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Reliable provision of water, energy and transportation, all supplied through infrastructure, is necessary
for the most basic human and economic development to occur. Such development however, is not
enabled by specific end-use products (e.g. litres of water, kWh of electricity, litres of diesel and petrol), or
by infrastructure itself (i.e. the systems of energy, transport, digital information, water, waste and flood
protection assets), but rather through the infrastructure end-use services (e.g. hygiene, thermal comfort,
communication, or accessibility).

The present form of infrastructure operation consists of supply systems provisioning unconstrained
demand of end-use products, with larger consumption volumes corresponding to higher economic
revenue. Providing infrastructure capacity to meet unmanaged growing demand is ultimately unsus-
tainable, both in environmental and economic terms. Past research has focused on physical infrastructure
assets on the one hand, and sustainable consumption and production on the other, often neglecting
infrastructure end-use services. An important priority for sustainable infrastructure operation is there-
fore to analyse the infrastructure end-use service demands, and the variety of end-users’ wants and
behaviours.

This paper outlines the key aspects of an end-user and service-centred approach to infrastructure
operation. It starts with an overview of relevant research areas and literature. It then describes the
infrastructure end-use services provided by different infrastructure streams quantitatively, with the UK
domestic sector as an illustration. Subsequently, insights into infrastructure integration at the end-user
level are presented. Finally, the infrastructure end-use service perspective is described as a holistic
framework for intervention: understanding technological changes in context, acting directly on end-use

demand, and including social implications of service-based solutions.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Our physical infrastructure — the systems of energy, transport,
digital information, water, waste and flood protection assets — is a
means to an end: it is built, maintained and expanded to enable the
functioning of society. Reliable provision of water, energy and
transportation, all supplied through infrastructure, is considered
necessary for the most basic human and economic development to
occur (UN, 2013; Wilkinson et al., 2007). The role of infrastructure
as a key intermediary between socio-economic activities and con-
sumption of environmental resources is less well understood, and
the operation of existing infrastructure is a key link between con-
sumption and resource use.
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In the present form of infrastructure operation, reliable and
affordable supply (of water, transportation capacity and energy) is
prioritized at any level of societal demand — despite the fact that
aggregate demand levels are constantly growing (DECC, 2014; DFT,
2011; EEA, 2001), and that affordability is in fact far from guaran-
teed (Healy and Clinch, 2004; Liddell and Morris, 2010). Shortages,
price spikes or congestion are considered to be short-term crises
mostly addressed with emergency measures and, although they
could be seen as opportunities for change, they do not trigger long-
term systemic change (Castdn Broto et al., 2014). The existing
infrastructure strains under the requirements for added capacity.
Budget policies in the richest countries in the world neglect in-
vestment in basic infrastructure maintenance — let alone devel-
opment of sustainable alternatives. Environmentally, it has long
been clear that drastic reductions in levels of resource use are
needed, but privatised utility companies, whose profit model
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depends on volume sales, do not prioritise these reductions. Such
form of infrastructure operation is therefore inherently unsus-
tainable, and by itself is enough to prohibit any sustainability
transition (Unruh, 2002). A step change towards more resource-
efficient infrastructure operation is therefore required to meet
crucial societal targets, such as drastically reducing greenhouse gas
emissions (CST, 2009; UNFCCC, 2008).

Considering infrastructure, human and economic development
is neither enabled by the physical infrastructure (i.e. systems of
energy, transport, digital information, water, waste and flood pro-
tection assets), nor by the utility products per se (i.e. the physical
vector provided by utility companies, such as water, gas and elec-
tricity), but rather through the end-use services provided by
infrastructure (i.e. thermal comfort, illumination, sustenance, hy-
giene, and mobility). Such service perspective places end-users, or
“consumption couplers” as lined out by Pauliuk and Miiller (2014),
and infrastructure end-use services at the heart of analysing the
role of infrastructure as a key intermediary between socio-
economic activities and consumption of environmental resources.

This paper aims to provide broad intellectual access to the
analysis of infrastructure end-use services from a systemic
perspective, considering their final demand, active conversion
technologies and their passive context (Cullen and Allwood, 2010a)
and is structured as follows: Section 2 examines relevant research
areas regarding infrastructure operation and infrastructure end-use
services. Based on this review and using a bottom-up perspective,
Section 3 continues by elaborating the physical and socio-economic
aspects of end-user's interrelation with infrastructure operation
from an end-use service perspective. This perspective requires
alternative metrics, centred on service delivery, which we discuss
in the UK domestic context in Section 4. Subsequently, the impli-
cations for infrastructure interdependencies are considered in
Section 5, with the potential for performance-based service con-
tracting. Section 6 discusses the infrastructure end-use service
perspective as a holistic framework for intervention: understand-
ing technological changes in context, acting directly on demand,
and including social implications of service-based infrastructure
solutions. Section 7 concludes key findings and highlights potential
strands of future research.

2. Overview of relevant research area

The following section firstly provides a general overview of
relevant research fields related to infrastructure operation as a key
intermediate between resource consumption and socio-economic
activities. Secondly, the inclusion of end-users as essential ele-
ments of infrastructure operation, performance-based service
provision, and infrastructure interrelations is highlighted as a
requirement for a sustainable infrastructure transition.

2.1. Research fields related to infrastructure operation

Industrial Ecology and Sustainability Science are the two fields
generally considered when investigating the environmental im-
pacts and resource consumption of socio-economic activities.
While both fields have systemic ambitions, Industrial Ecology tends
to study production-consumption chains, with emphasis on mini-
mizing waste through recycling and efficiency (Jelinski et al., 1992).
Sustainability Science on the other hand is more focused on
conceptualizing, modelling and measuring society—nature in-
teractions, with a goal of encouraging science and technology to
look beyond individual components (Kates et al., 2001).

Environmental impacts of socio-economic processes are most
often considered broadly through the analysis of production and
consumption activities. Powerful analytic tools, such as Life Cycle

Analysis (Finnveden et al, 2009; Rebitzer et al, 2004) and
Environmentally-Extended Input-Output analysis (Duchin, 1992;
Minx et al., 2009) link consumption and production together,
enabling the comparison of products and economic sectors in terms
of their environmental impacts. More recently, the research area of
Sustainable Consumption and Production (SCP) has undertaken the
challenge of studying the social and economic aspects of produc-
tion and consumption (Spaargaren, 2003; Tukker et al., 2008), and
the potential for environmentally innovative product delivery, such
as Product Service Systems (IMont, 2002; Mont and Tukker, 2006).

Although recently Akenji (2014) highlighted the importance of
infrastructure for mainstreaming sustainable consumption, in most
of the studies the emphasis remains at the product and production
chain level. The underlying physical infrastructure is included
partially, as it pertains to production, mainly through electricity and
transportation processes. However, these methods do not include
infrastructure (and its interdependencies) in its own right, and are
too aggregated and product-focused. Indeed, production and con-
sumption occurs within a given infrastructure context, and most
importantly changing infrastructure inevitably implies altering
production processes and consumption patterns. These in-
terdependencies can be conceptualized through the co-evolution of
society and technology (Foxon, 2011), highlighting the causal, sys-
temic interconnections linking social institutions and business
models with the technologies and physical processes they rely
upon, and vice-versa. According to co-evolutionary theory, it is not
possible to simply alter the technological underpinnings of society,
from dirty to green, or unsustainable to sustainable, without
altering the fundamental social, economic and institutional re-
lations, which regulate our daily lives.

Taking such a system perspective three further areas have clear
links to infrastructure research. The first is Stocks and Flows
Modelling (Baccini and Brunner, 2012; Hu et al., 2010; Muller,
2006), which quantifies the resource use of technological and
demand level changes in infrastructure and the built environment.
For example, Miiller et al. (2013) highlighted the significance of
emissions embodied in the infrastructure stock for achieving
future climate change targets. In contrast, our goal is to under-
stand the influence of infrastructure design and operation on
resource use beyond that of the infrastructure itself. The second is
Urban Metabolism (Kennedy et al., 2007, 2009; Newell and
Cousins, 2014; Ramaswami et al., 2012; Weisz and Steinberger,
2010) and Low Carbon Cities (Chavez and Ramaswami, 2011;
Grimm et al.,, 2008; Sullivan et al., 2012), which consider the
specific challenges and opportunities related to reducing resource
use and emissions in urban settings. Urban metabolism obviously
considers infrastructure through the transport networks and built
environment of cities, but since the urban system is studied as a
whole, the key aspects of different infrastructure systems are
often not given special attention. The third is the sociological
approach to analysing consumption through the understanding of
social “practices” (Ropke, 2009; Shove, 2003; Shove and Walker,
2010). This research area comes perhaps closest to our perspec-
tive on infrastructure by defining a broad category of “systems of
provision” (Spaargaren, 2003) of crucial importance in the prac-
tices of ordinary consumption (McMeekin and Southerton, 2012):
the daily consumption activities that are not particularly visible or
do not entail complex decision-making on the part of the con-
sumers, but that account for a large fraction of their resource use
budget.

2.2. Sustainable infrastructure transition requirements

The above review highlights the importance of consumption, or
final demand, as the ultimate driver of environmentally intensive
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industrial activity, as well as the key role of infrastructure in
meeting human needs and economic development. Therefore end-
users and infrastructure end-use services are at the heart of
researching the role of infrastructure as a key intermediary be-
tween socio-economic activities and consumption of environ-
mental resources. A transition towards more sustainable end-user
centred infrastructure operation can be characterized by several
innovative, and disruptive, requirements.

First and most importantly, the end-user, and their demand,
must become the essential element of the operation of infrastruc-
ture. Demand can only be understood, managed, and brought down
to sustainable levels through end-user integration. The end-user
chooses and operates key conversion technologies, such as appli-
ances and vehicles, which are the intermediaries between end-use
service demand and infrastructure supply, as well as a common
locus of infrastructure integration. Indeed, end-use technologies
hold the greatest potential for climate mitigation (Grubler et al.,
2012a; Wilson et al., 2012), but there are challenges in terms of
sufficient research and development, widespread adoption as well
as appropriate maintenance and usage.

Secondly, infrastructure end-use service demand must replace
product demand as the focus of supply chains and networks. The
concept of service, rather than product, is analogous to the idea of
functional unit rather than product unit in Life Cycle Assessment.
The idea is to focus on the ultimate benefit that the end-user seeks
from the consumption of utility products. The concept of services
replacing products is far from new and has been put forward
under the titles of performance, functional or service economy
(Mont, 2002; Mont and Tukker, 2006; Stahel, 2010), and devel-
oped in parallel from a business and marketing perspective
(Gronroos, 2011; Vargo and Lusch, 2008). Product Service Sys-
tems, might lead to extended product life-time and higher supply
efficiency (Mont, 2002; Mont and Tukker, 2006), but usually do
not include contractual agreements on achieved resource savings.
Sustainable and resource-efficient infrastructure operation
therefore requires a shift from a traditional throughput-based
economy, where transactions are based on units of products
delivered, to a performance-based economy, where profits are
based on savings compared to business-as-usual (Steinberger
et al., 2009). Performance-based service contracts go beyond the
point of product delivery, and incorporate efficient end-use
technologies as well as service demand levels. These contacts
are the basis of the business model of Energy Service Companies
(ESCos), providing guaranteed energy services at lower level of
energy consumption (Bertoldi et al., 2006; Sorrell, 2007; Vine,
2005). While ESCos are mainly active in business-to-business
transactions, high transaction costs for small clients and high
asset specificity for large customers have been identified as ob-
stacles for adopting more business-to-consumer transactions.
Standardized contracts, monitoring and accreditation schemes
might help to overcome these barriers (Hannon, 2012; Sorrell,
2007).

Thirdly, sustainable infrastructure operation should not be
limited to single systems (such as electricity or transportation), but
aim to encompass multiple systems by understanding their in-
terconnections and exploring possibilities of substitution between
them. Indeed, many infrastructure end-use services rely on more
than one infrastructure system or utility product (e.g. hygiene
services require water and heat). One infrastructure system might
also enable micro-generation of other utility products (e.g. energy
enables pumping and cleaning of grey water) and substitute to a
certain extent other infrastructure systems. Exploring infrastruc-
ture interconnections and the potential for substitution between
infrastructure streams is conceptually enabled by the focus on the
end-use service they deliver.

3. End-user centred infrastructure operation
3.1. The need for end-user integration

Although it is broadly acknowledged that societies' re-
quirements for water, energy, communication, transportation and
waste removal are determined by the end-users’ level of demand
(Roelich et al., 2015), the end-users themselves are rarely included
in infrastructure operation, apart from very targeted demand
management measures aimed at reducing peak demand (Carley,
2012; Russell and Fielding, 2010). The total resource consumption
of an infrastructure service is defined by demand levels, the effi-
ciency of the conversion technologies, their operation and main-
tenance, and the efficiency of supply and distribution networks.
Thus, for resource-efficient infrastructure operation, integrating
the end-users is of particular importance, as end-users’ behaviour
determines quantity and quality of the infrastructure end-use ser-
vices as well as the adoption of end-use technologies, their lifetime
and mode of operation. Based on existing work, we elaborate in the
following two sections on the physical and socio-economic aspect
of end-user centred infrastructure operation, which is graphically
represented in Fig. 1.

3.2. The physical level: active and passive technologies and their
operation

We depict the physical layer of infrastructure end-use service
provision in the lower half of Fig. 1, showing the supply chain from
supply or generation processes via distribution networks, active
conversion devices and passive systems (Cullen and Allwood,
2010a) and their operation, to the level of end-user demand for
infrastructure end-use services. Although displayed as one infra-
structure stream in Fig. 1 we emphasis the infrastructure in-
terrelations at various levels, which are further discussed in section
5.

Cullen et al. (2011) highlighted the importance of the passive
systems in maximising system-wide efficiency, by demonstrating
their large untapped energy saving potentials (e.g. 98% for space
heating/cooling, 91% for passenger car and 54% for freight truck
transport). According to the authors, these savings are possible
from existing best practice designs such as lightweight cars and
Passivhaus building standards, and are additional to the relatively
high savings from the active conversion devices itself (e.g. 67% for
appliances in the building sector).

Such improvements can only be achieved when these technol-
ogies are operated and maintained appropriately. Design-
performance gaps in low-energy buildings are a well-known
example of unrealised efficiency savings due to inappropriate us-
age or inappropriate design for the intended use (Andrews et al.,
2011; Boardman, 2007). Besides the appropriate operation of the
conversion devices and passive systems, the type of operation
mode is important. For private vehicle mobility, cars can be oper-
ated in ownership or car-sharing mode (i.e. as a product-service
system). Mont (2004) shows that a switch from ownership to
leasing, renting, or sharing agreements leads to more efficient cars,
avariety of different car models available, as well as environmental
sound solutions with reduced car numbers and shorter travel dis-
tances. Furthermore, end-use services are always provided by a mix
of active conversion devices and passive systems (Cullen et al.,
2011). In some cases this combination can lead to a trade-off off
potential efficiency gains between the two (e.g. solar water heater
with storage vs. instantaneous water heater).

In addition to the end-use conversion of utility products, up-
stream efficiencies in the generation and distribution networks
(including options for decentralised provision) are key for an
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Fig. 1. End-user centred infrastructure operation: the lower half depicts the physical layer of infrastructure end-use service delivery, blue boxes indicate processes, blue arrows
product or energy flows, and grey arrows corresponding losses; the upper half depicts the socio-economic layer, with orange boxes representing socio-economic actors, red boxes
their profiles, and magenta boxes decisions directly affecting the physical level or other actors. Contractual boundaries are delineated for the traditional utility (dashed line) and
technology provision (dotted line), and for a performance-based service contract situation (dash dotted line). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

overall resource efficient provision of infrastructure end-use ser-
vice (Cullen and Allwood, 2010b). For energy systems, Cullen and
Allwood (2010b) show that losses in fuel transformation and en-
ergy generation and distribution account for 40% of all conversion
losses. Similarly for water, where losses during capture, treatment,
and distribution are estimated at around 30% (Coelho and Andrade-
Campos, 2014). With the focus of this article on the end-user
integration details on upstream conversion is not depicted in Fig. 1.

All the efficiency improvements along the supply chain, how-
ever, depend on the quality and quantity of end-use service de-
mand. Although often considered independently from technical
solutions, end-use service demand is interrelated with the active
conversion devices, passive systems, and their operation. On their
own, technical efficiency improvements have a high potential of
direct rebound effects, where efficiency gains are offset by in-
creases in usage (Greening et al., 2000; Hertwich, 2005; Sorrell
et al., 2009).

3.3. The socio-economic level: end-users, utilities and technology
suppliers

The upper half of Fig. 1 depicts the socio-economic layer of end-
user centred infrastructure operation enabling and constraining
changes throughout the physical supply chain. Besides the end-
users, utility companies and technology suppliers are the key
actor groups, interacting with each other to determine different
parts of the supply chain. Since our analysis focuses on the end-
user, the “utility company” is a simplified representation of the
full supply chain actors, including generators, network operators
and suppliers. Each actor has an impact on the physical throughput
through its business model, decision-making, or behaviour, which

themselves depend on the actors' profiles (e.g. socio-economic
situation, regulatory obligations, or needs and wants).

End-users are referred to as the consumers of the infrastructure
end-use services, which are used to satisfy their needs and wants in
accordance with their profile (i.e. lifestyle and human and financial
capital). In the current setting, their decision-making consists of
four key aspects: they select the utility company to deliver the
utility product, choose certain technologies (both active conversion
devices and passive systems) to convert the product into a service,
define how these technologies are used and in what operation
mode, and finally determine the quality and volume of the end-use
service itself. These decisions are not independent from each other,
as they restrict the available options in other arenas; for example a
specific conversion technology will require specific utility products
and hence utility companies, and constrains potential operation
modes. The service demand is particularly interlinked with the
other decisions. On the one hand, it is the main driver for subse-
quent decisions, setting to a large extent the manoeuvre space for
these decisions. On the other hand, end-use service demand might
change as new technologies are installed. Such change has been
observed as a rebound effect offsetting efficiency gains, but can also
take the form of a spillover effect where already resource efficient
solutions raise awareness and lead to a decrease in service demand
(Hertwich, 2005). For example photovoltaic installations have been
found to reduce electricity consumption in the households (Hondo
and Baba, 2010; Keirstead, 2007). Furthermore end-users’ decisions
depend on the value propositions from utility companies and
technology suppliers.

Technology suppliers are companies supplying active conversion
devices and/or the technologies for the passive system. The value
proposition might range from a traditional appliance sale, to rental
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or leasing agreements to performance-based service contracts. In
the traditional setting they interact directly with the end-users. In a
performance-based service contract setting they could either sup-
ply to the utilities, which then sell to the end-user (e.g. British Gas
selling boilers with maintenance contracts), or offer a performance-
based service contract to the end-user encompassing the utility
product purchased from the utilities.

Utility companies provide utility products to the end-users
through generation and distribution networks. Depending on
their regulatory obligations, asset ownership and investment
strategies, they may have more or less control over the physical
supply infrastructure, but still mainly determine the resource effi-
ciency up to the point of utility product sale. Their current value
proposition is dominated by utility product offers (e.g. gas, elec-
tricity, and water) leading to contractual agreements with little to
no influence on utility product demand levels. Extending the value
proposition towards a performance-based service contract would
by necessity not only include the crucial end-user conversion
technologies but also set the benchmark for appropriate operation,
efficient operation modes, and potentially sufficient quality and
quantity of end-use service demand.

4. Alternative infrastructure end-use service metrics

Extending infrastructure operation towards end-user centred
operation as outlined in the previous section, requires a more
detailed analysis of infrastructure end-use services and their
measurement as a key driver. In the following section we elaborate
on shortcomings of current utility delivery metrics, discuss infra-
structure end-use services, and propose alternative metrics for
their measurement.

4.1. Shortcomings of current utility delivery metrics

The way utility product delivery to the end-user is currently
assessed and measured has three basic shortcomings: (i) billing
metered quantities instead of services prevents efficiency solu-
tions; (ii) flat rate charges disincentivise efficiency and sufficiency
behaviour; and (iii) highly standardized “one size fits all” solutions
lead to technological lock-in ignoring the variety of service required
by the end-users.

We address these in turn. Firstly, currently delivery is measured
and billed as utility products or metered quantities (e.g. kWh of
electricity, gas or litres of water) delivered, rather than the end-use
services the end-users actually need or want. The product focus
limits the revenue generation of utility companies to the volume of
utility products purchased, and disincentivises more resource-
efficient solutions, such as energy or water conservation mea-
sures at the end-user level. Two examples illustrate this. In the UK,
although regulators place duties on water utility companies to
promote water efficiency and to conserve water, where it is cost
effective to do so, most of them prefer leakage prevention over
demand management measures (OFWAT, 2011). In Australia,
extensive water conservation measures were successfully imple-
mented during the drought, but utilities encouraged end-users to
increase their consumption again as soon as the supply was secure,
in order to generate the revenue to cover their drought-incurred
capital costs (Beal and Stewart, 2011).

Secondly, several utility products for domestic end-users in the
UK are charged with almost no relation to their actual consump-
tion. For example, in most communities, end-users pay for waste
removal through the council tax on a per-capita rather than a per-
service base (DEFRA, 2011a), and the same is true for the 65% of
unmetered homes in the UK paying for water at a fixed rate (along
with homes which are metered, but where the utility company

does not conduct readings) (DEFRA, 2009). These flat rate charges
disincentivises any sort of sufficiency behaviour (i.e. consume up to
sufficient levels and not beyond) or the implementation of effi-
ciency measures, despite the wealth of evidence showing the
effectiveness such costs-by-cause principle (Chambouleyron, 2004;
Miranda and Aldy, 1998).

Thirdly, most current utility products are delivered at quality
standards which have been established historically, and are main-
tained regardless whether they are still required to meet the needs
of the end-users (Roelich et al., 2015). These high standards prevent
resource-efficient solutions where bespoke or multiple qualities
match the characteristics of conversion technologies more closely.
Examples are potable water for all household uses, where in fact we
could use grey- or rainwater for 50% of all uses (Butler et al., 2011),
and inefficient AC/DC converters for most household appliances
(Calwell and Reeder, 2002). Established quality standards leave
little room for alternative resource-efficient solutions and lead to a
technological lock-in (Unruh, 2000).

4.2. Infrastructure end-use services for satisfying needs and wants

Rather than gas, electricity or water, end-users demand infra-
structure end-use services to satisfy their specific needs and wants.
Such needs and wants vary widely, and may be difficult to deter-
mine in physical terms. [llumination, for example, has a wide range
of associations from mood (Jean-Louis et al., 2005) to mental health
(Espiritu et al., 1994), roads and community safety (Monsere and
Fischer, 2008; Painter, 1996), and productivity (Hedge et al,
1995). Needs and wants, as measures of quality of life, are notori-
ously difficult to operationalize, as examples from health care and
social services show using a range of 125 indicators (Schalock,
2004). While such depth of analysis might be required in the
context of disabilities and aging, it is not practicable in an infra-
structure context, where changes in the quality of infrastructure
end-use services have to be measured and billed. The challenge
therefore is to define sensible metrics of these services, which are
physically measurable, but still describe end-users needs and wants
better than volumes of utility products do.

4.3. Measuring infrastructure end-use services

Based on available data, we present some initial infrastructure
end-use service metrics as an intermediate step towards measuring
end-users needs and wants for performance-based service con-
tracts. Referring to past work on energy services (Cullen and
Allwood, 2010a; Fouquet, 2011; Haas et al., 2008; Marshall et al.,
2013) and intensity of energy intensity of economic activity (Farla
and Blok, 2000; Schipper et al., 2001), we specify thermal com-
fort, illumination, hygiene or cleanliness, sustenance, communica-
tion, and mobility as the infrastructure service classes in a domestic
setting. These classes are subdivided, based on data available and
technologies installed, in physically measurable functional units
and exemplified with quantitative service measures for average UK
households (Table 1). By focussing on UK household data, we can
quantify the magnitude of different services, and discuss the im-
plications of monitoring these for potential performance-based
service contracts. Details and data sources are provided in the
Supporting Information. Since data availability is biased toward
current infrastructure delivery metrics, we highlight the interme-
diary nature of the metrics presented and discuss the individual
service classed in more detail below.

Measuring thermal comfort as usable floor area at a certain
average temperature takes the metrics away from throughput of
energy carriers closer to end-users needs and wants, incentivising
the implementation of efficient end-use technologies (e.g.
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Table 1

Services classes, service metrics, average weekly demand measures for UK households (2.35 occupants).

Services class Service metrics

Weekly average UK household service measures

Thermal comfort
[llumination

Usable floor area (UFA) at average temperature

the emitted source-lumen)

Hygiene/cleanliness  Textile cleaning (laundry): number of weekly cycles

Personal hygiene: number of showers, baths, sink, & tap uses

Human waste disposal: number of toilet flushes

Sustenance Food conservation: kg of food cooled and frozen

Cooking: number of meals, times of hob, oven, microwave, kettle, tap

uses

Food cleaning: number of dish washing cycles, sink use volume

Gardening: tap uses & water volume
Communication Entertainment: hours of use
Home computing: hours of use
Internet: hours of use
Telephone: hours of use
Work, business & education trips
Shopping, escort & personal trips
Leisure trips

Mobility

11% < 50 m?, 52% 50—90 m?, 37% > 90 m? UFA at 17 °C

Lumen perceived by the user (in the lit environment calculated as 1/3 of ~ 0.05 MIm/m? UFA or 4.6 Mlm total provided by 34 lights

5.5 washing cycles (1-23) at 4.8 kg average load with 6 kg capacity, 5
drying cycles

10.3 showers 7 min with 9 1/min (3—15 1/min), 6.6 baths with 80 I/bath
(60—160 1/bath), 135 tap uses

21.1 full (25%), 63.5 reduced toilet flushes

16.1 kg (60%) food cooled to 5C (200 I refrigerator), 5.4 kg (20%) food
frozen to —18C (200 | freezer)

12 meals: 8.1 hub, 3 oven, 1.8 microwave, 30 kettle uses, 1 h range hood:
135 tap uses (227 | water)

Dishwasher: 4.9 times a 12 place settings equivalent (58 1) sink: 144 1
(50% hot water 50C)

6.3 external tap use total 177 | water for irrigation and cleaning

32.7 h primary TV, 19.2 h secondary TV, 5.2 h video player, 16.1 h
compact audio system, 7.8 h video game

38.5 h laptop, 25 h desktop + monitor

7.7 h internet use, 74% with broadband connection

3.3 h landline, 3.6 h mobile phone use

12.8 trips at 12.7 km average distance (163 km)

17.3 trips at 7.7 km average distance (133 km)

13.2 trips at 14.6 km average distance (193 km)

insulation or condensing boilers) by providers. However, the need
for a certain temperature has significant diurnal and annual vari-
ability (Mihalakakou et al., 2002) and might differ between the
individual rooms, depending on occupancy rate and type. Including
such variability in the metrics might require more automation
(Ferreira et al., 2010) or smart meter technologies (Rashidi and
Cook, 2009). In addition, end-users adapt to new standards of
thermal comfort and a more “comfortable” service provision might
even accelerate energy consumption (Shove, 2003). If incorporated
in a service contract, the actual infrastructure end-use service be-
comes visible and behavioural changes (e.g. choice of clothing,
ventilation) might also lead to an absolute reduction of energy
consumption (Steinberger et al., 2009).

Illumination measured as perceived lumen by the end-user takes
the metrics one step further towards end-users’ actual needs and
wants. On average about one third of the source lumen emitted
reach the lit environment and are perceived by the end-user (IEA,
2006). Placing lumen meters in every lit environment around the
house might be less practicable than measuring room temperature.
Performance-based service contracts including illumination might
therefore rely on theoretical measures based on emitted source
lumen of the technology installed. In addition, the general prefer-
ence of end-users for day light (IEA, 2006) as well as the remarkable
variation in recommended illumination levels for different tasks
(Mills and Borg, 1999) should be considered.

Communication is the third service class mainly related to in-
house energy consumption, operationalized here as hours of enter-
tainment system, home computer, internet and phone use.
Measuring “on-time” of devices used for this service might be rela-
tively simple, while actual needs and wants they are used to satisfy
are far more complicated to define, as boundaries between services
vanish (e.g. internet phone services and mobile internet) or more
devices fulfil multiply purposes (e.g. smart phones, TV's, laptops, and
tablets). Furthermore, some of these devices such as phones have
permanent standby functions which establish a service on its own in
addition to actual hours of use. Performance-based service contracts
in this class might therefore concentrate on primary TV's with
increasing screen sizes and significant power consumption.

Hygiene is subdivided here into textile cleaning, personal hy-
giene and human waste disposal. Measuring textile cleaning as

numbers of weekly washing and drying cycles, personal hygiene as
number of showers, baths and tap uses, and human waste disposal
service as number of toilet flushes, still measures throughput but
provides more detail on the quality of service demand than
measuring utility products. Integrating hygiene services in
contractual agreements would require measuring and monitoring
behaviour in a sphere of life, which people traditionally consider as
one of the most private (Waterwise, 2009). A further difficulty is the
broad variability in quantity and quality these services are
demanded and how they change over time. Textile cleaning and
personal hygiene, for example, both exhibit a roughly five-fold
escalation over the last century as a result of a co-evolution of
suites of technologies and practices (Shove, 2003).

Sustenance is referred to as food preparation, cooking, food
cleaning, and, for the purpose of this article, water usage for
gardening. Similar to hygiene services, the suggested metrics still
measure throughput (e.g. kg of food cooled or frozen for food
conservation or number of dishwashing cycling) but provide much
more information about how we convert the infrastructure prod-
ucts (i.e. mainly energy and water) with numerous kitchen appli-
ances. The variation in peoples' diets is far higher than expected
from a simple metabolic perspective, which is further exaggerated
for infrastructure end-use services required in house for sustenance
by different lifestyles, occupancy rates, and economic and human
capital. The 12 full meals cooked on average and 16 kg of food
cooled every week in UK households therefore gives only a first
approximation and further research into how sustenance services
relates to occupancy and lifestyles is required.

Mobility as the movement of people or goods can be seen as the
intermediary of transportation measured as traffic (i.e. vehicle
movement) and as accessibility referring to the ability of people to
reach goods, services, activities and destinations (Litman, 2003).
Mobility can be described as number of trips for work, business,
education, shopping, personal, and leisure activities purposes. The
average distances travelled for these activities are shortest for
shopping activities, but are compensated with their higher fre-
quency, bringing the average weekly distance travelled for shop-
ping up to 133 km compared to the 163 km for commuting, and
193 km for leisure activities (DFT, 2011). It has been argued that
access to activities and places, not mobility, is the infrastructure
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end-use service people want (Bertolini et al., 2005; Ferreira and
Batey, 2007; Handy, 2002). Measuring accessibility, however, is
an intricate problem starting with place or individual accessibility
to more elaborate concepts taking into account urban environ-
ments as well as person-specific space-time autonomy of in-
dividuals (Kwan, 1998). Measuring infrastructure end-use service
as accessibility instead of mobility might open a new range of op-
tions in infrastructure operation (Ferreira et al., 2012; Geurs and
van Wee, 2004), but the question is whether accessibility is a suf-
ficient measure? Motives for car use for example might be more
symbolic and affective than instrumental (Sheller, 2004; Steg,
2005), or driving itself might become the valued activity (De Vos
et al., 2013; Sager, 2008). A comprehensive metric therefore
might need to distinguish between accessibility and mobility for its
own purpose.

The discussion on the individual metrics demonstrates that,
although some data on infrastructure end-use service demand is
available, it may be a long way from this to standardized
performance-based service contracts on a household level. There
are several reasons for this: firstly, as soon as we move away from
delivering a simple quantity of a utility product to a performance-
based service delivery, the metrics become immediately multi-
dimensional. For example the electricity bill would go from kWh
of electricity to frequency, duration, and intensity of use of a
plethora of appliances. Secondly, measuring such use would require
a significant involvement of information and communication
technology (ICT) such as smart meters. Such equipment would not
only monitor the delivered service but as well related end-user
behaviour, and has the potential to reduce resource demand
through intelligent feedback (Darby, 2010; Hargreaves et al., 2010).
Nevertheless, such feedback has to be presented appropriate and
context dependent and needs to strike the balance between auto-
mation and freedom of consumption related decisions (Roelich
et al., 2015). Thirdly, taking an end-use service perspective it be-
comes evident that such service rarely can be provided by one
infrastructure stream or utility product.

5. Infrastructure integration at the end-user level
5.1. Infrastructures interrelations

Interconnections in infrastructures occur among different
technical infrastructure systems (CST, 2009; Rinaldi et al., 2001)
and between technical and socio-economic systems (Foxon, 2011;
Hall et al, 2012). Such interrelations potentially increase in-
frastructure's vulnerability to failure (Zimmerman and Restrepo,
2006), but might also present opportunities for more efficient so-
lutions (Frontier Economics, 2012). Therefore, infrastructure must
be seen as a complex, interconnected system of technologies
embedded in society and the environment, interacting with public
and private institutions (Roelich et al., 2015).

In the construction phase, infrastructure relies heavily on
transportation and consequently on energy infrastructure for the
movement of the massive amount of bulk materials needed (e.g.
Sahely et al., 2003; Weisz and Steinberger, 2010), but, infrastructure
interconnections are even more accentuated in the operational
phase, where most infrastructure systems require contribution from
energy and communication. The “Water-Energy-Nexus”, describing
how the two resources are inextricably intertwined (Schnoor, 2011),
is probably the most famous example of such operational in-
terrelations. Such interactions happen at multiple levels (Geels,
2011, 2012) implying that physical infrastructure does not only
have a supporting role, but stands in complex interrelation with
socio-economic-ecological systems. Governance of interconnected
infrastructure systems is therefore an often underestimated but

particularly difficult task (Roelich et al., 2013). End-use service de-
mand stands at the origin of these interconnections, since some
end-use services (e.g. textile cleaning, personal hygiene, and food
preparation and cleaning) require more than one utility product
(e.g. water and energy). Therefore, end-use service demand is itself
the locus of crucial infrastructure streams interconnections and is a
particularly important but often overlooked aspect when consid-
ering infrastructure interconnections.

5.2. Infrastructure interrelation at the end-user level

Considering the utility products required to deliver infrastruc-
ture end-use services reveals insights regarding bulk consumption
and end-user level infrastructure integration. For the domestic
infrastructure end-use services, satisfying UK's households' needs
and wants, we draw a narrow system boundary around the UK
homes and therefore consider only final energy and water con-
sumption (Grubler et al., 2012b) (Fig. 2).

Annually, all UK households consume roughly 1833 T], or 29%, of
the total final energy consumption in the UK (DECC, 2014), and
3.45 x 10® m> of water, or 154 L per person per day (DEFRA, 2011b).
UK households' water consumption is clearly dominated by hy-
giene services, with 33% used for personal hygiene and 30% for
toilet flushing, while sustenance requires another 27% with about
equal shares for food preparation, cleaning and gardening, while
textile cleaning is only responsible for 13%. Moving on to energy,
space heating for thermal comfort (66%) and hot water for personal
hygiene (17%) dominate the energy consumption within UK
households. Kitchen appliances for food preparation, cleaning, and
conservation account for 8%, and washing machine and dryer for 2%
of the energy consumption. The generally low comparative energy
consumption of electric appliances demonstrates the importance of
the room and hot water heating systems, mainly provisioned
through gas.

5.3. Potential of combined infrastructure end-use service delivery

Fig. 2 shows the physical combinations where the two utilities
are needed to deliver a given service. These are typically services
that require heated water, such as personal hygiene, textile clean-
ing, and food preparation and cleaning. Textile and food cleaning
combinations are related to the conversion appliances, where
usually both utility products are delivered straight to an appliance
with integrated water heaters. In contrast, personal hygiene and
food preparation use mostly centrally heated water distributed to
point of use, requiring two active conversion units (e.g. boiler and
tap/shower heads) and pipes throughout the house (i.e. passive
system). Appliance leasing contracts (e.g. boilers or washing ma-
chines) are some of the first product-service-systems in this field,
although they do not go as far as to include performance-based
contracting on energy/water consumption. Nevertheless, since
boiler service contracting is already offered by some utility com-
panies (e.g. British Gas), this provides an ideal opportunity for
moving onwards to performance-based service contracts and,
eventually, multi-utility service provision. Such solutions, however,
are currently hampered by economic regulation of utility contract
length, which limits the ability of suppliers to engage in long-term
contracts with end-users (Sorrell, 2007) as well as constraints on
cross-utility operation caused by regulation in silos (Roelich et al.,
2013).

Another locus of end-user infrastructure is between communi-
cations and energy, and in particular electricity. A direct provision
of the communication service (e.g. hours of screen use at a certain
quality) would incentivise more energy efficient appliances, and
might be facilitated through service provision business models and
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Fig. 2. Infrastructure integration at the end-user level, water and energy consumption of different domestic end-use services in the UK, total energy and water consumption are set
to the same thickness of lines for comparability, calculated consumption of all 26,258 thousand UK households with an average occupancy of 2.35 persons per household, lines
indicate the amount of water and energy consumed (light blue — water, magenta — energy, red — gas, orange — solid fuel and other energy carriers, and yellow — electricity) (data
source: DECC, 2014; DEFRA, 2008; Waterwise, 2011). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

bundling of different services (e.g. broadband, phone, TV) already
prevalent in the communication sector. Probably an even more
important role communication might play as an enabling tech-
nology for performance-based service contracts and infrastructure
combinations between other sectors. Measuring and monitoring
infrastructure end-use services requires more information and
communication technology involvement than just measuring input
flows (Roelich et al., 2015). In addition, enabling end-users to make
informed decisions about their service demand requires more
elaborate feedback than simple energy or water consumption
(Neenan et al., 2009).

The third area of infrastructure interconnections is between
transportation and energy. Car use is the dominant passenger
transport mode in the UK (78% of distance and 64% of trips),
whereas public transport systems are used for 19% of the distance
and only 3% of the distance is walked or cycled (DFT, 2011). In
addition personal car-use is inherently inefficient with an average
petrol consumption of 6.4 L/per 100 km and a car occupancy of 1.6
people per vehicle in the UK (DFT, 2011). Consequently, passenger
transport is inherently energy consuming, and accounts for two
thirds of the UK road and rail energy consumption (DECC, 2014).
Public transport services have long demonstrated how more effi-
cient infrastructure end-use services, in this case mobility, can be
provided. However, their high levels of energy efficiency comes
from transporting people in groups, while the current trends of low
public transport use and low car occupancy indicate a preference for
a more flexible (i.e. individual) forms of mobility (DFT, 2011). A
potential service provision taking such individualism into account is
car-sharing (Mont and Tukker, 2006; Prettenthaler and Steininger,
1999). Similar to a home appliance lease, the vehicle is not owned

by the end-user, but they still pay for the utility product, in this case
vehicle-kilometres. The dependence on the utility product could
change with the roll out of battery driven vehicles, closer incorpo-
rated into smart grids through the dual use of batteries as storage
and scheduled charges to balance the grid (Deilami et al., 2011;
Peterson et al., 2010). This incorporation opens a door for grid op-
erators and utilities for new business models offering infrastructure
end-use services and optimizing the systemic efficiency.

6. Discussion

In the previous sections we discussed three requirements for a
sustainable infrastructure transition, the need for considering end-
users as essential elements of infrastructure operation, moving
towards performance-based service provision, and infrastructure
interrelations at the end-user level, as introduced in Section 2. End-
user centred service based infrastructure operation has additional
implications, as it might facilitate understanding technology
change in context, sufficient infrastructure end-use demands, and
social implications such as rebound or spill over effects, which we
address in turn.

6.1. Understanding technology changes in context

Although understanding the co-evolution of social and technical
systems is generally seen important for sustainable technology
transitions (Akenji, 2014; Foxon, 2011; Geels, 2005; Janssen and
Jager, 2002; Rycroft and Kash, 2002), current infrastructure oper-
ation still lacks this perspective and is instead focused on provision
of unmanaged growing demand (Roelich et al., 2015). We therefore
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analysed the physical and socio-economic aspects of an end-user
centred infrastructure operation and their interrelations,
providing the conceptual understanding end-users’ technology
change. In a functional or performance economy, service-based
contracts address all three contextual aspects of end-users’ tech-
nology change (Mont and Tukker, 2006; Stahel, 2010). The shift
away from selling products to selling infrastructure end-use ser-
vices and guaranteed resource savings requires the inclusion of
active and passive technologies, their appropriate operation and
operation mode. Such contracts are per se more complex than
simple product purchase arrangements, and consequently high
transaction costs and monitoring issues have been outlined as
barriers to their adoption (Sorrell, 2007; Steinberger et al., 2009).
The presented metrics for domestic infrastructure end-use services
provide a first step to overcome these barriers with standardized
contracts, as suggested by Hannon (2012). Such transition towards
performance-based service provision does include changes in
stakeholders' attitudes (i.e. values and knowledge), facilitator (i.e.
incentives and constraints) and infrastructure (i.e. systems of pro-
vision) as suggested by Akenji (2014) for mainstreaming sustain-
able consumption. It thus might be able to sufficiently change
consumers' circumstances to unlock more of their sustainable
consumption potential (Sanne, 2002).

6.2. Sufficient service demand

Changing end-use technologies and their operation alone is
insufficient, as long as the demand for infrastructure end-use ser-
vices keeps increasing. While traditional demand management
studies focus on shifting peak infrastructure product demand
(Carley, 2012; Russell and Fielding, 2010), this study analyses what
needs and wants end-user satisfy with these products. This focus
raises the issue of how much of such infrastructure end-use services
might be required or sufficient for well-being, which links to new
concepts such as sufficient consumption, human needs, degrowth,
shared and circular economy (Kerschner, 2010; Martinez-Alier
et al., 2010). The core focus of circular economy research is mini-
mal and closed-loop use of materials on the company, industrial
park and city level (Andersen, 2007; Yuan et al., 2006). Infrastruc-
ture end-use services extend this view to the end-users allowing for
a further resource reduction at the same level of service. Similarly to
a service perspective, degrowth requires a re-evaluation of human
progress or well-being metrics, away from more products to
enough services (Dietz and O'Neill, 2013).

6.3. Social implications of end-user centred, service based
infrastructure solutions

As outlined in Section 3.3 current infrastructure operation
leaves the end-user with a variety of fragmented but interrelated
decisions to make. To optimise resource-efficient service provision
these decisions have to be addressed adequately and jointly;
however the human and financial capital to do so varies vastly
among different domestic end-users. Fuel-poor households for
example usually do not have the financial capital required for ef-
ficiency measures (Jenkins, 2010). Performance-based service
contracts cover both passive and active systems, and are billed
based on guaranteed saving: they therefore have the potential to go
beyond publicly funded insulation schemes, and reduce fuel
poverty by incentivising most efficient solutions instead of simply
doing without heat. Rebound effects of such efficiency improve-
ments, in the sense of increased end-use service demand (e.g.
thermal comfort), are known to be larger in fuel poor households
than where the infrastructure end-use service is already at a
desired level (Chitnis et al., 2013; Druckman et al., 2011; Milne and

Boardman, 2000). From a social rather than environmental
perspective, “spill over effects” such as reduced winter deaths and
general increased physical and mental health will be overall
beneficial (Steinberger et al., 2009). There remains a need for pro-
grams, which jointly tackle carbon-savings and fuel poverty
demonstrating effectiveness in both areas.

7. Conclusion

We described infrastructure as a means to an end to support the
functioning of society. This function is challenged by the current
form of infrastructure operation, which is inherently unsustainable,
as it prioritizes affordable but reliable supply at any level of societal
demand. Since infrastructure plays a key role in meeting human
needs and enabling economic development, analysing infrastruc-
ture as a crucial intermediary between socio-economic activities
and consumption of environmental resources becomes a core
research goal. Therefore, end-users and infrastructure operation are
at the heart of environmental sustainability challenges. Sustainable
infrastructure operation therefore requires that the end-user, their
demand for infrastructure end-use services and not utility prod-
ucts, and interrelation among infrastructure streams must become
part and parcel of infrastructure operation. Taking a service-
performance perspective this research presents an overview of
end-user centred infrastructure operation, suggests alternative
metrics for infrastructure end-use services and infrastructure in-
terrelations at the end-user level.

End-users determine the level and quality of infrastructure end-
use service demand, as well as (at least in part) which active con-
version devices and passive corresponding systems are used and
how they are operated. These decisions are interrelated, depend on
lifestyle choices, ownership patterns and financial means, among
other factors, and are made in interaction with technology sup-
pliers and utility companies. Whereas traditional utility supply is
based on sheer volume of products (e.g. water, electricity, etc)
delivered, performance-based service contracts have the potential
to include the crucial end-use technologies and their operation.
Such contracts will be more complex than billing based on metered
quantities; however they could simplify the fragmented and poorly
informed decision-making of end-users, and incentivise efficient
solutions rather than throughput. The infrastructure end-use ser-
vice metrics we propose provide a first step towards simplified and
standardised contracts in a domestic context, and prompt a dis-
cussion of how much of such services might be sufficient. The
service-performance perspective of infrastructure delivery
revealed infrastructure interrelations and potential combinations
at the end-user level. The various challenges to a broader uptake of
performance-based service schemes, from a regulatory, business
and end-user perspective, highlight the need for further research in
this area. Nevertheless, making profits based on resource savings as
suggested be performance-based service schemes is inherently
more sustainable than traditional throughput-based economies,
marking a step in the right direction.
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