more other subjects, or from a segmented
tissue atlas.11 In some cases the template AC map is paired
with a coregistered template MR image.8, 9, 11 The MR tem-
plate image is then registered to the MR image of the new
patient and the resulting transform is applied to the template
AC map. In other cases, the registration is performed directly
between the new MR images and the template AC map.12

In segmentation-based methods, each voxel is classified as
a particular tissue type and subsequently assigned an appro-
priate attenuation coefficient based on typical values for that
tissue.13–18 Other recent methods have followed a similar ap-
proach to segmentation-based methods, but with the signal
intensities from the MR images being used to assign con-
tinuous valued attenuation coefficients to each voxel,8, 19, 20

rather than classifying each voxel and then assigning discrete
values. Several methods also incorporate additional informa-
tion such as the location of the voxel or the MR image in-
tensities in neighboring voxels when assigning attenuation
coefficients.8, 16, 17, 20 A combination of registration-based and
segmentation-based methods can also be used.8

Accurately assigning attenuation coefficients to bone us-
ing MR images is challenging because cortical bone exhibits
low proton densities and very fast transverse relaxation rates
(T ∗

2 ), causing it to appear with low intensities with standard
MRI pulse sequences, which do not begin sampling until the
signal has decayed substantially.21 This makes it difficult to
distinguish cortical bone from air, making it challenging to
segment bone accurately and impossible to convert the MR
signal intensity directly to the appropriate Hounsfield units.

A potential solution is to perform direct sampling of the
free induction decay (FID) immediately after radiofrequency
(RF) excitation using ultrashort echo time (UTE) sequences,
such as the one depicted in Fig. 1, so that the short-lived signal
from bone can be sampled.14, 15, 20 To help further distinguish
cortical bone from soft tissue, the FID readout can be fol-
lowed by a gradient echo to produce a second image in which
only signal from soft tissue remains. Taking the natural loga-
rithm of the FID and echo images and then performing a sub-
traction yield a scaled map of the transverse relaxation rate
(R∗

2 = 1/T ∗
2 ) in each voxel, in which cortical bone appears

with high intensity and soft tissue appears with low intensity.
The acquired images and the derived R∗

2 map can then be used
to produce a segmented AC map,15 or a regression model can
be used on the acquired images to derive pseudo-CT based
AC maps.19, 20

It still remains challenging to accurately derive attenuation
maps from UTE sequences in regions containing boundaries
between air and soft tissue or between bone and soft tissue.
Boundaries between air and tissue often appear with high in-
tensities in R∗

2 maps or subtraction images derived from mul-
tiecho sequences, leading to misclassifications in segmented
AC maps,15 or errors in pseudo-CT images.19 These hyper-

FIG. 1. Pulse sequence timing diagrams for (a) gradient echo sequence with
echo time TE and (b) dual echo UTE sequence with an FID readout begin-
ning at time TE1, followed by a gradient echo readout at time TE2 = TE.
“RF” and “GR” represent the radiofrequency and gradient fields, respectively.
“ADC” represents the readout timings (analog to digital conversion). In both
sequences, time Tg represents the delay between reaching the plateau of the
gradient waveform and the start of the echo readout. This delay is employed
to allow the field to settle before the readout begins. For the UTE sequence,
time Tc represents the delay between RF excitation and the start of the read-
out due to tuning of the RF coil. Note that the FID readout in the UTE se-
quence begins while the gradient fields are ramped at high slew rates and then
continues after the flat part of the gradient waveform is reached.

intensities have been attributed to collagen content in skin,15

which also has high R∗
2 values and to susceptibility differ-

ences between different tissue types,19 which increase the R∗
2

values in these regions.
When the gradient fields are ramped up during a MRI se-

quence, the change in the magnetic field induces eddy cur-
rents in the gradient coils and nearby conductors, which in
turn produce a field that opposes the original change in the
field strength. This leads to deviations between the desired
k-space trajectories (sampling positions) and those realized
by the scanner, leading to degradation of the reconstructed
images.22 System latencies also lead to timing errors, which
cause the k-space trajectories to be shifted, leading to further
artifacts.

Although the effects of eddy currents and delays can
be corrected for in part by use of gradient pre-emphasis,
and by shifting and scaling the k-space trajectories prior to
reconstruction,13 it is common for some residual effects to oc-
cur even for an optimally configured system (results of sim-
ulations in which these effects are demonstrated are shown
in Figs. S1–S3 of the supplementary material.43 This is es-
pecially true for eddy currents that decay with short time
constants.23 The influence of eddy currents on the recon-
structed image depends on the sampling trajectory, the timing
of the sequence and on the rate at which the gradient fields
are ramped up (the “slew rate”). These effects are particularly
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prominent in UTE imaging because the acquisition must be-
gin immediately after excitation, while the field gradients
are ramping with high slew rates,23 whereas in conventional
imaging the readout is performed on the plateau of the gra-
dient waveform, after a short delay to allow the field to set-
tle before the acquisition, as shown in Fig. 1. Pre-emphasis
waveforms are generally designed to minimize errors when
sampling is performed during the plateau of the gradient
waveform, rather than for the special case of ramp sampling.
UTE imaging is therefore more susceptible to errors intro-
duced by short term eddy current behavior that are not cor-
rected for by pre-emphasis.23 Finally, projection based phase
corrections can be applied to data that are acquired using con-
ventional radial sampling schemes24 to reduce the effects of
k-space trajectory deviations, but similar methods have yet to
be developed for UTE imaging, in which only half of a pro-
jection is acquired during each repeat of the sequence. The
aforementioned differences between UTE imaging and con-
ventional gradient echo imaging are particularly important
when using an FID image and a subsequent echo image to
estimate R∗

2 maps, because any differences between the two
images due to artifacts will lead to errors in estimates of the
R∗

2 values.
Dynamic magnetic field monitoring25, 26 using a field cam-

era has recently been proposed as a way to account for eddy
current effects in several applications.27, 28 The true k-space
trajectories are measured during a separate calibration scan,
allowing both short and long term eddy current behavior to
be measured. These effects can then be accounted for by us-
ing the measured trajectories in standard MRI gridding re-
construction algorithms in place of the nominal trajectories.
In this work it is shown that system delays and eddy current
effects contribute substantially to errors in UTE derived atten-
uation maps, by introducing blurring and edge artifacts in the
UTE images, especially at the interfaces between bone and
soft tissue and between soft tissue and air. It is also demon-
strated that these artifacts can be corrected for by measuring
the true k-space trajectories using a magnetic field camera.
This leads to improved classification of bone in segmented
attenuation maps for use in PET. However, the proposed cor-
rection method is not limited to the particular pulse sequence
used and could be applied to other similar methods13–16, 19, 20

for generating attenuation maps using UTE. A numerical
phantom is used to demonstrate the effects of complex
deviations in k-space on the image reconstruction and of sub-
sequent correction using a field camera. Correction of eddy
current artifacts using the field camera is then demonstrated
using an ovine leg tissue phantom and subsequently for in vivo
cranial imaging of five healthy volunteers. PET simulations
using attenuation maps derived using nominal and measured
k-space are presented for one volunteer.

2. MATERIALS AND METHODS

2.A. UTE sequence and MR-based attenuation maps

Segmented attenuation maps were derived from MRI
based on the method proposed by Keereman et al.15 In this
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FIG. 2. (a) Dual echo UTE gradient waveform (Gr) as a function of time
after RF excitation. Gray bands delineate the sampling periods for the FID
readout (TE = 0.14 ms) and for the gradient echo readout (TE = 2.41 ms).
(b) Nominal k-space trajectory along the direction parallel to an arbitrary
spoke (kr) (normalized to the nominal field of view). (c) Error between the
measured and nominal trajectory along the spoke direction (!kr). (d) Mag-
nitude of the error between the measured and nominal trajectories in the
plane perpendicular to the spoke (!kp). (c) and (d) The black lines repre-
sent the mean error across all spokes and the gray lines show ± one standard
deviation.

method, 3D radial (“koosh-ball”) dual-echo UTE scans are
acquired, in which sampling of the FID at time TE1 is fol-
lowed by sampling of a gradient echo at time TE2, to produce
images I1 and I2, respectively, as shown in Fig. 1(b). The ra-
dial k-space trajectories as a function of time during a single
repetition of the pulse sequence are shown in Fig. 2(b). The
FID readout begins as the gradients are ramped up, giving an
initially quadratic k-space trajectory, which becomes linear
after the gradient plateau is reached. The gradient echo is ac-
quired entirely during a gradient plateau and so the trajectory
is linear throughout the second acquisition.

To produce a segmented AC map, I1 is first thresholded to
segment air from soft tissue and cortical bone. An R∗

2 map is
then calculated as

R∗
2 = ln I2 − ln I1

TE1 − TE2
. (1)

The air segmentation is then used to mask out air in the R∗
2

map. Finally, the masked R∗
2 map is thresholded to segment

cortical bone and soft tissue. Appropriate attenuation coeffi-
cients are then assigned to each segment.
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FIG. 3. Nominal and measured k-space trajectories for 3D radial UTE scan (normalized to the nominal field of view). (a) and (e) Several spokes from the 3D
readout (a) are projected onto the kx–ky plane (e). (b) and (f) Zoomed region in k-space center for FID (b) and echo (f). Due to the high sampling density in the
center of k-space for the FID readout, every second radial sampling point is omitted in (b) to aid visualization. (c) and (g) Zoomed region approximately half
way between center and edge of k-space for FID (c) and echo (g). (d) and (h) Zoomed region at outer edge of k-space for FID (d) and echo (h).

All images were acquired on a 3 T system (Achieva TX,
Philips Medical Systems, Best, The Netherlands) with a 3D
“koosh-ball” radial trajectory using an eight channel head
coil. The koosh-ball sequence consisted of several k-space
“spokes,” each of which was acquired during a single exci-
tation and corresponds to one FID/echo readout pair. Each
spoke was rotated relative to the previous so that the outer
points of the spoke cover the surface of a sphere, as shown
in Fig. 3(a). The following sequence parameters were used:
TE1/TE2 = 0.14/2.41 ms, repetition time = 4.7 ms, flip an-
gle = 10◦, field of view = 250 mm diameter, and voxel size
= 1.25 mm isotropic.

For the ovine phantom scans, fully sampled k-space data
were acquired, such that the Nyquist criterion was fulfilled
in both the radial and angular directions, giving a scan time
of 7 min 32 s. The numerical phantom data were simulated
with the same sampling pattern as the ovine phantom. In both
cases reconstruction was performed using a nonuniform fast
Fourier transform,29 with a correction for the sample density
computed using an iterative method.30 For the in vivo scans,
angular undersampling by a factor of 4 was employed to re-
duce the scan time to 1 min 45 s. To avoid undersampling ar-
tifacts in these images, reconstruction was performed using a
self-calibrating31 non-Cartesian parallel imaging technique.32

2.B. Dynamic magnetic field monitoring

A dynamic magnetic field camera25 (Skope Magnetic Res-
onance Technologies LLC, Zurich, Switzerland) was used to
measure the magnetic field evolution during UTE scans. The
camera head consists of 16 transmit/receive NMR probes33

arranged on the surface of a sphere, as shown in Fig. 4. Prior

to the main monitoring experiment, four calibration measure-
ments are made to determine the Larmor frequencies and po-
sitions of the probes within the scanner. Each measurement
consists of a radiofrequency (RF) excitation followed by sam-
pling of the FID, either in the presence of no gradients (to
determine Larmor frequencies) or in the presence of a gradi-
ent in one of three orthogonal directions (to determine the x,
y, and z positions). For the main monitoring experiment, the
UTE pulse sequence is played out as usual, with the probes
being excited on every repetition of the sequence. Sampling

FIG. 4. Schematic diagram of dynamic magnetic field camera (Skope
Magnetic Resonance Technologies, Zurich, Switzerland). Sixteen trans-
mit/receive NMR probes are mounted on the surface of a sphere. The phase
evolution of each probe is recorded during a calibration scan in which the
pulse sequence of interest is played out. The phase and known positions of
each probe are used to calculate the coefficients of a field model as a func-
tion of time. The true k-space trajectories and B0 field evolution are extracted
from the model and used in image reconstruction.
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occurs continually throughout each repetition, rather than be-
ing split into two as is the case during imaging (for FID and
echo sampling), as shown in Fig. 1(b).

The phase of the signal from a particular probe is related to
the history of the local field strength surrounding that probe.
As the position and Larmor frequency of each probe is known
from the calibration measurements, the phase of the signal
measured during the UTE monitoring scan can be used to fit a
model to the field using an expansion of spherical harmonics.
This is done by solving for the coefficients kl in the following
equation:25

φj (t) = γBref j t +
Nl∑

l=1

kl(t)fl(rj ), (2)

where φj(t) is the measured phase from the jth probe at posi-
tion rj at time t, γ is the gyromagnetic ratio for water, Bref j is
the local field strength in a reference state (determined from
the probes’ Larmor frequencies), and fl is the lth of Nl spher-
ical harmonic basis functions described with dynamic coef-
ficients kl. With 16 probes, up to 16 coefficients can be de-
termined, allowing an expansion in the spherical harmonic
basis up to the third order. For standard Fourier-based im-
age reconstruction, only terms up to the first order are re-
quired, which correspond to dynamic measurement of drift
of the main magnetic field (B0) strength (zeroth order term)
and measurement of k-space trajectories (first order terms).
In principle, higher order terms can be incorporated into the
reconstruction by solving the forward signal equation using
an iterative method.27 However, this requires a specialist re-
construction algorithm and leads to a substantial increase in
reconstruction time. Therefore, only first order reconstruction
is performed in this work. All data processing and reconstruc-
tion were performed in MATLAB (R2012b, The Mathworks,
Natick, MA), with parts of the pipeline utilizing the Recon-
Frame package (Gyrotools LLC, Zurich, Switzerland).

2.C. Experiments

2.C.1. Trajectory measurement

To measure the true k-space trajectories during the FID and
echo readouts, a separate field monitoring scan was performed
as a calibration step prior to imaging. The same scan param-
eters were used for both field monitoring and imaging, with
the exception of the flip angle, which was set to 90◦ during the
monitoring scan to maximize the signal strength, the readout
period, which was stretched along the entire repetition time
in order to track the phase evolution throughout, and the rep-
etition time, which was increased to 100 ms for the monitor-
ing experiment to avoid saturation of the signal from the field
camera probes.

2.C.2. UTE simulations

As predicting the effect of complex k-space trajectory de-
viations on image reconstruction is challenging, a numerical
phantom was used to demonstrate the appearance of artifacts
in UTE images when reconstruction is performed using nom-
inally calculated k-space trajectories, rather than the true tra-

jectories. The phantom consists of three ellipsoids of different
intensities, which when summed represent a long bone sur-
rounded by soft tissue (soft tissue intensity = 1/0.98, bone
intensity = 0.2/0.03 for FID/echo, respectively), as shown
in Fig. 5. k-space data for the phantom were simulated for
the FID and echo acquisitions by analytically evaluating the
Fourier transform of the three ellipses at the points corre-
sponding to the k-space trajectories measured using the field
camera. The simulated k-space data were then used to recon-
struct images first using the nominal trajectories and sepa-
rately using the trajectories measured using the field camera.
For the nominal echo image, absolute and linear phase correc-
tions were applied.24 Segmented attenuation maps were then
derived from the resulting images and R∗

2 maps. For compar-
ison, “ground truth” segmentations were generated by evalu-
ating the ellipse equations in image space. The segmentations
derived from the reconstructed images were compared to the
true segmentations using the Dice similarity coefficient.34

2.C.3. Tissue phantom imaging

UTE images were acquired of an ovine leg phantom. Im-
ages were reconstructed in the same manner as for the sim-
ulated data, with an additional correction for temporal B0

changes performed in the measured case, using the measured
zeroth order coefficients. CT images were acquired of the
phantom for comparison, using a combined PET/CT scanner
(Discovery VCT, GE Healthcare, Waukesha, WI) with the fol-
lowing parameters: 140 kVp, 350 mAs, in plane voxel size
= 1.3 mm, slice thickness = 1.25 mm, pitch = 0.53. CT
images were registered to the FID UTE images using rigid
registration35 with normalized cross correlation as the similar-
ity measure. CT images were segmented using intensity based
thresholding on HU. As the UTE sequence provides contrast
between cortical bone and soft tissue but not between trabec-
ular bone and soft tissue, thresholds were chosen to separate
cortical bone (HU > 800), soft tissue (−200 < HU < 800)
and air (HU < −200). The threshold between air and soft
tissue was also effective in classifying the plastic container
surrounding the phantom as air. The accuracy of the bone seg-
mentation in the MR-derived attenuation maps was assessed
for a volume of interest covering 50 central slices using the
Dice similarity coefficient.

2.C.4. in vivo imaging

Cranial UTE images of five healthy volunteers were ac-
quired following provision of informed consent. To avoid un-
necessary radiation dose to the volunteers, CT scans were not
acquired for comparison and so the images and resulting seg-
mentations were evaluated qualitatively.

2.C.5. PET simulations

PET simulations were performed for one volunteer to
demonstrate the effect of misclassifications in the attenuation
map due to eddy currents on the PET reconstruction, as illus-
trated in Fig. 6. An emission map containing bone, air, and
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FID Echo R2* map AC map

Truth

Nominal

Measured

Nominal − Measured

Air

Soft tissue

Bone

FIG. 5. Simulated UTE images of a long bone surrounded by soft tissue. k-space data were generated by evaluating the Fourier transform of the ellipses forming
the phantom at the locations given by the trajectories measured using the field camera. Images were then reconstructed using the nominal k-space trajectories
and again using measured trajectories. Prominent hyperintense edge artifacts are seen on the air–tissue border in the FID images reconstructed with the nominal
trajectories (white arrows), as well as hypointense bands on the bone–soft tissue border (black arrows). The former leads to misclassification of soft tissue as
bone in the attenuation map and the latter leads to misclassification of bone as air. In addition, there is blurring in the FID images reconstructed with nominal
trajectories (short white arrow), which leads to air being misclassified as bone.

soft tissue regions was generated from the segmentations de-
rived using the measured trajectories. To add contrast in the
emission map between gray matter, white matter, and CSF,
the BrainWeb36 tissue atlas was transformed into the same
space as the MR images of the volunteer based on affine
registration35 between the Brainweb proton density MRI tem-
plate and the echo image from the volunteer dataset. The vox-
els in the emission map corresponding to gray matter, white
matter, and CSF in the transformed atlas were then reclassi-
fied accordingly. Three artificial spherical tumors of diameter
20 mm were then placed in various locations: (1) in the cen-
ter of the brain; (2) at the posterior of the brain close to the
skull; and (3) posterior the nasal sinuses. The following emis-
sion values, representing typical standardized uptake values
(SUV) were assigned to each tissue: tumor = 6, gray matter
= 2.7, white matter/other soft tissue = 1, bone = 0.3, and
CSF = 0.

Fully three dimensional (3D) simulated PET data were
then produced using an approach based on the method de-

scribed by Tsoumpas et al.37 A reference sinogram was de-
rived by forward projection of the emission map. An atten-
uated sinogram was generated from the reference sinogram
by applying the corresponding attenuation coefficient factors
(ACFs) calculated from the attenuation map derived using
measured trajectories. Fully 3D scatter was also estimated
from the emission and attenuation maps derived using mea-
sured trajectories as described by Tsoumpas et al.38 The scat-
ter was then added to the attenuated sinogram. The refer-
ence sinogram and the attenuated sinogram with scatter were
then scaled to simulate 10 min, fully 3D FDG acquisitions
(100 × 106 counts without scatter and 150 × 106 counts in-
cluding scatter). Poisson noise was then added to each of the
two sinograms.

OSEM iterative reconstruction was performed using the
STIR package39 with the following parameters: 2 iterations,
28 subsets, matrix size = 128 × 128 × 23, voxel size = 2
× 2 × 3.27 mm3, 4 mm full-width at half-maximum Gaus-
sian postprocessing filter. A reference PET image (PETref)
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FIG. 6. Generation of simulated emission map: The segmentation derived from the images reconstructed using measured trajectories was used to generate an
emission map containing bone, air, and soft tissue. The BrainWeb proton density weighted template was then registered to the echo image that was reconstructed
with measured trajectories. Gray matter, white matter, and cerebrospinal fluid were extracted from the brain web segmented atlas, and typical emission values
were assigned to each of these three tissue types to produce a brain emission map. The brain emission map was transformed using the affine matrix that was
derived from the registration and was then combined with the bone/soft/tissue/air emission map before the addition of spherical lesions. The combined segmented
emission map was then smoothed with a Gaussian filter and down-sampled. PET simulation pipeline: The simulated emission map was forward-projected to
produce a reference sinogram. The attenuation maps derived using measured trajectories were used to calculate the ACFs and scatter component. The ACFs were
then multiplied with the reference sinogram before addition of the scatter estimate, to produce an attenuated sinogram with scatter. Poisson noise was added
to the reference sinogram and to the attenuated sinogram with scatter. A reference PET image (PETref) was reconstructed from the noisy reference sinogram,
without simulating or correcting for attenuation or scatter in the reconstruction. The noisy attenuated sinograms with scatter were reconstructed in one case using
the scatter estimate and ACFs derived from the measured trajectories (PETmeas), and in a second case using ACFs and a scatter estimate derived from nominal
trajectories (PETnom).

Medical Physics, Vol. 41, No. 1, January 2014
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was reconstructed from the reference sinogram without sim-
ulation and consecutive corrections for attenuation and scat-
ter effects. This provided an ideally reconstructed reference
image with no influence from any errors due to attenuation
or scatter. The attenuated sinogram data with scatter were re-
constructed using within the algorithm the attenuation correc-
tion factors and scatter estimates derived using both the nomi-
nal and measured trajectories, to give images denoted PETnom

and PETmeas, respectively. Differences in the maximum and
mean SUV (SUVmax and SUVmean) were calculated for each
tumor relative to PETref using regions of interests defined by
the original extent of each tumor in the emission map.

3. RESULTS

3.A. Trajectory measurements

Figures 2(c) and 2(d) show the mean deviations across all
spokes between the measured and nominal trajectories as a
function of time t after excitation. Figure 2(c) shows the devi-
ations in the direction parallel to the spoke (!kr). Both short
and long term effects are evident. The deviations during the
FID readout are dominated by short term effects; there is a
rapid increase in the size of the deviation during ramping of
the gradients, which decays quickly as the plateau is reached.
The deviations during the echo readout are dominated by long
term effects, leading to a relatively constant parallel shift of
the trajectory across the readout, with the exception of a short
lived component at the beginning of the readout, which oc-
curs as a result of ramping of the gradients before the readout.
Figure 2(d) shows the magnitude of the deviations in the plane
that is perpendicular to the spoke direction (kp) and contains
the current nominal sampling point at t. The nominal and mea-
sured trajectories diverge rapidly at the beginning of the FID
readout and then the size of the deviation remains relatively
constant before rising again slowly throughout the echo read-
out.

The nominal and measured trajectories are shown for sev-
eral spokes in Fig. 3. To aid visualization, the trajectories
are projected onto the kx–ky plane [Figs. 3(a) and 3(e)]. Sev-
eral zoomed regions are also shown. Figures 3(b)–3(d) show
zoomed regions for the FID readout in the center of k-space
[Fig. 3(b)], where the errors are small; approximately halfway
between the center and edge of k-space [Fig. 3(c)], where the
short term eddy current effects have their maximum effect;
and finally at the edge of k-space [Fig. 3(d)], where the de-
viations are again small. It is clear from Fig. 3(b) that the
deviations are anisotropic across k-space.

Equivalent regions for the echo readout are shown in
Figs. 3(f)–3(h). Figure 2(d) shows that there is a shift along
the direction parallel to the spoke throughout the entire k-
space during the echo readout, which is commonly corrected
for using projection based linear phase correction.24 In this
correction, the parallel shifts of opposing k-space spokes are
estimated from the linear phases of the associated projec-
tions. The calculated linear phase is then subtracted from the
data before gridding, or equivalently the k-space trajectories
can be shifted accordingly. As this correction is routinely ap-

plied in radial gradient echo imaging, the results shown in
Figs. 3(f)–3(h) reflect the trajectories after the application of
this correction, with the linear phases estimated from the sim-
ulated phantom data. After this correction, the errors in the
k-space center [Fig. 3(f)] are small (<0.1). It is again clear
that the eddy current effects are anisotropic across k-space.
The residual parallel shifts in Figs. 3(g) and 3(h) are of sim-
ilar size to each other (approximately 0.25) but of opposite
sign and are due to short term effects following ramping of
the gradients.

3.B. UTE simulations

In order to assess the effect of k-space trajectory deviations
on the reconstructed images, simulated UTE images recon-
structed with nominal and with measured k-space trajectories
are shown in Fig. 5. For comparison, the true images gener-
ated using the image space ellipse equations are also shown,
along with the corresponding segmentation. The FID images
reconstructed with nominal trajectories exhibit hyperintense
edge artifacts (white arrows) and blurring (short white ar-
rows) on the air–tissue border and hypointense artifacts on the
border between bone and soft tissue (black arrows). The hy-
perintensities lead to misclassification of soft tissue as bone;
blurring leads to misclassification of air as bone and the hy-
pointensities lead to misclassification of bone as air. None of
these artifacts appear in the images reconstructed with mea-
sured trajectories. The Dice coefficients between the bone
segmentations derived from the reconstructed images and the
true bone segmentation were 0.993 and 0.410 for the images
reconstructed with measured and nominal trajectories, respec-
tively. For soft tissue the corresponding figures were 0.978
and 0.973 and for air they were 0.994 and 0.974.

3.C. Tissue phantom imaging

UTE images of the tissue phantom reconstructed with
nominal and with measured k-space trajectories are shown in
Fig. 7, along with calculated R∗

2 maps and segmented attenu-
ation maps for each case. Difference images between nominal
and measured cases are also shown, along with a CT image of
the same slice for comparison. The difference images high-
light edge artifacts in the images reconstructed with nominal
trajectories, which are more prominent in the FID images than
in the echo images, and follow a similar pattern to those in
the simulated data. The artifacts manifest in the R∗

2 maps as a
hyperintense ring on the air–tissue border (white arrows), as
well as a hypointense line on the bone–tissue border (black
arrows). The hyperintensities again lead to misclassification
of both air and soft tissue as bone and the hypointensities lead
to misclassification of bone as air. These artifacts are greatly
reduced in the R∗

2 map derived from the images reconstructed
with measured trajectories, as is the ring of misclassified bone
in the attenuation map. Dice coefficients for bone in MR rel-
ative to CT were 0.814 and 0.616 for AC maps derived using
the measured and nominal trajectories, respectively. For soft
tissue, the corresponding figures were 0.934 and 0.933 and for
air they were 0.993 and 0.991.
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Nominal
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CT

FIG. 7. UTE-MR and CT images of an ovine leg phantom. Top row: Reference CT image and segmented attenuation map derived from CT. Second row:
UTE-MR images reconstructed using nominal k-space trajectories, with corresponding R∗

2 map and segmented AC maps. Third row: As second row but with
images reconstructed using k-space trajectories measured with a field camera. Fourth row: Differences between images reconstructed with nominal trajectories
and with measured trajectories. Black arrows show hypointense artifacts on the bone–soft tissue border, leading to misclassification of bone as air. White arrows
show hyperintense artifacts on the air–soft tissue border, leading to misclassification of soft tissue as bone.

3.D. in vivo imaging

Typical in vivo images are shown in Fig. 8. As with the
tissue phantom and simulations, hyperintense edge artifacts
are seen on the air–tissue border in the images reconstructed
with nominal trajectories, leading to a layer of bone appear-
ing on the outer edge of the head in the attenuation map (white
arrows). This is removed when the images are reconstructed
with measured trajectories. Hypointense areas in the skull in
the nominal FID images also lead to misclassification of bone
as air (black arrows), which are corrected for in the images
reconstructed with measured trajectories. Axial, sagittal, and
coronal slices of the R∗

2 maps and AC maps from a second
volunteer are shown in Fig. 9. Again the layer of misclassi-
fied bone on the skin is apparent in the AC maps derived us-
ing the nominal trajectories, which is corrected for when the
measured trajectories are used. There are no visible streaking
artifacts due to undersampling.

3.E. PET simulations

Reconstructed PET images (PETref) for the three slices
containing the simulated tumors are shown superimposed on
the MR echo images in Fig. 10. Relative differences between
PETnom and PETref, between PETmeas and PETref, and be-
tween PETnom and PETmeas are also shown. To remove back-
ground signal and to aid visualization of the brain, the differ-
ence maps were masked based on the union of the gray matter,
white matter, and CSF BrainWeb masks. In general, uptake
was overestimated in PETnom, with a mean relative difference
in the brain of 9.16% between PETnom and PETref. The corre-
sponding figure between PETmeas and PETref was 0.34%. The
largest errors in PETnom occurred in the posterior and supe-
rior regions of the brain, where large regions of misclassified
bone appear in the attenuation maps. In these regions the rela-
tive difference tended to approximately 25% toward the in-
ner surface of the skull. For the simulated lesions, relative
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FIG. 8. UTE-MR images of the head of a volunteer. Top row: FID and echo images reconstructed with nominal k-space trajectories and corresponding R∗
2 and

segmented attenuation map. Middle row: As top row but with reconstruction performed with k-space trajectories measured with a field camera. Bottom row:
Differences between images reconstructed with nominal trajectories and with measured trajectories. Black arrows show hypointense artifacts on the bone–soft
tissue border, leading to misclassification of bone as air. White arrows show hyperintense artifacts on the air–soft tissue border, leading to misclassification of
soft tissue as bone.

differences in SUVmax between PETnom and PETref were
7.17%, 10.51%, and 12.19%. Corresponding figures for
PETmeas were −0.21%, 1.11%, and 1.81%. For SUVmean, cor-
responding differences were 4.15%, 11.13%, and 10.25% for
PETnom and −2.13%, 0.86%, and −0.46% for PETmeas.

4. DISCUSSION

It has been demonstrated in this work that eddy current
artifacts can lead to errors in PET attenuation maps derived
from UTE MRI sequences and that these effects can be cor-
rected for by measuring the true k-space trajectories with a
magnetic field camera, which can then be used in the recon-
struction in place of the nominal k-space trajectories. Simula-
tion results demonstrate the introduction of artifacts when the
nominal k-space trajectories are used in image reconstruction.
Imaging of a tissue phantom and in vivo cranial imaging show
that these artifacts are reduced when the measured k-space
trajectories are used in the reconstruction.

Segmented attenuation maps derived from the phantom
images were quantitatively compared to those derived from
CT and an improvement in the accuracy of bone segmenta-
tion was observed when the measured trajectories were used
instead of the nominal trajectories. The main improvements
were due to the reduction of hyperintense artifacts on the edge
of the phantom in the FID images, which lead to misclassifi-
cation of soft tissue as bone in the nominal AC maps and also

due to a reduction in blurring on the edge of the phantom that
leads to misclassification of air as bone in the nominal AC
maps. Furthermore, in the AC maps derived using nominal k-
space trajectories, small regions of bone are misclassified as
air due to hypointense edge artifacts on the bone–soft tissue
interface in the FID image. Again, these were corrected for
when the measured trajectories are used.

Despite improvements in the accuracy of the bone seg-
mentation when measured trajectories are used in the re-
construction, some errors still occur compared to segmented
maps derived from CT. Sources of error in UTE-derived at-
tenuation maps have been investigated by Johansson et al.,40

who discuss limitations of both segmentation based meth-
ods and methods involving continuous mappings of MR im-
age intensities to HU. A limitation of current segmentation
based methods is that a single bone class cannot account for
the wide range of densities present across different types of
bone. Methods involving a continuous mapping between MR
and HU aim to address this problem, but large uncertainties
(200–300 HU) still exist in bone regions.40

UTE sequences were proposed for PET/MR to help to dis-
tinguish between cortical bone and air. However, separation of
trabecular bone from soft tissue using UTE remains challeng-
ing because the short T ∗

2 collagen component of the trabecu-
lar bone is masked by the long T2 components of the marrow.
Therefore, while it is relatively easy to adjust thresholds in
CT to segment parts of the bone with different densities, this
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FIG. 9. Axial, sagittal, and coronal slices from 3D R∗
2 maps and segmented

AC maps derived from cranial UTE MRI scans of a second volunteer recon-
structed using nominal k-space trajectories and again with measured trajecto-
ries. Black arrows show hypointense artifacts on the bone–soft tissue border,
leading to misclassification of bone as air in nominal AC maps. White arrows
show hyperintense artifacts on the air–soft tissue border, leading to misclas-
sification of soft tissue as bone in nominal AC maps.

is rather more challenging in MR. This makes the assessment
of MR based segmentations relatively sensitive to the choice
of thresholds. However, we found that over a wide range of
thresholds, the segmented AC maps derived using measured
trajectories had consistently higher Dice coefficients relative
to CT compared to those derived using nominal trajectories.
Furthermore, although UTE sequences help to distinguish be-
tween air and cortical bone, accurate segmentation is still
challenging because cortical bone still has relatively low sig-
nal intensity and because the FID sampling scheme only cov-
ers half of a radial k-space spoke per excitation, leading to a
relatively low signal to noise ratio.

In a previous study, Johansson et al.19 introduced a method
to reduce errors on the air–soft tissue and bone–soft-tissue in-
terfaces that occur due to susceptibility differences between
these tissues. They use a second UTE sequence with a dif-
ferent flip angle to help provide additional information about
the longitudinal relaxation rate (T1) in these regions. Despite
these improvements, they reported in a subsequent study40

that the largest uncertainties in pseudo-CT images still oc-
cur on the bone–tissue and air–tissue interfaces (400 HU). We
have shown in this study that eddy currents can cause substan-
tial errors in these regions, which can be corrected for using
magnetic field monitoring. Another source of errors is geo-
metrical distortions due to gradient nonlinearities, which can
be compensated by geometrical correction methods24, 41, 42 to
improve coregistration of MR and PET images. It should be
noted that these methods only correct for distortions caused
by spatial nonlinearities in the gradient fields at edge of the
field of view, which are static and do not account for dynamic
trajectory errors from eddy currents.

PET simulation results show that misclassifications due to
eddy currents can have substantial effects on the PET quan-
tification, with oversegmentation of bone leading to a mean
error in the uptake in the brain 9.16% when AC maps de-
rived from nominal trajectories are used and errors of up
to 12% in the SUVmax of the simulated lesions. In future
work we plan to investigate the clinical impact of our eddy
current correction method by comparing PET images in pa-
tient datasets using MR based attenuation maps derived using
nominal and measured trajectories with CT based attenuation
correction.

An advantage of using field monitoring for eddy-current
correction is that a one-time calibration scan can be performed
and the measured trajectories can be used in all subsequent
image reconstructions for the same set of scan parameters.
For the purposes of attenuation correction, it is likely to be ac-
ceptable to maintain the same scan parameters for each patient
and so the calibration scan should not need to be repeated. It
should be noted that as distortion of k-space trajectories leads
to a mismapping of spatial frequencies during reconstruction,
the appearance of the artifacts depends in part on the imaged
object (or conversely its spatial frequency content). However,
the trajectory distortions are due mainly to eddy currents in-
duced in the scanner components and so are largely indepen-
dent of the imaged object.

In this study the effect of improved UTE image recon-
struction on segmented attenuation maps was demonstrated.
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FIG. 10. Three axial slices containing lesions from PET simulation. From left to right: PETref images superimposed on MR echo image derived using measured
trajectories. Relative (%) difference between PETnom and PETref. Relative (%) difference between PETmeas and PETref. Relative (%) difference between PETnom
and PETmeas. Difference images are masked using a brain mask derived from the segmented emission map.

However, these methods could also be applied to other tech-
niques for attenuation correction using UTE. Similar dual-
echo UTE pulse sequences are used by several authors in
both segmentation-based methods14–16 and methods in which
pseudo-CT images are derived.20, 40 Magnetic field monitor-
ing could be applied to any of these sequences, or to the more
complex triple-echo sequence proposed by Berker et al.13 It
could also be applied to MR-based radiotherapy treatment
planning.

5. CONCLUSION

We have demonstrated that artifacts due to eddy currents
in UTE MR imaging can lead to misclassification of tissue in
segmented MR-based PET attenuation maps. We have shown
that these artifacts can be corrected for by measuring the true
k-space trajectories with a dynamic magnetic field camera
and using these trajectories in the MR reconstruction. Re-
sults were demonstrated for a numerical simulation, for tissue
phantom imaging and for in vivo cranial imaging of healthy
volunteers. Further work is required to demonstrate the clini-
cal impact of our method.
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