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ABSTRACT
We investigate the density–shear instability in Hall-magnetohydrodynamics (Hall-MHD) via
numerical simulation of the full non-linear problem in the context of magnetar activity. We
confirm the development of the instability of a plane-parallel magnetic field with an appropriate
intensity and electron density profile, in accordance with analytic theory. We find that the
instability also appears for a monotonically decreasing electron number density and magnetic
field, a plane-parallel analogue of an azimuthal or meridional magnetic field in the crust of
a magnetar. The growth rate of the instability depends on the Hall properties of the field
(magnetic field intensity, electron number density and the corresponding scaleheights), while
being insensitive to weak resistivity. Since the Hall effect is the driving process for the
evolution of the crustal magnetic field of magnetars, we argue that this instability is critical for
systems containing strong meridional or azimuthal fields. We find that this process mediates
the formation of localized structures with much stronger magnetic field than the average, which
can lead to magnetar activity and accelerate the dissipation of the field and consequently the
production of Ohmic heating. Assuming a 5 × 1014 G magnetic field at the base of crust,
we anticipate that magnetic field as strong as 1015 G will easily develop in regions of typical
size of a few hundred metres, containing magnetic energy of 1043 erg, sufficient to power
magnetar bursts. These active regions are more likely to appear in the magnetic equator where
the tangential magnetic field is stronger.

Key words: MHD – methods: analytical – methods: numerical – stars: magnetars – stars:
neutron.

1 IN T RO D U C T I O N

The magnetic field evolution in the crust of neutron stars (NSs), in
the magnetar regime, is mediated primarily by the Hall effect and
Ohmic dissipation (Jones 1988; Goldreich & Reisenegger 1992).
While the familiar picture of the Hall effect is that of the creation
of a voltage across an electrical conductor, when a magnetic field
is administered perpendicular to the current (Hall 1880), NS ap-
plications require that the feedback of the electric current on to
the magnetic field is accounted for, leading to the realms of the
Hall-magnetohydrodynamic (Hall-MHD) description.

As Hall-MHD provides a kinematic description, which does not
correspond to an energy minimization principle (Lyutikov 2013),
there is an ongoing debate regarding the stability of magnetic config-
urations, turbulent cascade and the overall evolutionary behaviour
of a magnetic field in this context. Motivated by the mathemati-
cal similarity of the Hall-MHD equations with the vorticity equa-
tion in fluid dynamics, which is known to initiate turbulent cas-
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cade, it has been argued (Goldreich & Reisenegger 1992; Biskamp,
Schwarz & Drake 1996; Cho & Lazarian 2009) that a magnetic
field should undergo Hall-induced turbulence. Plane-parallel and
3D Cartesian box simulations (Wareing & Hollerbach 2009, 2010)
demonstrated that while the magnetic field adopts a characteris-
tic power spectrum once it evolves under Hall-MHD, its temporal
evolution in real space consists of frozen-in structures, whose time
average is non-zero unlike normal turbulence. This result is in line
with the consensus of axially symmetric spherical-shell simulations
of the magnetic field evolution in NS crusts where the Hall effect
operates, with subdominant Ohmic dissipation. These simulations
(Hollerbach & Rüdiger 2002, 2004; Pons, Miralles & Geppert 2009;
Kojima & Kisaka 2012; Viganò et al. 2013; Gourgouliatos & Cum-
ming 2014a,b; Marchant et al. 2014) find that while the magnetic
field may change drastically compared to its initial state as a result of
the Hall effect, the evolution saturates in a short time and the system
relaxes to a particular spatial structure, a result recently confirmed
through 3D spherical shell simulations (Wood & Hollerbach 2015).

In parallel to the turbulent cascade discussion, the question
of Hall instability has been addressed. Although the Hall effect
conserves magnetic energy, it can potentially drive instability by
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transferring energy from a Hall equilibrium state to a weaker per-
turbing field. Numerical and analytical studies have explored Hall
instability (Rheinhardt & Geppert 2002; Rheinhardt, Konenkov &
Geppert 2004; Pons & Geppert 2010) in Cartesian geometry. Quite
remarkably, axially symmetric simulations in spherical shells did
not find any evidence for the operation of Hall instability, i.e. when
a state of Hall equilibrium (Gourgouliatos et al. 2013) is chosen
as an initial condition on an axially symmetric Hall simulation the
system evolves because of Ohmic decay rather than the Hall effect
(Marchant et al. 2014).

Wood, Hollerbach & Lyutikov (2014) studied analytically the
density–shear instability for a unidirectional magnetic field. In this
instability it is critical that both the magnetic field and the electron
number density have strong gradients in the direction normal to
the magnetic field. NS crusts are excellent environments for this
instability to operate. They have a thickness of ∼1 km and host
magnetic fields that could reach strengths of ∼1015 G for magnetars.
The density at the base of the crust approaches the nuclear density
∼1014 g cm−3, and the Hall effect operates down to ∼1010 g cm−3, as
below this value, the effect of Lorentz forces becomes comparable
to the breaking strain of the crust invalidating the Hall approach
(Gourgouliatos & Cumming 2015). As the chemical composition of
the crust changes with depth and consequently the electron number
fraction, the electron number density in which the magnetic field
evolved because of Hall-MHD ranges between ∼1036 and 1034 cm−3

(Cumming, Arras & Zweibel 2004).
Transient activity of magnetars, in the form of bursts has been

attributed to Hall evolution (Thompson & Murray 2001), via crust
yielding. Elaborating on this scenario, Perna & Pons (2011) used ax-
ially symmetric Hall simulations to compare the magnetic stresses
exerted on the crust to the breaking strain. They found that for ini-
tial poloidal fields Bp = 8 × 1014 G and toroidal Bt = 2 × 1015 G
magnetar activity is feasible; however, a weaker initial magnetic
field combination (Bp = 2 × 1014 G and Bt = 1015 G) leads
only to sporadic bursts. Given that a substantial fraction of mag-
netars have poloidal magnetic fields well below 5 × 1014 G
(Olausen & Kaspi 2014), it puts in question the validity of this
scenario, given that magnetar behaviour has been observed by NSs
with modest spin-down inferred dipole magnetic fields (Gavriil &
Kaspi 2002; Rea et al. 2010; Scholz et al. 2012). A possible solution
to this puzzle is the presence of localized stronger magnetic fields
compared to the large scale ones, a scenario that has been supported
observationally (Tiengo et al. 2013). In this work, we show that
the density–shear instability can severely deform the large-scale
structure of the magnetic field in the crust of an NS and increase
its intensity in areas of characteristic length-scale of a few 102 m,
concentrating 1043 erg of magnetic energy in the corresponding vol-
ume. This stronger magnetic field exerts stresses in the crust that
can lead to yielding and eventually to magnetar bursts.

The plan of the paper is as follows: in Section 2 we provide the
mathematical formulation of the problem. In Section 3 we present
the numerical scheme and the initial conditions chosen. We dis-
cuss the results in Section 4. We consider applications to magnetar
activity in Section 5. We conclude in Section 6.

2 M AT H E M AT I C A L F O R M U L AT I O N

In the electron-MHD limit of the Hall effect, the electron fluid ve-
locity ve is related to the electric current density by j = −eneve,
where ne is the electron number density, c and e are the speed of light
and the electron elementary charge. Then, from Ampère’s law, the

electric current density is j = c
4π

∇ × B, where B is the magnetic
induction. We can safely neglect Maxwell’s correction as the ve-
locities involved are non-relativistic. The electron velocity becomes
ve = − c

4πene
∇ × B. Assuming some finite conductivity σ , the elec-

tric field reads E = −ve × B/c + j/σ . Finally we substitute into
Faraday’s law to obtain the induction equation

∂B
∂t

= −∇ ×
(

c

4πene
(∇ × B) × B + c2

4πσ
∇ × B

)
. (1)

The first term in the right-hand side of equation (1) describes the
evolution of the magnetic field under the influence of the Hall ef-
fect, while the second term describes Ohmic dissipation. We define
a time-scale for the Hall effect tH = 4πeneL

2

c|B| , where L is the typical

length-scale of the problem, while for Ohmic decay it is tO = 4πσL2

c2 ;
the ratio of tO/tH gives the dimensionless magnetic Reynolds num-
ber RB = σ |B|

cene
, also referred to as the Hall Parameter.

Having assumed a plane-parallel geometry, the system is invariant
to translations in the y-direction and the quantities depend only on
x and z. We then express the magnetic field in terms of two scalar
functions,

B = ∇�(x, z) × ŷ + By(x, z) ŷ , (2)

which is by construction divergence free. Substituting expression (2)
into the induction equation (1), we obtain two coupled differential
equations for By and �:

∂�

∂t
= c

4πnee

(∇By × ŷ
) · ∇� + c2

4πσ
∇2� , (3)

∂By

∂t
= − c

4πe

[(
∇

(∇2�

ne

)
× ŷ

)
·∇� + By

(∇n−1
e × ŷ

) · ∇By

]

+ c2

4πσ

(∇2By − σ−1∇By · ∇σ
)

. (4)

We switch to dimensionless quantities, keeping the same notation.

∂�

∂t
= n−1

e

(∇By × ŷ
) · ∇� + R−1

B ∇2� , (5)

∂By

∂t
= −

[(
∇

(∇2�

ne

)
× ŷ

)
· ∇� + By

(∇n−1
e × ŷ

) · ∇By

]

+ R−1
B

(∇2By − σ−1∇By · ∇σ
)

. (6)

Appropriate profiles of ne(x) are imposed; σ is taken to be a constant.
In our simulation the unit time is tH, while the Ohmic dissipation
time is RBtH. Because of the varying electron density and magnetic
field throughout the domain, Hall evolution may develop substan-
tially faster than this time-scale.

3 N U M E R I C A L S I M U L AT I O N

We integrate the full non-linear equations (5) and (6), using Euler’s
method, in a uniform grid i, k so that x = idx and z = kdz. We
apply periodic boundary conditions in z. Regarding the x boundary
condition we use two setups. First, we assume a vacuum in either
side of the x boundary, by fitting a current-free magnetic field for
x < −1 and x > 1 (BC1); in this setup the large-scale magnetic-
field and the electron-density profile are symmetric about the axis
x = 0. This is used to confirm the occurrence of the instability and to
compare with the analytical model. In the second setup, we use the
vacuum boundary condition for x > 1, while for x < −1 we assume
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that there is no magnetic field penetrating that boundary, by setting
� = By = 0 at x = −1 (BC2). This condition is more restrictive than
the Meissner superconductor boundary condition regarding the By

component (Hollerbach & Rüdiger 2004); nevertheless, it is a good
approximation once RB � 1, as is the case here. In this configuration,
the electron number density has its maximum values at x = −1 and
decrease monotonically, resembling the structure of an NS crust. We
implement these boundary conditions by using an appropriate set of
ghost points. We have tested the results in different resolution levels
to ensure their validity. We use a courant condition that adjusts the
timestep depending on the maximum electron velocity.

It has been shown analytically that the density–shear instability
occurs when the (dimensionless) magnetic field and the electron
number density profiles are chosen so that Bz(x) = ne(x) = sechγ (x),
where γ is some positive constant (Wood et al. 2014). Taking the
asymptotic limit for γ → 0 for the expression sechγ (x/γ ) and
γ → ∞ of the expression sechγ (x/γ 1/2) we find, respectively, the
backgrounds B = ne = exp ( − |x|) and B = n = exp ( − x2/2). In this
work we focus in the Gaussian profile because of its smoothness.
We have also run some simulations using the absolute value profile
to validate the occurrence of the instability.

We implement these profiles as follows. The absolute value
profile where the initial condition for the magnetic field is
B = B0 (exp(−|x/LB |) + εB ) ẑ and ne = n0(exp (−|x/Ln|) + εn),
and the Gaussian profile with initial magnetic field B = B0(
2π−1/2 exp(−x2/L2

B ) + εB

)
ẑ and ne = n0(exp(−x2/L2

n) + εn).
We superimpose a perturbation term b = −δb(cos(kpz)x̂ +
sin(kpz) ŷ). We have included a uniform background field εBB0 ẑ and
a uniform background density εnn0, with εn � 1 and δb � εBB0,
to ensure that the perturbing magnetic field and currents are al-
ways subdominant compared to the background field; the typical
values used for the background field is 10−2B0 and the perturbation
10−4B0. The above profiles are used with the boundary condition
BC1 where the system is symmetric with respect to x = 0. We also
used a translated version of the Gaussian profile where x → x + 1,
imposing BC2, in this case the code dissipates some energy to force
the perturbation on By to satisfy the boundary condition at x = −1.

We also run simulations using a pseudo-spectral parallel code.
This code implements the second order, Runge–Kutta ETD time-
stepping scheme described in Cox & Matthews (2002), and has been
modified to integrate the Hall-MHD equations. The main difference
is that we employ periodic boundary conditions both in x and z

boundaries, unlike the grid-based one which assumes vacuum or
the non-penetrating field condition in the x-direction.

4 R ESULTS

We have explored various combinations of the parameters. A sum-
mary is shown in Table 1, where we provide information on the
initial conditions, and the resulting instability. In addition to the
quantities already defined we give the wavenumber of the fastest
growing mode ki, the corresponding growth time-scale τ and the
resolution used.

We have confirmed that a uniform magnetic field on a Gaussian
density background (and vice versa, runs S1 and S2) does not lead to
any unstable mode. We have run simulations using the Gaussian pro-
file and BC1 boundary conditions for a broad combination of param-
eters (G), we considered no background uniform field εB = 0, while
keeping the other quantities the same (G9) which also gave rise to
the instability. We have also used a smaller number of simulations
using the absolute value profile (A) and BC1 boundary conditions.
Applying BC2, we run two simulations (C) using the translated

Table 1. Simulations summary. The S runs have either a uniform magnetic
field or density background, the G runs utilize the Gaussian profile, the
A runs the absolute value profile while the C runs utilize a monotinically
decreasing magnetic field and electron number density profile with BC2
boundary conditions.

NAME B0 LB Ln R−1
B kp/π ki/π τ/10−2 Resol.

S1 1 0.1 – 0 10 – – 2002

S2 1 – 0.1 0 10 – – 2002

G0 1 0.1 0.1 0.01 5 3 1.16 2002

G1 2 0.1 0.1 0.01 5 3 0.613 2002

G2 4 0.1 0.1 0.01 5 3 0.323 2002

G3 1 0.1 0.1 0.05 5 2 1.36 2002

G4 1 0.1 0.1 0.1 5 1 – 2002

G5 1 0.1 0.05 0.001 20 4 0.183 2002

G6 1 0.05 0.1 0.001 10 2 2.76 2002

G7 1 0.05 0.05 0.001 20 6 0.282 2002

G8 1 0.1 0.1 0 5 3 1.38 2002

G9 1 0.1 0.1 0 10 3 1.36 2002

A1 1 0.1 0.1 0.001 10 2 3.44 1002

A2 1 0.1 0.1 0.005 10 1 – 1002

C1 1 0.1 0.1 0 10 2 1.76 2002

C2 1 0.15 0.1 0 10 2 0.731 1002

SP 1 0.1 0.1 0.02 10 3 1.83 2562

Figure 1. The ratio of the energy in the By component over the total mag-
netic energy for some characteristic runs (for details on the parameters refer
to Table 1). With the exception of the highly dissipative model G4, all
other models undergo some rearrangement of the perturbing field which is
followed by exponential growth of the instability.

Gaussian profile B = B0

(
2π−1/2 exp(−(x + 1)2/L2

B ) + εB

)
ẑ and

ne = n0

(
exp(−(x + 1)2/L2

n) + εn

)
.

We confirm the development of the instability once the scale-
height of the magnetic field and the density variation are compara-
ble within a range of a few, and the resistivity is weak. The system
undergoes some adjustment, followed by exponential growth of
the instability, see Fig. 1. Once the instability fully develops, its
energy content is comparable to that of the background magnetic
field, with the overall structure being deformed, Fig. 2. At this point
large electron velocities develop, leading to a very small timestep
forcing us to stop our calculation, a numerical limitation known
to exist in explicit Eulerian Hall-MHD simulations (Falle 2003).
The wavenumber of the fastest growing mode of the instability de-
pends on the scaleheight of the magnetic field and electron number
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Figure 2. The structure of the magnetic field at the beginning of the simu-
lation (top panel) and once the instability has fully developed at t = 0.15tH
(bottom panel), for the simulation G0. The Bx and Bz components are plotted
in black, while the By component is shown in colour.

density, being inversely proportional to them once LB = Ln, see for
instance the kis of G0 and G7. However, if the scaleheights of the
magnetic field and the density are not equal, the evolution becomes
more complex, with the magnetic field needing extra time to adjust
to the density background before the instability starts growing (G0
versus G6). The growth rate is proportional to the strength of the
magnetic field, i.e. G0, G1 and G2, where the ratio of the respective
τ s is 0.5 while B0 is increasing by 2. In the limit of strong resistivity
(i.e. G4), the instability may be suppressed, without dominating the
overall evolution, even though there is some modest growth at the
beginning.

Repeating the analysis of Wood et al. (2014), for the Gaussian
profile under our normalization for LB = Ln = L, we find that
the growth rate ω2 = B2

0 k2
i (2 − L2k2

i )/(L2πn0), with the maximum
rate occurring for ki = L−1 giving ωmax = B0/(L2√πn0). As the
wavenumber of the fastest growing mode of the instability is small,
it is affected by the size of the simulation box, being forced to be a

Figure 3. The structure of the magnetic field once the instability has fully
developed at t = 0.175, for the simulation C1, where BC2 is used.

multiple of π because of the periodic boundary conditions imposed.
Having assumed Ln = LB = 0.1, n0 = 1 = B0 (G8), the simulation
gives ki = 3π = 9.42 versus an analytical value of ki = 0.1−1 = 10
and a corresponding growth time-scale τ (= ω−1) = 0.0138 versus
an analytical prediction of 0.0178. This deviation is due to numerical
constraints and also to the superimposed uniform magnetic field and
background density which are not present in the analytical model.
Because of numerical limitations we have not been able to set a
strong constraint on the maximum and minimum ratio of LB/Ln

where the instability appears, except for the fact that there is no
instability for uniform magnetic field or density. To investigate that,
it would require either LB � Ln or LB � Ln and both of them to be
much smaller than the size of the box, leading to a calculation that
ranges over a few orders of magnitude. In the simulations where
we used the absolute value profile, even at a very low resistivity
(A1) the system undergoes some significant decay as the currents
are very strong around x = 0, which slows down the growth of
the instability, while choices of higher resistivity (A2) prevent its
development entirely.

Similar behaviour is found when BC2 is applied, Fig. 3. Given
that there is a rigid boundary at x = −1 there is a significant growth
of the Bx and Bz components of the magnetic field, because of the
compression of the magnetic field lines against the boundary, com-
pared to the other case, where the main effect of the instability was to
kink the structure of the field. These results are in broad qualitative
agreement with the linear calculation of Rheinhardt et al. (2004),
done in a similar setup. Using the parallel code, we simulated the
development of the instability for RB = 50 on a collocation grid with
2562 points and the same initial conditions and density profiles as
the G0 run (see run SP in Table 1), finding the same behaviour.

5 A PPLI CATI ON TO MAG NETA R ACTI VITY

Consider a magnetar, whose magnetic field and electron number
density at the base of the crust are 5 × 1014 G, 1036 cm−3, re-
spectively, and crust thickness is 1 km. Using this normalization in
equations (5) and (6), we find that the unit time of the simulation
corresponds to ∼105 yr in the NS’s life. The scaleheight for the
electron number density is ∼0.1 km, thus we expect a growth time-
scale of ∼103 yr, as we have found that τ ∼ 10−2. Even under the
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conservative assumption of a magnetic field with a tiny amount of
energy being in the perturbing small-scale field, it is only a matter
of a few thousand years for this instability to create a strong lo-
calized magnetic field, exceeding the intensity of the background
field by a factor of 2 and giving rise to magnetic fields ∼1015 G for
this setup. The size of these structures is comparable to the scale-
height multiplied by 2π, thus they are expected to be λi ∼ 0.6 km,
each one of them containing magnetic energy 1043 erg, which is
sufficient to power magnetar busts. This effect is caused entirely by
the redistribution of the magnetic field via the Hall effect without
appealing to the generation of any extra magnetic flux. Even if a
moderately strong large-scale magnetic field is present (5 × 1013–
1014 G), this instability leads to the formation of pockets of magnetic
field significantly exceeding the average value. In our simulations
we found that these features typically develop near the base of the
crust rather than the surface, as in our initial condition we have
chosen an exponentially decreasing profile. While it is possible that
such features may develop closer to the surface, this is a question
to be answered conclusively by future more realistic simulations.
This is particularly interesting in the context of recent observations
of strong localized magnetic features such as the one observed in
SGR 0418+5729 (Tiengo et al. 2013) and the 0.2–0.7 km hotspot
implied by surface emission modelling in the same system (Guillot
et al. 2015).

As the components of the magnetic field which are parallel to
layers of constant density are susceptible to this instability we expect
the non-radial magnetic field (meridional and toroidal) to contribute
the most. In a typical large-scale poloidal dipole magnetic field
structure, the meridional component is stronger away from the poles,
making these instabilities more likely to develop in mid-latitudes
and in the equatorial region, with respect to the magnetic dipole axis.
Thus, we expect bursts triggered through this mechanism to provide
energy away from the poles, leading to the appearance of hotspots
in the form of subpulses, of the same frequency yet different phase
compared to the main pulse which is likely to be associated to
the magnetic pole. Recent observations show that bursts are evenly
distributed in spin phase (Collazzi et al. 2015). In any case, the
complexity of heat transport within the crust (Brown & Cumming
2009) and the size of the active region (Baubock, Psaltis & Ozel
2015) are critical for the observational appearance of these features.

6 C O N C L U S I O N S

In this work we have confirmed numerically the development of the
density–shear instability in a plane-parallel geometry. In particular,
we have found that the instability appears when the scaleheight of
the magnetic field and the electron number density are compara-
ble, with the growth time-scale depending on the intensity of the
magnetic field, the electron number density and the relevant scale-
heights. This instability also appears in a monotonically decreasing
electron number density and magnetic field, a structure that encap-
sulates the basic characteristics of an NS crust. We conclude that
the density–shear instability can lead to the formation of localized
strong magnetic fields, with the typical size of these areas being a
few times the scaleheight. Realistic NS studies need to go beyond
plane-parallel geometry, test the occurrence of the instability in a
3-D calculation and investigate the magnetic field evolution after
the instability has fully developed, a task which is out the capacity
of the current numerical scheme. Nevertheless, it is likely that a
natural NS configuration can host an appropriate magnetic field

geometry that will give rise to this instability and provide an
efficient mechanism for powering magnetar activity with a weaker
overall magnetic field.
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