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ABSTRACT 
 
Aerospace electro-conductive polymer materials are a new family of “smart” materials being 
deployed in many complex applications. The precision manufacturing of such processes to 
manipulate properties and enhance performance can exploit magnetohydrodynamic (MHD) 
control and simultaneous heat transfer (thermal processing). Motivated by these applications, 
we develop a model for laminar free convective flow of an incompressible and electrically-
conducting viscoelastic fluid (Walters’ liquid B) over a continuously moving stretching 
surface embedded in a porous medium in the presence of strong radiative heat flux, as a 
simulation of magnetic smart fabric sheet processing. A heat generation/absorption term is 
included in the model. Darcy’s law is used to simulate porous media bulk drag effects. The 
stretching is assumed to be a linear function of the coordinate along the direction of stretching. 
Using similarity transformations, the governing partial differential equations are converted to 
nonlinear ordinary differential equations. The energy equation is further rendered into 
confluent hypergeometric form and then solved analytically for the prescribed surface 
temperature (PST) case and also for the Prescribed Boundary Surface Heat Flux (PHF) case, 
using Kummer’s function, subject to physically realistic boundary conditions. The momentum 
and energy equations are also solved using the semi-numerical homotopy analysis method 
(HAM), which contains the auxiliary parameter  , permitting relatively easy adjustment and 
control of the convergence region of the series solution. This method provides an efficient 
approximate analytical solution with high accuracy, minimal calculation, and avoidance of 
physically unrealistic assumptions. HAM solutions are benchmarked with robust numerical 
shooting quadrature and found to correlate well. The influence of magnetic field on velocity 
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and temperature profiles is studied via the Chandrasekhar number (Q). Furthermore detailed 
simulations are conducted for the influence of viscoelastic parameter (k1), Eckert number (E), 
radiation-conduction parameter (NR), Grashof number (Gr) and heat source/sink parameter (α) 
on the flow variables. The study finds applications in electro-conductive polymeric materials 
processing for aerospace fabric covers and other applications with demanding safety and 
protection requirements in smart materials synthesis. 
 
Keywords: Magnetohydrodynamics, Viscoelasticity; Homotopy, Radiation; Semi-numerical, 
Electro-conductive polymer materials processing; Heat Transfer; Chandrasekhar number 
 
 
1  INTRODUCTION 
 
Recent progress in “smart fabrics” has stimulated renewed interest in magnetohydrodynamic 
(MHD) materials processing. The augmentation of high strength fabrics with non-Newtonian 
fluids is being seriously explored as a mechanism for enhancing ballistic performance of 
fragment barrier materials widely used in spacecraft orbital debris shielding, and other 
applications (Son and Hahrenthold 2012). Magnetorheological (MR) fluids are especially 
useful in such areas since they demonstrate excellent controllability. The simulation of 
synthesis of such materials and also electro-conductive smart/interactive textiles (SMITs) 
poses a rich area for numerical simulation (Das et al. 2010). The tremendous potential of 
conductive polymers for future applications in astronaut suits, biochemical hazard protection, 
physiological status monitoring and other systems in space science, requires ever more 
sophisticated modeling techniques for accurately predicting performance and characteristics 
of such materials. 
 
The flow and heat transfer analysis in the boundary layer on a continuously moving or 
stretching surface is a key mechanism used MHD materials processing. The pioneering work 
on the continuously stretching sheet was first initiated by Sakiadis (1961). The so-called 
“Sakiadis flow” has subsequently been extended to consider more complex thermophysical 
and geometrical effects by many researchers including Crane (1970), Gupta and Gupta (1977), 
McLeod and Rajagopal (1987), Banks (1983), Dutta et al. (1985), Chen and Char (1988), Ali 
(1995), and Liao (2005). In these studies, a linear velocity of the surface is implicit in the 
model. Furthermore a number of articles have addressed heat transfer from a continuously 
moving flat plate, for example Tsou et al. (1967), Erickson et al. (1966), Griffin and Throne 
(1967) and Horvay (1961) and a circular cylinder, see for example Anderson (1958), Arridge 
and Prior (1964),Griffith (1964), Glicksman (1968), Alderson et al. (1968), Vasudevan and 
Middleman (1970), Bourne and Elliston (1970), Bourne and Dixon (1971), Horvay and  
Dacosta (1964). These papers have considered various surface conditions including constant 
surface temperature or constant heat flux and that the moving solid and the fluid are 
conjugated through surface thermal conditions. According to the general characteristics of 
conjugate heat-transfer problems (Chida and Katto 1976), in heat transfer from a continuously 
moving surface, the combination of physical properties of the moving solid and the 
surrounding fluid exerts a key role. The flow domain is an unsteady one from a viewpoint of 
the coordinate system fixed to the moving solid. However in previous investigations under 
conjugated conditions, the theoretical analysis has neglected heat conduction in the solid 
(Bourne and Dixon, 1971) and experiments have been carried out only for the drawing of 
glass fibres in air (Anderson, 1958, Arridge and Prior, 1964 and Alderson et al., 1968). 
Mathematical models of stretching sheet flows of for example electro-conductive polymers, 
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must therefore feature a robust viscoleastic formulation. A rich variety of such models exist 
including Reiner Rivlin differential models of second order (Bég et al. 2004) and 3rd order 
(Bég et al, 2008a), Maxwell upper convected models (Bég and Makinde, 2011) and Eringen 
micropolar models (Bég et al, 2011a,b,c). An important class of non-Newtonian model is the 
Walters-B liquid model which is a robust formulation for certain polymeric materials 
exhibiting short-term viscoelastic effects. Abel et al. (2007) investigated the non-Newtonian 
viscoelastic boundary layer flow of Walters’ liquid B past a stretching sheet, considering non-
uniform heat source and frictional heating, Abel and Nandeppanavar (2007) studied the 
effects of thermal radiation and non-uniform heat source on MHD flow of viscoelastic 
boundary layer flow. Abel and Nandeppanavar (2008) further reported on the influence of 
variable thermal conductivity and non-uniform heat source on viscoelastic boundary layer 
flow. Further studies using the Walters’ liquid B include Abel and Nandeppanavar (2009) for 
non-uniform heat source effects on MHD flow, Abel et al. (2008) for the effects of viscous 
and Ohmic dissipation in MHD flow of viscoelastic boundary layer flow and Abel and 
Nandeppanavar (2008). Very recently Bég et al. (2011d) have used the Walters’-B 
viscoelastic model to study the transient free convection of a conducting polymer in a Darcy-
Forchheimer porous medium using network simulation. 
 
Many powerful methods proposed to solve these similarity solution equations. With 
numerical method, stability and convergence are imperative to avoid divergence or 
inappropriate results. In the analytical perturbation method, a small parameter is required, and 
this imposes severe limitations on such methods. A semi-exact method which circumvents the 
need for small or large perturbation parameters is HAM, proposed by Liao (2003). This 
method has already been applied successfully to solve many complex problems in 
hydromagnetics and porous media transport phenomena as studied by Wang et al. (2003a), 
Wang et al. (2003b). It has also been implemented in numerous industrial thermofluid flow 
problems and some examples include the papers by Akyildiz et al. (2009), Liao (1999), 
Domairry et al. (2009), Domairry and Nadim (2008), Domairry and Fazeli (2009). HAM 
allows the adjustment and control of the convergence region and this is the most attractive 
feature of this technique in comparison with other techniques (Liao, 2009). It should be 
emphasized that the so-called homotopy perturbation method (HPM) as studied by Alizadeh-
Pahlavan and Borjian-Boroujeni (2008), Sajid and Hayat (2008), Wanga et al. (2008), and 
Chowdhury et al. (2009) is only a special case of HAM. More details of this are given in 
Dinarvand and Rashidi (2010), Rashidi et al. (2011), Rashidi and Mohimanian pour (2010), 
Rashidi et al. (2009) and He (2006). 
 
In the present work, we consider the multi-physical laminar free convective flow of an 
incompressible and electrically conducting viscoelastic fluid (Walters’ liquid) over a 
continuously moving stretching surface embedded in a porous medium. Rosseland’s model is 
employed to simulate radiative heat transfer. Darcy’s law is used to model the porous media 
fiber impedance. Viscoelasticity is simulated using the robust Walters’ B rheological model 
which has shown exceptional accuracy in predicting the flow characteristics of certain 
polymers. This problem is important in the simulation of synthesis processes of novel 
“intelligent” materials for astronautical applications. The transformed, dimensionless 
equations are solved analytically with Kummer functions and also with the semi-numerical 
HAM approach. Additionally the HAM solutions are further validated with numerical 
quadrature. Moreover the powerful ability of HAM as an alternative tool to purely numerical 
methods, in multi-physical fluid dynamics is demonstrated. 
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2  MATHEMATICAL FORMULATION AND ANALYSIS 
 
We consider a steady, two-dimensional boundary layer flow of an incompressible and 
electrically conducting isothermal viscoelastic Walters’ liquid B over a linear stretching sheet 
within a porous medium (see Fig.1A). Further details are provided in the 3-D schematic in Fig. 
1B. Two equal and opposite forces are applied along the x-axis so that the sheet is stretched 
keeping the origin fixed. A uniform, static, transverse magnetic field 0B  is applied along the 
y-axis on the weak electrically conducting liquid occupying the half space y>0. The magnetic 
Reynolds number is small and hence the induced magnetic field is negligible as compared to 
the applied magnetic field. Ionslip and Hall current effects are therefore also neglected (Bég et 
al. 2011d). 
 

 
Figure 1A: Schematic diagram of the stretching sheet problem. 

 
 

 
Figure 1B: Physical configuration. 
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A unidirectional radiative flux acts transverse to the sheet. The Walters’ liquid B is a model 
for short or rapidly fading memory liquids and is thus an approximation based on first order 
elasticity. The liquid is at rest and the motion is effected by pulling the sheet on both ends 
with equal forces parallel to the sheet and with a speed u, which varies linearly with the 
distance from the slit as, u cx= . The resulting motion of the otherwise quiescent liquid is 
thus generated solely by the moving sheet. The steady, two-dimensional conservation of mass 
and the momentum boundary layer equations for the linearly stretching sheet problem 
involving Walters’ liquid B are: 
 
Continuity Equation 
 

0,u v
x y
∂ ∂

+ =
∂ ∂

           (1) 

 
Conservation of Momentum 
 

( )
22 3 3 2 2

2 2 3 2 .o
o

Bu u u u u u u u uu v k u v u g T T
x y y x y y x y y x y k

σ νg β
ρ ∞

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − + + − − − + −   ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (2) 

 
Here x  and y  are respectively the directions along and perpendicular to the surface, u , v  
are the velocity components along the x  and y  directions respectively and the other symbols 
are documented in the nomenclature. The last term in equation (2) corresponds to thermal 
buoyancy. The second component of the penultimate term in (2) is the Darcian linear drag 
force, which is accurate for slow, viscous-dominated flows (Bég et al. 2010, 2011e). The first 
component is the Lorentzian magnetohydrodynamic drag force. In deriving these equations, it 
is assumed, in addition to the usual boundary layer approximations that the contribution due 
to the normal stress is of the same order of magnitude as the shear stress. 
 
The boundary conditions applicable to the flow problem are: 
 

( ), 0, a t 0
0, 0, a s ,

w

y

u cx v T T x y
u u T T y∞

= = = =

→ → → →∞
    (3) 

 
Equations (1) and (2) admit self-similar solutions of the form: 
 

( ), ( ), ( ) , ,
w

T T cu c x f v c f y
T Tη η γ η θ η η

γ
∞

∞

−
= =− = =

−
  (4) 

 
where subscript η  denotes the derivative with respect to η . Clearly u  and v  satisfy the 
equation (1) identically. Substituting these new variables in equation (2), we have 
 

{ } ( )2 2 1
1 2 .af f f f k f f f f f Q D f Grη ηη ηηη η ηηη ηηηη ηη η θ−− = − − − − + +    (5) 
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where 0
1

k ck
µ

=  is viscoelastic parameter, 1
a

c kD
γ

− ′
=  is inverse Darcy number, 2

0Q B
c
σ
ρ

=  

is Chandrasekhar hydromagnetic number, 2
g AGr
c l
β

=  is Grashof number. The transformed  

boundary conditions (3) take the form 
( )
( )

( ) 1, ( ) 0, 1 a t 0

( ) 0, ( ) 0, 0 a s .

f f

f f
η

η ηη

η η θ η η

η η θ η η

= = = =

→ → → →∞
    (6) 

 
If 1 0aGr D −= = , the governing boundary layer heat transport equation with viscous 
dissipation, temperature-dependent internal heat generation and radiation  flux is: 
 

22

2
* 1* ( ) .r

p p p

qT T T u Qu v T T
x y C y C C yy

µα
rrr  ∞

  ∂∂ ∂ ∂ ∂
+ = + + − − ∂ ∂ ∂ ∂∂  

   (7) 

 
By using Rosseland’s diffusion approximation for radiation, the radiative heat flux, rq  is 
given by: 
 

( )4
4 * .
3 *r

T
q

k y
σ ∂

= −
∂

          (8) 

 
where σ* is the Stefan-Boltzmann  constant and k* is the spectral mean absorption coefficient 
of the medium. This model is valid for optically-thick media in which thermal radiation 
propagates only a limited distance prior to experiencing scattering or absorption. The local 
thermal radiation intensity is due to radiation emanating from proximate locations in the 
vicinity of which emission and scattering are comparable to the location of interest. For zones 
where conditions are appreciably different thermal radiation has been shown to be greatly 
attenuated before arriving at the location under consideration as discussed by Viskanta (1963). 
The energy transfer depends on conditions only in the area adjacent to the plate regime i.e. the 
boundary layer regime. Rosseland’s model yields accurate results for intensive absorption i.e. 
optically-thick flows which are optically far from the bounding surface. Implicit in this 
approximation is also the existence of wavelength regions where the optical thickness may 
exceed a value of five. As such the Rosseland model, while limited compared with other flux 
models, can simulate to a reasonable degree of accuracy thermal radiation in problems 
ranging from thermal radiation transport via gases at low density to thermal radiation 
simulations associated with nuclear blast waves (Chandrasekhar, 1960; Bég et al. 2009a, 
2009b, Takhar et al. 2003). Rosseland’s model therefore simulates accurately materials 
processing flows and is a valid approach for “intensive absorption” which is encountered in 

such systems. It is assumed that 
y
qr

∂
∂  >> 

x
qr

∂
∂ . For boundary layer flows with convection and 

radiation the x-direction radiative flux, 
x
TuC

x
q

p
r

∂
∂

<<
∂
∂

r . This effectively implies that the 

dominant radiative flux is the term, 
y
qr

∂
∂

 and this is why the 
x
qr

∂
∂  term is neglected in the 
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analysis (it has negligible contribution). We now expand 4T  in a Taylor series about T∞  as 
follows: 
 

( ) ( )24 4 3 24 6 .T T T T T T T T∞ ∞ ∞ ∞ ∞= + − + − +3       (9) 
 
Neglecting higher-order terms in the above equation beyond the first degree in ( ∞−TT ), we 
get: 
 

.43 344 TTTT ∞∞ +−≅           (10) 
 
By employing Equations (8) and (10), Equation (7) becomes: 
 

23 2

2
16 * ** ( ).
3 *p p p

TT T T u Qu v T T
x y C k C y Cy

σ µα
ρ ρ ρ

∞
∞

   ∂ ∂ ∂ ∂
+ = + + + −    ∂ ∂ ∂∂   

   (11) 

 
From the above equation it is apparent that the effect of radiation is to augment the thermal 
diffusivity. The thermal boundary conditions for solving Equation (11) depend on the type of 
heating process under consideration. We consider two different heating processes, namely: 
 
(a) Prescribed Surface Temperature (PST) 
 
And 
 
(b) Prescribed wall Heat Flux (PHF). 
 
(a) Prescribed Surface Temperature (PST) 
 
The prescribed power law surface temperature is considered to be a power of x  in the form 
 

    a t    0 ,
a s

s

w
xT T T A y
l

T T y

∞

∞

 = = + =    
→ →∞

      (12) 

 
where A  is a constant and l  is the characteristic length. 
 
We now define a non-dimensional temperature )(ηθ  as: 
 

( ) ,
w

T T
T T

θ η ∞

∞

−
=

−           (13)
 

 
where 
 

( )ηθ
l
xATT

s







=− ∞  and 

s

w l
xATT 





=− ∞ . 
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Substitution of Equation (13) in the energy equation (11) leads to the following equation: 
 
 
 
 

( ) ( )
2 2

Pr(1 ) 1 [ ] Pr [ ]

Pr ( ) [ 2 ],

R

s

N Exp s Exp

E x l Exp

θ βη θ βη α θ
β

β βη−

′′ ′+ + − − − − −

= − −     (14)
 

 
where prime denotes differentiation with respect to η . 
 
In due course, we readily obtain an x − independent similarity equation from the above when 

2s =  and this yields: 
 

( ) ( ) 2Pr(1 ) 1 [ ] Pr 2 [ ] Pr [ 2 ].RN Exp Exp E Expθ βη θ βη α θ β βη
β

′′ ′+ + − − − − − = − −  (15) 

 
The boundary condition in terms of θ  can be obtained from Equations (12) and (13) as 
 

1 a t 0
.

0 a s
θ η
θ η
= = 

→ →∞ 
        (16) 

 
Equation (15) is linear in θ  and we now transform the same into a confluent hypergeometric 
equation by using the following transformation: 
 

[ ].R Expx β η= − −           (17) 
 
Substituting Equation (17) into Equation (15), we get 
 

[ ] 2(1 ) 4(1 ) 2 Pr ,R R
RN N R E

R
α ξξ θ ξ θ θ
ξ

 
+ + + − − + + = − 

 
     (18) 

 
where the overdot denotes differentiation with respect to ξ . 
 
The boundary conditions in Equation (16), in terms of ξ  translate to: 
 
( ) 1 and (0) 0.Rθ ξ θ= − = =         (19) 

 
The solution of Equation (18) satisfying the conditions (19) in terms of Kummer’s function 
are: 
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[ ]{ }

[ ]

1 1
21 1 1

1

1 1
1

2
1

41 Pr 4(1 ) 2 , 1,
2( )

4 , 1,
2

Pr 4(1 ) 2 .

d

R

R

dE N R R F d
R

dF d R

E N R R
R

λ
λξα ξ

θ ξ
λ

ξα

+ 
 
 −

−

+ −−   + + − + +      =
+ − + −  

 − + − +  
 

 (20) 

 
The solution of Equation (20) can be written in terms of η  as 

[ ]{ }

[ ]

1 1
1 2 1 1

1

1 1
1

1 2

41 Pr 4(1 ) 2 , 1,
2( )

4 , 1,
2

Pr 4(1 ) 2 .

d

R

R

dE N R R e F d R e

dF d R

E N R R e

λβη
βη

βη

λα
θ η

λ

α

+ −  − − 

− −

+ − + + − + + − ∗  =
+ − + −  

− + − + ∗

 (21) 

 
The non-dimensional wall temperature gradient derived from Equation (13) is 
 

[ ]{ }

[ ]

1

1 1
1

1 1 1 1 1 1
1

1

1 1
1

1

1 Pr 4(1 )
(0)

4 , 1,
2

4 4, 1,
2 2 2 1

2 , 2,
2

2 Pr 4(1 ) 2 ,

R

R

E N R R

dF d R

d d dRF d R
d

dF d R

E N R R

α
θ

λ

λ λ λββ

λ

β α

−

−

+ + − +
= ×

+ − + −  
  + + − + −   − + − +      +       

+ −  + −    

+ + − +



    (22) 

 
and the local heat flux can be expressed as 
 

2

0
(0).w

y

T c xq k k A
x l

q
ν=

∂   = − = −   ∂   


       (23) 

 
The expressions in Equation (21) and Equation (22) are numerically evaluated for several 
values of the parameters 1, , , , andRE k N Pr Q a  and the results are discussed in the last 
section. We now move on to discuss the case of a temperature boundary condition involving a 
prescribed wall heat flux. 
 
(b) Prescribed wall Heat Flux (PHF) 
 
The power law heat flux on the wall surface is considered to be a power of x  in the form: 
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a t 0 ,
a s

s

w
T xk q D y
y l

T T y∞

∂  − = = =  ∂  
→ →∞        (24)

 

 
where D  is a constant and l  is the characteristic length. We now define a non-dimensional 
temperature )(ηg  as: 
 

( ) ,
w

T Tg
T T

η ∞

∞

−
=

−
          (25) 

 
Where 

( ),

and

.

s

s

w

D xT T g
k l c

D xT T
k l c

n η

n

∞

∞

 − =  
 

 − =  
 

         (26) 

 
In spite of the fact that )(ηg  in Equation (25) is the same as )(ηθ  defined in Equation (15) 
for PST case, we prefer to use a different notation for the PHF case. Substitution of Equation 
(25) in the energy equation (11) leads to the following equation: 
 

( ) ( ) 2 2Pr(1 ) 1 [ ] Pr [ ] Pr ( ) [ 2 ].s
R sN g Exp g s Exp E x l Expβη βη α θ β βη

β
−′′ ′+ + − − − − − = − −  (27) 

 
Obviously, we get an x − independent similarity equation from the above when 2s =  and this 
yields: 
 

( ) ( ) 2Pr(1 ) 1 [ ] Pr 2 [ ] Pr [ 2 ].R sN g Exp g Exp g E Expβη βη α β βη
β

′′ ′+ + − − − − − = − −  (28) 

 
The boundary conditions in terms of g can be obtained from Equations (24) and (25) as 
 

(0) 1 and ( ) 0,g g′ = − ∞ =          (29) 
 
where prime denotes differentiation with respect to η  and all other parameters are as defined 
in the PST case, but wherever is involved in the equations of PST case it is to be replaced by 
D  of PHF. Substituting Equation (17) into Equations (28) and (29), we get: 
 

[ ] 2

Pr(1 ) 4(1 ) 2 ,s
R R

ERN g N R g g
R

αξξξ 
ξ

 
+ + + − − + + = − 

 
       (30)

 
 

1( ) and g(0) = 0,g R
R β

− = −         (31) 
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where the overdot denotes differentiation with respect to ξ . Equation (30) is a confluent 
hypergeometric equation and the solution for g  satisfying Equation (31) is obtained in terms 
of Kummer’s function as: 
 

( ) ( )( )

( )( )

1
1 1 1 1 1 1

1 1

21 1
2 1 1

1

2Pr1
4 1 2

4 4* , 1, , 1,
2 2 2

Pr4- * , 1, ,
R 2 R4 1 2

s

R

d
s

R

Eg
N R R

d d dF d R R F d R

EdF d
N R R

λ

ξ
β α

λ λ λ

λξξ ξ
α

-

+ 
 
 

 
= + 

+ - +  

 + + - + -    + --  + -        

+ -    + --      + - +    


    (32) 

where the function F  satisfies the relationship [ ] [ ]zbaF
b
azbaF ,1,1,, ++=

 
and the other 

terms are as defined earlier. In terms of η , the expression for g  is 
 

( ) ( )

( ) ( )
( )

1
1 1 1 1 1 1

1 1

1 1 1 1
1

2 Pr1
4 1 2

4 4, 1, , 1,
2 2 2

Pr 24     Exp - , 1, .
2 2 4 1 2

s

R

s

R

Eg
N R R

d d dF d R R F d R

E Expd dF d R Exp
N R R

η
β α

λ λ λ

β ηλ λβ η βη
α

-

 
= + 

+ - +    

 + + - + -    ′∗ + --  + -        
- +  + -   ∗ + ---       + - +       

 (33) 

 
The wall temperature wT  is obtained from Equation (26) as 
 

2

(0).w
D xT T g
k l c

ν
∞

 − =  
 

         (34) 

 
 
3  FUNDAMENTAL CONSTRUCTS OF HAM 
 
HAM has emerged as a tremendously versatile semi-numerical method for nonlinear fluid 
dynamics. Introduced by Liao (2003), it has been deployed in resolving an increasingly broad 
spectrum of complex multi-physical flow problems. HAM has exceptional stability and 
convergence features. It has been used in viscoelastic gastric flowst (Tripathi et al. 2012), 
transient helicopter swirl flows (Mehmood et al. 2010), nanofluid dynamics (Bég et al. 2012; 
and magnetohydrodynamic entropy generation flows (Bég et al. 2013). Let us consider the 
following differential equation: 
 

[ ]( ) 0,u τ =            (35) 
 
Where N is a nonlinear operator, τ  denotes independent variable, ( )u τ is an unknown 
function, respectively. For simplicity, we ignore all boundary or initial conditions, which can 
be treated in the similar way. By means of generalizing the traditional homotopy method, 
Liao (2003) constructs the so-called zero-order deformation equation: 
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[ ] [ ]0(1 ) ( ; ) ( ) ( ) ( ; ) ,p p u p H pϕ τ τ τ ϕ τ− − =         (36) 

 
where [0,1]p ∈  is the embedding parameter, 0≠  is a non-zero auxiliary parameter, 

( ) 0H τ ≠  is an auxiliary function,   is an auxiliary linear operator, 0 ( )u τ is an initial guess of 
( ), ( ; )u pτ ϕ τ  is an unknown function, respectively. It is important, that one has great freedom 

to choose auxiliary parameters with HAM. When 0p =  and 1,p =  it holds 
0( ;0) ( ),uϕ τ τ= ( ;1) ( ),uϕ τ τ=  respectively. Thus as p  increases from 0 to 1, the solution 

( ; )pϕ τ varies from the initial guess 0 ( )u τ  to the solution ( ).u τ  Expanding ( ; )pϕ τ  in Taylor 
series with respect to p , we have: 

0
1

( ; ) ( ) ( ) ,m
m

m
p u u pϕ τ τ τ

+∞

=

= + ∑         (37) 

 
where 
 

0

1 ( ; )( ) .
!

m

m m
p

pu
m p

ϕ ττ
=

∂
=

∂
         (38) 

 
If the auxiliary linear operator, the initial guess, the auxiliary parameter  , and the auxiliary 
function are so properly chosen, the series eqn. (37) converges at 1,p =  then we have 
 

0
1

( ) ( ) ( ),m
m

u u uτ τ τ
+∞

=
= + ∑          (39) 

 
which must be one of solutions of original nonlinear equation, as proved by Liao [36]. As 

1= −  and ( ) 1H τ =  equation (36) becomes: 
 

[ ] [ ]0(1 ) ( ; ) ( ) ( ; ) 0,p p u p pϕ τ τ ϕ τ− − + =        (40) 
 
which is implemented mostly in the homotopy perturbation method (HPM), where the 
solution obtained directly, without using Taylor series as elucidated by He (2000) and Öziş 
and Yıldırım (2007). According to the definition (38), the governing equation can be deduced 
from the zero-order deformation equation (35). Defining the vector 

{ }0 1( ), ( ), , ( )n nu u u uτ τ τ=



 
and differentiating equation (35) m  times with respect to the 

embedding parameter p  and then setting 0p =  and finally dividing them by !m , we have 
the so-called th-order m deformation equation 
 
[ ]m 1 1( ) χ ( ) ( ) ( ),m m m mu u H R uτ τ τ− −− =


        (41) 

 
Where 
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[ ]1

1 1
0

( ; )1( ) ,
( 1)!

m

m m m
p

p
R u

m p
ϕ τ−

− −
=

∂
=

− ∂
 

       (42)
 

 
And 
 

{0, 1,χ 1, >1.m
m
m
≤=

 
 
It should be emphasized that ( )mu τ  for 1m ≥  is governed by the linear equation (41) with the 
linear boundary conditions that come from original problem, which can be easily solved by 
symbolic computation software such as Maple and Mathematica. 
 
 
4  HAM SOLUTION: MAGNETO-VISCOELASTIC CONVECTIVE-RADIATIVE 
FLOW 
 
In this section we apply the HAM to obtain approximate analytical solutions for the problem 
outlined in section 2. i.e. equations (5), (15) and (28). We start with initial approximation 

0 ( ) [ ],f Expη η η= −  0 ( ) [ ],Expθ η η= −  0 ( ) [ ]g Expη η= −  and a linear operator defined thus: 
 

[ ]
3

3
( ; ) ( ; )( ; ) ,f p f pf p η ηη

ηη
∂ ∂

= −
∂∂

         (43)
 

 

[ ]
2

2
( ; )( ; ) ( ; ),pp pθ ηθ η θ η
η

∂
= −

∂
         (44)

 
 

[ ]
2

2
( ; )( ; ) ( ; ),g pg p g pηη η
η

∂
= −

∂
         (45) 

 
Furthermore, equations (5), (15) and (28) suggests we define the nonlinear operator: 
 

[ ]
3 4 2 2

1 3 4 2 2

2 3

2 2 2 3

1

2 2

( ; ) ( ; ) ( ; ) ( ; ) ( ; )( ; ) 2 ( ; )

( ; ) ( ; ) ( ; ) ( ; )( ; )

( ; )( ) ( ; ),

f p f p f p f p f pf p k f p

f p f p f p f pf p

f pQ Da Gr p

η η η η ηη η
η η η η η

η η η ηη
η η η η

η θ η
η

−

 ∂ ∂ ∂ ∂ ∂
= − − ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂
+ − −

∂ ∂ ∂ ∂
∂

− + +
∂



 (46) 

 

[ ]
2

2

2

( ; ) ( ; )( ; ) (1 ) (1 [ ])

(2 [ ] ) ( ; ) [ 2 ],

R
p Pr pp N Exp

Pr Exp p Pr E Exp

θ η θ ηθ η βη
η β η
βη α θ η β βη

∂ ∂
= + + − −

∂ ∂

+ − − + −


   

(47) 
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[ ]
2

2

2

( ; ) ( ; )( ; ) (1 ) (1 [ ])

(2 [ ] ) ( ; ) [ 2 ],

R
g p Pr g pg p N Exp

Pr Exp g p Pr E Exp

η ηη βη
η β η
βη α η β βη

∂ ∂
= + + − −

∂ ∂

+ − − + −


   (48) 

 
using the above definition, with assumption ( ) [ ],fH Expτ η= −  ( ) [ ],H Expθ τ η= −  

( ) [ ],gH Expτ η= −  we construct the zero-order deformation equation 

[ ] [ ]0(1 ) ( ; ) ( ) [ ] ( ; ) .p x p u x Exp p x pϕ η ϕ− − = −         (49) 
 
Obviously, when 0p =  and 1,p =  
 

0( ;0) ( ), ( ;1) ( ).x u x x u xϕ ϕ= =         (50) 
 
Differentiating the th-orderzero  deformation equation (47) m  times with respect to p , and 
finally dividing by !m , we have the th-orderm  deformation equation 
 
[ ]m 1 1( ) χ ( ) [ ] ( ),m m m mf x f x Exp R fη− −− = −


       (51) 

 
[ ]m 1 1( ) χ ( ) [ ] ( ),m m m mx x Exp Rθ θ η θ− −− = −


       (52) 

 
[ ]m 1 1( ) χ ( ) [ ] ( ),m m m mg x g x Exp R gη− −− = −


       (53) 

 
subject to initial conditions: 
 

0, 0, 0 =0 at : 0;
0, 0 0 as: ,

m m m m

m m m

f f g
f g

θ η
θ η
′= = = ′ =

′ → → → →∞
      (54)

 
 
Where 
 

1 12 2 2
1 1 1

1 2 2 2 3
0 0

1 1 13 4 2 2
1 1 1

1 3 4 2 2
0 0 0

1
1

3( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )
2 ( )

( ) ( )
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j m j m j m
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j m j m j j m j

j j j

m
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f f f fR f f

f f f f f
k f

Q Da f Gr

η η η ηη
η η η η

η η η η η
η

η η η η η

η

− −
− − − − −

−
= =

− − −
− − − − − −

= = =

−
−

∂ ∂ ∂ ∂
= + −

∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂
+ − −  ∂ ∂ ∂ ∂ ∂ 
− + +

∑ ∑

∑ ∑ ∑



1( ),mθ η−

  (55) 

 
1 1

1 2

2
1

2
( )

( ) ( )(1 ) (1 [ ])

(2 [ ] ) ( ) [ 2 ],

m m
m m R

m

PrR N Exp

Pr Exp Pr E Exp

θ η θ ηθ βη
η β η
βη α θ η β βη

− −
−

−

=
∂ ∂

+ + − −
∂ ∂

+ − − + −



    (56) 
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1 1
1 2

2
1

2
( )

( ) ( )(1 ) (1 [ ])

(2 [ ] ) ( ) [ 2 ],

m m
m m R

m

PrR N Exp

Pr Exp Pr E Exp

θ η θ ηθ βη
η β η
βη α θ η β βη

− −
−

−

=
∂ ∂

+ + − −
∂ ∂

+ − − + −



 

   (57) 

 
Evidently the solution of the th-orderm  deformation equations (51), (52) and (53) for 1m ≥  
takes the form: 
 

1
1 1( ) ( ) [ ] ( ) ,m m m mf f Exp R fη η η −
− − = + −  


       (58) 

 
1

1 1( ) ( ) [ ] ( ) ,m m m mExp Rθ η θ η η θ−
− − = + −  


       (59) 

 
[ ]1

1 1( ) ( ) [ ] ( ) ,m m m mg g Exp R gη η η −
− −= + −


       (60) 

 
 
5  RESULTS AND DISCUSSION 
 

We employed several terms in evaluating the approximate solution 
0

,
n

a pp i
i

f f
=

=∑  
0

,
n

a pp i
i

θ θ
=

=∑  

0
,

n
a pp i

i
g g

=
=∑

 
and highlight that the solution series contains the auxiliary parameter   - this 

facilitates the control of the convergence of the series solution, via the so-called -curve  i.e., 
a curve of a versus  . As pointed by Liao (2003), the valid region of   is a horizontal line 
segment. Figures 2 and 3 show the -curve  for various orders of HAM. These curves reveal 
that when the order of series is 20 the segment of horizontal line is in excess of the other 
orders. To establish the range of admissible values of  , a -curve  for each (0)f ″  and (0)θ ′  
obtained by the 20th-order HAM approximation are plotted in Figures 4 and 5, with various 
values of Q  respectively. From these figures, the valid regions of   correspond to the line 
segments nearly parallel to the horizontal axis. We can select the best value of   from the 
residual curves (Figures 6 and 7), which has a minimum range of 20 ( )R f


 or 20 ( )R θ


, 

vis a vis− − .η  It is evident that 0.4= −  has the minimum range on the residual-curve. A 
default value of Da = 1 is used throughout corresponding to a highly permeable regime. Also 
unless otherwise specified we take 1 0.2,k =  0,α =  0.25,E =  4Pr =  and 1.RN =  We have 
compared our results with those of numerical method based on shooting quadrature and a 4th 
order Runge-Kutta solver. Figure 8 and Table 1 compare the analytical and the numerical 
solution for the dimensionless velocity, f ′ . Figure 9 depicts the results for the dimensionless 
temperature θ , for various values of Q  respectively. Generally excellent correlation is 
achieved between the HAM and numerical results. 
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Figure 2: The   curve of (0)f ″ given by various order approximate solution, when 1Q = and 

1 0.2k = . 
 
 
 

 
Figure 3: The -curve  of (0)θ ′ given by various order approximate solution, when 

1,Q = 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
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Figure 4: The -curve  of (0)f ″ given by 20th-order HAM solution for various values of ,Q  

when 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
 
 
 

 
Figure 5: The -curve  of (0)θ ′ given by 20th-order HAM solution for various values of ,Q  

when 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
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Figure 6: The behavior of the solutions 20 ( )Re f  obtained by the HAM for various   when 

1,Q = 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
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Figure 7: The behavior of the solutions 20 ( )Re θ  obtained by the HAM for various   when 

1,Q = 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
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Figure 8: Comparison between numerical quadrature and HAM for f η′( )  with various values 

of ,Q  when 1 0.2,k = 0,α = 0.25,E = 4,Pr = 1,RN =  and 0.4.= −  
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Figure 9: Comparison between the numerical quadrature and HAM for θ η( )  with various 

values of ,Q  when 1 0.2,k = 0,α = 0.25,E = 4,Pr = 1,RN =  and 0.4.= −  
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Figure 10: Velocity profiles, f η′( )  obtained by HAM for various values of ,Q  when 

1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
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Figure 11: Temperature profiles, θ η( )  obtained by HAM for various values of ,Q  when 

1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1RN =  (PST case). 
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Figure 12: Temperature profiles, g η( )  obtained by the HAM for various values of ,Q  when 

1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1RN =  (PHF case). 
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Figure 13: Velocity profiles, f η′( )  obtained by the HAM for various values of 1,k  when 

1,Q = 0,α = 0.25,E = 4Pr =  and 1.RN =  
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Figure 14: Temperature profiles, θ η( )  obtained by the HAM for various values of 1,k  when 

1,Q = 0,α = 0.25,E = 4Pr =  and 1RN =  (PST case). 
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Figure 15: Temperature profiles, g η( ) obtained by the HAM for various values of 1,k  when 

1,Q = 0,α = 0.25,E = 4Pr =  and 1RN =  (PHF case). 
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Figure 16: Temperature profiles, θ η( )  obtained by the HAM for various values of α  when 

1,Q = 1 0.2,k = 0.25,E = 4Pr =  and 1RN =  (PST case). 
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Figure 17: Temperature profiles, g η( ) obtained by the HAM for various values of α  when 

1,Q = 1 0.2,k = 0.25,E = 4Pr =  and 1RN =  (PHF case). 
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Figure 18: Temperature profiles, θ η( )  obtained by the HAM for various values of E  when 

1,Q = 1 0.2,k = 0,α = 4Pr =  and 1RN =  (PST case). 
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Figure 19: Temperature profiles, g η( ) obtained by the HAM for various values of SE  when 

1,Q = 1 0.2,k = 0,α = 4Pr =  and 1RN =  (PHF case). 
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Figure 20: Temperature profiles, θ η( )  obtained by the HAM for various values of RN  when 

1,Q = 1 0.2,k = 0,α = 4Pr =  and 0.25E =  (PST case). 
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Figure 21: Temperature profiles, g η( ) obtained by the HAM for various values of RN  when 

1,Q = 1 0.2,k = 0,α = 4Pr =  and 0.25SE =  (PHF case). 
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Figure 22: Temperature profiles, θ η( )  obtained by the HAM for various values of Pr  when 

1,Q = 1 0.2,k = 0,α = 0.25E =  and 1RN =  (PST case). 
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Figure 23: Temperature profiles, g η( ) obtained by the HAM for various values of Pr  when 

1,Q = 1 0.2,k = 0,α = 0.25SE =  and 1RN =  (PHF case). 
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Figure 24: Velocity component along the sheet contour, when 

2,Q = 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
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Figure 25: Velocity component along the sheet contour, when 

3,Q = 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
 
 
 

Int. J. of Appl. Math and Mech. 10 (10): 9-49, 2014. 



O. Anwar Bég et al. 
 

36 

x

y

0 0.5 1 1.5 2

0.5

1

1.5

2

u
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

 
Figure 26: Velocity component along the sheet contour, when 

4,Q = 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
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Figure 27: Velocity component normal to the sheet contour, when 

2,Q = 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
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Figure 28: Velocity component normal to the sheet contour, when 

3,Q = 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
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Figure 29: Velocity component normal to the sheet contour, when 

4,Q = 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  
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Figure 30: Vector analysis, when 2,Q = 1 0.2,k = 0,α = 0.25,E = 4Pr =  and 1.RN =  

 
 
 
 
Figures 10-12 illustrate the effect of the magnetic parameter, Chandrasekhar number (Q), on 
the dimensionless velocity, ( )f η′  and the PST case temperature, θ η( )  and PHF case 

temperature, g η( ) . Q is the square of the Hartmann number, 0B
b
σ
ρ

 
  
 

. It is therefore 

directly proportional to the square of the applied magnetic field, B0. This parameter arises in 
the Lorentzian transverse magnetic drag term, Q fη in the momentum similarity equation (5), 
where fη i.e. f / is the velocity. It acts to strongly retard the flow along the x-direction and 
control the stretching of the sheet. This is indeed testified to by figure 10 where we observe a 
considerable reduction in flow velocity as Q rises from 0 (non-conducting case) to 5. We 
further note that with stronger magnetic field, the velocity decay from the wall evolves from a 
gradual montonic decay (Q = 0) to a very steep descent close to the sheet surface. Flow 
development in the boundary layer is therefore curtailed significantly with imposition of 
progressively stronger magnetic field. = In figure 11, the reverse effect is generated in the 
PST temperature field. Increasing Q effectively enhances temperatures in the boundary layer. 
As elucidated in Abel and Nandeppanavar (2007, 2008a,b) and further confirmed by Bég et al. 
(2011d), the supplementary work done to drag the viscoelastic fluid against the action of the 
magnetic field, manifests as a dissipation in thermal energy. These patterns were originally 
identified by Rossow (1958) in laminar boundary layer hydromagnetic, but for Newtonian 
fluids only. It also arises clearly for viscoelastic flows. This elevates the temperature in the 
boundary layer. A similar response is observed for the PST temperature field, in figure 12. 
However it is evident that in figure 12 a single wall temperature (at η = 0) for the different 
profiles does not feature- the initial temperature at the wall varies in each profile, since the 

Int. J. of Appl. Math and Mech. 10 (10): 9-49, 2014. 



Homotopy Analysis Of Magnetohydrodynamic Convection Flow 
 

39 

heat flux is prescribed in this scenario, not the surface temperature. = The potent effect of 
magnetic field is however clearly observed and again serves to heat the fluid in the boundary 
layer. 
 
Figures 13-15 depict the influence of the viscoelastic parameter ( 1k ) on velocity and PST and 
PHF temperature profiles. This parameter again only arises in the momentum equation (5). It 
is inversely proportional to the dynamic viscosity of the liquid and directly proportional to the 
viscoelastic dimensional parameter, k0. Increasing k1 induces a strong depression in the 
velocity i.e. decelerates the flow. This physically generates greater tensile stresses 
(elongational) in the fluid which is a primary mechanism contributing to the retardation (Bég 
et al, 2011d). Since the fluid flow slower, thermal diffusion becomes more dominant in the 
boundary layer convection regime. This acts to accentuate temperatures. In consistency with 
these physical arguments, inspection of figures 13 to 15 shows that ( )f η′  is clearly decreased 
and values of ( ) and ( )gθ η η  are strongly increased with a rise in viscoelasticity parameter, 
( 1k ). A similar response for other viscoelastic fluid models has been reported quite recently 
also by Husain et al. (2008) for Oldroyd-B fluids and Hayat and Abbas (2008 for the second-
order differential non-Newtonian fluid. The strong coupling of the velocity and thermal fields 
via eqn. (5) and equation (15) or equation (28) implies that the viscoelasticity effect while 
absent in temperature equations, still exerts a very prominent role on the transport of heat in 
the boundary layer. Finally we note that the case, k1= 0 implies a Newtonian fluid and for this 
scenario the temperatures are minimized in the boundary layer, while the velocity is 
maximized. 
 
Figures 16 and 17 display the influence of the heat source/sink parameter (α ) on ( )θ η  and 
g η( ) . α> 0 corresponds to a heat source (generation of thermal energy) and α < 0 to a heat 
sink (destruction of thermal energy). With α> 0 both temperature profiles are markedly 
elevated; the reverse is clearly observed for the heat sink effect (α < 0). A similar response 
has also been reported in magneto-micropolar = convection flow using the finite element 
method by Rawat et al. (2009). 
 
Figures 18 and 19 show the response of the PST temperature and PHF temperature profiles, to 
a change in Eckert number, E and re-scaled Eckert number, Es, respectively. E and Es express 
the relationship between the kinetic energy in the flow and the enthalpy. It signifies the 
conversion of kinetic energy into internal energy by work done against the viscous fluid 
stresses. Although this parameter is often used in supersonic aerodynamics (compressible) 
flow, it has significance in high temperature incompressible flows, as typified by materials 
processing operations.  Positive Eckert number implies cooling of the stretching sheet and 
therefore a transfer of heat to the fluid. Convection is enhanced and we observe in consistency 
with this that both temperature profiles are significantly boosted with increasing E and Es, 
respectively. Viscous dissipation therefore exerts a major role on the temperature distribution 
in the regime. 
 
Figures 20 and 21 illustrate the effect of the radiation-conduction number on temperature 
profiles 

for the PST case and  PHF case. Nr = 
316 *

3 *
T

k k
σ ∞ 

 
 

 embodies the relative contribution of heat 

transfer by thermal radiation to thermal conduction. Large Nr (>1) values therefore 
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correspond to thermal radiation dominance and small values (<1) to thermal conduction 
dominance. For Nr = 1 both conduction and radiative heat transfer modes will contribute 
equally to the regime. Thermal radiation serves to augment the diffusion term in the energy 
equation (15) or (28). For Nr = 0, thermal radiation vanishes. With an increase in Nr i.e. 
stronger thermal radiation flux, from 1 through to 9, there is an accompanying elevation in 
temperatures in both figures 20 and 21. Radiative flux therefore contributes considerable 
thermal energy to the boundary layer regime. 
 
Figures 22 and 23 show the influence of Prandtl number (Pr) on both PST and PHF 
temperature profiles. Larger Pr values imply a thinner thermal boundary layer thickness and 
more uniform temperature distributions across the boundary layer. Hence the thermal 
boundary layer will be much less in thickness than the hydrodynamic (translational velocity) 
boundary layer. Pr = 1 implies that the thermal and velocity boundary layers are 
approximately equal in extent. Smaller Pr fluids have higher thermal conductivities so that 
heat can diffuse away from the vertical surface faster than for higher Pr fluids (thicker 
boundary layers). In accordance with this, a strong decrease in temperature accompanies an 
increase in Prandtl number in both figures 22 and 23. 
 
Figures 24-26 and figures 27-29, illustrate respectively the contours of the velocity 
component along the sheet and normal to the sheet, for various values of .Q  Inspection of the 
figures confirms that the magnetic parameter, Q, exerts a decelerating effect on the flow. The 
magnitudes of the x-direction velocity, u, are clearly suppressed with a rise in Q from 2, 3 to 
4. A similar response is observed in the transverse velocity component, v, where again the 
magnitudes are significantly reduced with increasing strength of magnetic field i.e. higher Q. 
The powerful inhibiting mechanism of an applied magnetic field transverse to a stretching 
sheet is therefore strongly confirmed form figures 24 to 29. 
Finally in figure 30, we have plotted the x-y contours for velocity. The clustering of vectors 
around the x axis indicates the presence of an inhibiting effect due to magnetic field. Flow 
vectors converge towards the lower right hand corner of the diagram. Table 1 documents 
numerical values of velocity f/, with increasing Q values as computed by both numerical 
quadrature and HAM. Reading across the table, it is immediately apparent that increasing 
Chandrasekhar number clearly decreases velocities i.e. decelerates the flow. The excellent 
correlation between HAM and numerical shooting solutions once again strongly advocates the  
robustness of HAM in chemical engineering fluid flow simulations. 
 
 

Table1: Comparison of ( )f η′  obtained by the HAM solution with numerical values for 

1 0.2k = with various values of .Q  

 
η  

( )f η′ obtained by the HAM 
2Q =  3Q =  4Q =  

Numerical HAM Numerical HAM Numerical HAM 
0.5 0.379749 0.379742 0.326922 0.326917 0.286505 0.286501 
1.5 0.0547632 0.0547605 0.0349407 0.0349393 0.0235177 0.0235169 
2.5 0.00789734 0.0078967 0.00373439 0.00373413 0.00193045 0.00193033 
3.5 0.00113887 0.00113874 0.000399124 0.000399085 0.000158461 0.000158447 
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6  CONCLUSIONS 
 
The present article has analyzed in detail using a hypergeometric analytical method, the semi-
numerical homotopy analysis method (HAM) and also numerical quadrature, the radiative-
convective magnetohydrodynamic viscoelastic flow along a stretching sheet in a porous 
medium. Heat source/sink effects have also been studied. Two thermal cases have been 
studied for the stretching sheet - a prescribed surface temperature and also a prescribed heat 
flux. The computations have shown for a fixed permeability of the regime (Darcy number of 
unity) that: 
 
(i) Increasing magnetic field (Q) serves to retard the flow in the regime but to enhance 

temperatures. 
 
(ii) increasing viscoelasticity (k0) acts to decelerate the flow and to elevate temperatures 
 
(iii) increasing Prandtl number (Pr) depresses temperatures 
 
(iv) increasing Eckert numbers (E, Es) enhances significantly temperatures 
 
(v) Increasing radiation-conduction number (NR) boosts the temperatures through the 

boundary layer 
 
(vi) Increasing heat source parameter (α >0) elevates temperatures with the converse 
behaviour induced with an increase in heat sink strength (α <0). 
 
The present study has also further endorsed the excellent potential of HAM in modern multi-
physical magnetic materials processing and demonstrates that this approach is a very useful 
tool for nonlinear viscous fluid dynamics, and a new procedure for validating traditional 
(finite difference, finite element) numerical codes. HAM provides a convenient way to control 
the convergence of approximate series, which is a fundamental qualitative difference between 
this technique and other traditional perturbation methods. This method does not require a 
small parameter in any equation as is customary with perturbation methods as employed by 
modern chemical engineers (Rice and Do, 1994). The authors are currently exploring HAM 
simulation  in other nonlinear chemo-fluid dynamics problems involving surface tension 
effects (Marangoni convection) (Zueco and Bég, 2011), chemical reaction (Cortell, 2007) and 
rotational body force (Bég et al. 2008b) effects  - the results of these investigations will be 
communicated imminently. 
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NOMENCLATURE 
 

, ,A B D  Constants 
b  Constant rate of stretching [s-1] 

PC  Specific heat at constant pressure [W kg-1 K-1] 

Da  
 
E  

(g/ck’) Darcy number 
2 2

p

b l
A C

 
  
 

 Eckert number 

SE  
E b
D ν

 
  
 

 scaled Eckert number 

f  Similarity function 
F  Kummer’s function 

g  
w

T T
T T

∞

∞

 −
 − 

 non- dimensional temperature (for the PHF case) 

0H  Strength of the magnetic field [w m-2 ] 
k  Thermal conductivity [W kg-1 K-1] 
  Auxiliary parameter 
H  Auxiliary function 
  Linear operator of the HAM 
  Non-linear operator of the HAM 

*k  Mean absorption coefficient [m-2 ] 
0k  Axial velocity component 

1k  0
1

k ck
µ

=
 
viscoelastic parameter 

l  Characteristic length [m] 

M  0B
b
σ
ρ

 
  
 

 Hartmann number 

RN  
316 *

3 *
T

k k
σ ∞ 

 
 

 radiation-conduction number 

Pr  *
ν
α
 
 
 

 Prandtl number 

rq  Radiative heat flux [ W kg-1 m-1 ] 

wq  Local heat flux at the wall 
Q  2M  (Chandrasekhar hydromagnetic number) 

*Q  uniform heat source [W kg-1 K-1m-2] 

mR  
2

m

b l
ν

 
 
 

 magnetic Reynolds number 

s  Variable heat flux index 
T  Fluid temperature [K] 
T∞  Constant temperature far away from the sheet [K] 
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wT  Wall (sheet) temperature [K] 
u  Velocity component along the sheet [m s-1] 
v  Velocity component normal to the sheet [m s-1] 
x  Coordinate along the sheet [m] 
y  Coordinate normal to the sheet [m] 
 
 
GREEK 
SYMBOLS 

 

α  
*

p

Q
b Cρ

 
  
 

 heat source / sink parameter 

*α  Thermal diffusivity [m2 s-1] 
η  Similarity variable 
μ  Dynamic viscosity [kg m-1s-1] 
υ  Kinematic fluid viscosity [m2 s-1] 
ρ  Density [ kg m-3 ] 
ψ  Stream function [m2 s-1] 
σ  Electrical conductivity [mho m-1] 

*σ  Stefan-Boltzmann constant 
ξ  Change of variable 

wτ  Wall shearing stress [m2 s-1] 

θ  







−
−

∞

∞

TT
TT

w
 non-dimensional temperature (for the PST case) 
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