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Background: INCENP is predicted to have a 
coiled-coil domain. 

Results: The coil is actually a stable single alpha 

helix (SAH) that is highly extendable and directly 
binds microtubules. 

Conclusion: This flexible dog leash may allow 

Aurora B to associate with dynamic targets in the 

outer kinetochore. 
Significance: The SAH domain allows CPC 

flexibility without requiring complex dimerization. 

ABSTRACT  

The chromosome passenger complex 
(CPC) is a master regulator of mitosis.  
INCENP acts as a scaffold regulating CPC 
localisation and activity.  During early mitosis 
the N-terminal region of INCENP forms a 
three-helix bundle with Survivin and Borealin, 
directing the CPC to the inner centromere 
where it plays essential roles in chromosome 
alignment and the spindle assembly 
checkpoint. The C-terminal IN-box region of 
INCENP is responsible for binding and 
activating Aurora B kinase.  The central 
region of INCENP has been proposed to 

comprise a coiled-coil domain acting as a 
spacer between the N and C terminal domains 
that is involved in microtubule binding and 
regulation of the spindle checkpoint. Here we 
show that the central region (213 residues) of 
chicken INCENP is not a coiled coil but a ~32 
nm long single alpha helical (SAH) domain. 
The N-terminal half of this domain directly 
binds to microtubules in vitro. By analogy 
with previous studies of myosin 10, our data 
suggest that the INCENP SAH might stretch 
up to ~80 nm under physiological forces. Thus, 
the INCENP SAH could act as a flexible dog-

leash allowing Aurora B to phosphorylate 
dynamic substrates localized in the outer 
kinetochore while at the same time being 
stably anchored to the heterochromatin of the 
inner centromere. Furthermore, by achieving 
this flexibility via a SAH domain, the CPC 
avoids a need for dimerization (required for 
coiled-coil formation), which would greatly 
complicate regulation of the proximity-
induced trans-phosphorylation that is critical 
for Aurora B activation.    
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INCENP is the scaffolding protein 

upon which the chromosomal passenger 
complex (CPC) assembles (1-3). The N-
terminal region of INCENP assembles a three-
helix bundle with survivin and borealin(4) that 
contributes to targeting the CPC to inner 
centromeres via haspin-mediated 
phosphorylation of histone H3 (5-7). This 
region of INCENP also contributes to CPC 
localisation by binding to HP1 and to 
microtubules. The IN-box, a conserved motif 
near the C-terminus of INCENP is responsible 
for binding and activating Aurora B kinase 
(3,8). The central portion of INCENP is 
predicted to form a coiled-coil spacer between 
the localisation and activation modules (3), 
and has been proposed to act like a “dog 
leash” allowing Aurora B tethered to 
chromatin to phosphorylate substrates within a 
constrained region (9).  

This tethering of Aurora B is critical 
for the regulation of chromosome alignment 
and the correction of kinetochore attachment 
errors. Spindle tension causes the elastic 
chromatin of the inner centromere to stretch, 
allowing sister kinetochores to move away 
from the inner centromere, where INCENP is 
concentrated during prometaphase and 
metaphase. As first proposed for budding 
yeast and later confirmed in mammalian cells, 
this centromere stretch moves kinetochore 
targets of Aurora B away from regions of high 
kinase concentration and decreases their 
phosphorylation, thereby stabilising 
kinetochore-microtubule interactions(10-12). 
In mis-attached chromosomes, which do not 
exhibit comparable centromere-stretch, 
Aurora B remains in closer proximity to the 
outer kinetochore. This allows the kinase to 
phosphorylate key kinetochore components, 
causing them to release microtubules (13-15). 

This correction mechanism is now well 
accepted, but what is less clear is how exactly 
INCENP achieves the dynamic flexibility to 
allow Aurora B to extend into the outer 
kinetochore and to track with kinetochore 

components at the dynamic-microtubule 
interface. For example, since the Ndc80 and 
Ska complexes are composed of relatively 
rigid helical bundles (16,17), it is not clear 
how Aurora B is able to associate with them if 
they undergo conformational changes on the 
dynamically growing and shrinking 
kinetochore-associated microtubules. 

Here we show that the central region of 
INCENP is not a coiled-coil, but instead is a 
single alpha-helix (SAH), similar to that found 
in myosin 10 and many other proteins (18-21). 
The N-terminal portion of this SAH is capable 
of binding directly to microtubules. 
Furthermore, SAH domains are highly 
extensible, and by analogy with the myosin 
SAH domain (20), it is likely that extension of 
the relatively lengthy INCENP SAH might 
allow the IN-Box with its bound Aurora B to 
undergo excursions of up to ~80 nm under 
relatively light loads. These data support the 
suggestion that the INCENP coil functions as 
a “dog leash” that allows Aurora B to 
“wander” across a substantial target area to 
reach its substrates (9). By using a SAH rather 
than a coiled-coil to achieve this flexibility, 
INCENP avoids the requirement for 
dimerization, which would significantly 
complicate the currently accepted mechanism 
of proximity/clustering-induced activation of 
the CPC (12,22-24). 

 
EXPERIMENTAL PROCEDURES 
Protein expression and purification- All 
proteins were expressed in E. coli BL21 
Rosetta 2 (Novagen) and purified using a Ni-
NTA affinity chromatography column. 
Proteins were dialysed against 150 mM NaCl, 
20 mM Tris, 1 mM DTT, pH 8.0 and 
proteolysed for 2 h at room temperature, using 
ULP1 recombinant SUMO protease in a 
substrate to enzyme ratio 100:1. Next, proteins 
were purified on ion-exchange columns using 
an AKTA system. The purest fractions were 
combined and concentrated resulting in a 1–2 
mg/ml protein solution. Purified protein was 
dialyzed against 100 mM NaCl, 10 mM 
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sodium phosphate, pH 7.4, and snap-frozen in 
liquid nitrogen for long term storage at -80 °C.  

Mass spectrometry-Protein samples 
(~0.2 ml; 20 µM) were dialyzed 
(GBiosciences dialyzers 2 kDa mwco) 
overnight against 50 mM ammonium acetate, 
pH 7.4 and analyzed by TOF MS analysis 
(The University of Leeds Mass Spectrometry 
Facility). 

CD spectroscopy- CD measurements 
were performed on an Applied Photo Physics 
Chirascan CD spectropolarimeter with a 0.1 
cm path length quartz cuvette in 0.1M NaCl, 
10 mM sodium phosphate, pH 7.4 buffer. Data 
were collected every 1 nm with 30 s averaging 
time, each measurement being an average of 
two repeated scans. Data presented are 
averaged from at least two separate 
measurements of different protein preps. 
Thermal measurements were performed in a 
temperature range from 10 to 85 °C with a 0.7 
°C/min heating rate, data acquisition every 1 
°C and 20 s averaging time. The sample 
cooling rate prior to measurement of refolded 
protein was ~ 2 °C/min. The mean residue 
molar ellipticity of proteins was calculated as 
described (25). The helical content of proteins 
was calculated from values of the amide nπ* 
transition at 222 nm ([MRE222]), as previously 

described (25). Protein concentration was 
measured by absorption at 280 nm. 
Absorption coefficients were obtained from 
ProtParam software. Standard concentrations 
were in the range 10–20 µM. In the salt 
dependence experiments, stock buffer (5 M 
NaCl, 10 mM sodium phosphate, pH 7.4) was 
mixed with stock protein solution to obtain 
desired salt and protein (10 µM) 
concentration.  

cDNA constructs- Sequences encoding 
putative full length INCENP SAH domain 
(UniProt id: P53352, Gallus gallus, residues: 
503–715) and its N-terminal (residues 503-
597) and C-terminal (598-715) fragments 
were subcloned into the pET28a SUMO 
vector (26) to introduce an N-terminal His-tag 
and SUMO protein for increased expression 

and solubility. For all constructs, a tryptophan 
residue was added to the C-terminus to enable 
A280 concentration measurements.  
INCENP SAH mutant constructs were based 
on Triple affinity purification (TrAP)–tagged 
INCENPWT class I under control of an SV40 
promoter that is insensitive to doxycycline 
repression (27). The TrAP tag incorporates 
His, streptavidin-binding peptide (SBP), and S 
tags and can be monitored by immunoblotting 
and immunofluorescence using a monoclonal 
antibody recognizing the SBP tag (28,29). 
GFP was inserted in front of the TrAP tag to 
visualize the mutants. Silent mutations were 
introduced into INCENP cDNA to create Bam 
HI, Eco RI, Hind III sites around SAH domain 
so that SAH region can be easily modified. 
Wild type SAH, half SAH, double SAH, 
double MyoM SAH (30) cassettes were 
synthesized at Geneart (Life technologies) and 
cloned into the GFP-TrAP-INCENP 
constructs.  

Cell culture- DT40 cells were grown 
in RPMI 1640 medium supplemented with 
10% FBS, 1% chicken serum, and maintained 
in 5% CO2 at 39°C. Doxycycline at a final 
concentration of 500 ng/ml was added to the 
culture medium to repress transcription of the 
promoter-hijacked endogenous INCENP locus 
(29). HeLa Kyoto were grown in Dulbecco’s 
modified Eagle’s medium, supplemented with 
10% foetal calf serum, 0.2 mM l-Glutamine, 
100 U /ml penicillin and 100 µg/ml 
streptomycin. 

Immunoblotting- Whole cell lysates 
were prepared, and the equivalent to 0.5-
1x106 cells were loaded onto a 
polyacrylamide gel. SDS-PAGE and 
immunoblotting were performed following 
standard procedures. Donkey anti mouse or 
rabbit IRdye 800CW were used for Li-Cor 
Odyssey Quantitative fluorescence Imager 
analysis. 

Indirect immunofluorescence 

microscopy- All fixation, permeabilisation and 
immunostaining were performed at room 
temperature, as previously described (31). 
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Cells attached on poly-Lysine coated 
coverslips were fixed in a 3.7% 
formaldehyde/PBS solution for 10 min and 
permeabilised in PBS-0.15% Triton X-100 for 
4 min.  Cells were blocked in 10% normal 
donkey serum for 1hr at RT prior to antibody 
incubations. Antibodies used were α-tubulin 
antibody (B512 or DMIA; Sigma-Aldrich), 
anti-H3S10ph (Millipore), anti-GFP (Life 
Science technologies), anti-HEC1 mouse 
monoclonal (Abcam), anti-Dsn1ph (32), anti-
H3Ser28ph (33), rabbit polyclonal 
(WCE1186), anti-INCENP (3D3), anti-Aurora 
B, anti-CENP-T were previously described 
(1,27,34), All affinity purified donkey 
secondary antibodies  (labelled either with 
FITC, Alexa 488, TRITC, Alexa 594 or Cy5) 
were purchased from Jackson 
Immunoresearch.   

SiRNA against Human INCENP- 

RNAi experiments were performed using 
annealed siRNA oligos  (Qiagen) diluted in 
serum free OptiMem and transfected using 
HiPerFect reagent (Qiagen) according to the 
manufacturer’s protocol.  HeLa cells were 
seeded on coverslips at a concentration of 
1x105 cells/ml and diluted siRNA was added 
to cells so that the final concentration of 
siRNA was 40 nM. Plasmids encoding either 
GFP-TrAP-GgINCENPwt SAH, GFP-TrAP-

GgINCENPDouble SAH or GFP-TrAP-GgINCENPN-

half SAH were transfected for 24 hrs prior to 
fixation. Coverslips were fixed at 30-34 hrs. 
INCENP siRNA oligo was 5’-

AGATCAACCCAGATAACTA-3’ (35). For 
control transfections non-silencing random 
scramble siRNA oligos were used at the same 
concentration.   

Image analysis and quantification- 

Quantifications of p-H3ser28, p-H3ser10 and 
p-Dsn1 were carried out as follows:  
Deconvolved images were imported into 
OMERO (36) and segmentation of centromere 
foci (ACA, Cy5, reference channel) or 
chromatin (DAPI, 435 reference channel) 
performed using Otsu segmentation 
implemented in Matlab. Masks stored in 

OMERO were then used to calculate 
intensities background corrected, and output 
into comma-separated value file for plotting in 
Excel. 

Growth curves- Growth curves were 
generated by seeding cells at a concentration 
of 2 × 105 cells/ml at 39°C (unless otherwise 
stated). Cell counting was performed every 
24 hrs for a total of 96 hrs. To avoid 
overgrowth, cells were diluted to 2 × 105 
cells/ml every 24 hrs. The cell number at 
each time point was multiplied by the 
appropriate dilution factor to get a true count. 

Microtubule co-sedimentation assay- 

Tubulin (Cytoskeleton Inc.) was used for the 
generation of polymerized MTs according to 
manufacturer’s instructions. Taxol-stabilized 

MTs (18 µM tubulin dimer) were incubated 

at RT for 10 min with 1 µM protein in a 50 µl 

reaction volume in BRB80 buffer (80 mM 

PIPES, pH 6.9, 1 mM EGTA and 1 mM 

MgCl2) with 100 mM NaCl and 4 mM DTT 

in the presence of 20 µM taxol. The reaction 

was then layered onto a 250-µl glycerol 

cushion buffer (BRB80, 50% glycerol, 4 mM 

DTT) and ultracentrifuged for 10 min at 

434,400g in a Beckman TLA 100.3 rotor at 

25 °C. Pellets and supernatants were analysed 

by SDS–PAGE. Gels were stained with 
Coomassie Blue and protein quantification 
was performed with ImageJ. Normalized 
binding data were obtained by dividing the 
values of the pellet fraction by the sum of 
pellet and supernatant. 
 
RESULTS 

GgINCENP
503-715

 has properties expected of 

a Stable Alpha Helical (SAH) domain and is 

not a coiled–coil  

The middle region of INCENP links 
the N-terminal centromere/microtubule 
targeting domains with the C-terminal Aurora 
B regulatory domain. This middle region, 
GgINCENP503-715   has been predicted to form 
a coiled-coil structure that is required for 
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microtubule binding and microtubule-induced 
activation of Aurora B (24,37). Subsequent 
detailed analysis of the INCENP sequence 
revealed numerous charged residues at 
positions of the heptad repeat that would 
disrupt coiled-coil formation. We predicted 
that GgINCENP503-715 is not a coiled-coil, but 
might instead form a Stable Alpha Helical 
(SAH) domain (Fig. 1A) (19,38).  SAH 
domains are characterised by a highly helical 
secondary structure, non-cooperative thermal 
unfolding, and the ability of the peptide to 
completely refold after thermal denaturation.  
In addition, SAH domains remain helical up to 
fairly high salt concentrations (18).  

To test this hypothesis, we prepared 
recombinant proteins containing the full-
length SAH (INCENP503-715), the N-terminal 
SAH (INCENP503-597), and the C-terminal 
SAH (INCENP598-715). The exact position of 
the break in the sequence was based on 
analysis of potential ionic interactions 
between charged amino acid residues so that it 
did not disturb any of these potential bonds. 
We then performed circular dichroism (CD) 
measurements to investigate the secondary 
structure of these protein fragments over a 
range of temperature and salt conditions, and 
looked at their ability to form monomers or 
dimers by measuring their molecular weight 
by mass spectrometry.  
 CD spectra revealed that all three 
proteins were highly helical at 10 °C at 0.1M 
NaCl (Fig. 1B-D). According to this analysis, 
INCENP503-715 was 85% helical while 
INCENP503-597 and INCENP598-715 were ~90% 
and 88% helical respectively. All three 
constructs melted non-cooperatively as 
expected for SAH domains (Fig. 1E) and 
refolded after cooling to at least 90% of their 
initial helical content measured at 10 °C (Fig. 
1B-D). All three constructs remained highly 
helical up to 2M NaCl, and then helical 
content decreased to ~ 60% at 4 M NaCl (Fig. 
1F), demonstrating the salt-resistant nature 
expected of a SAH domain (18). The helical 
nature of INCENP503-597 was slightly more 

resistant to increasing salt concentrations 
compared to INCENP503-715 and INCENP598-

715. Mass spectrometry analysis confirmed that 
all of the studied constructs are monomeric 
with molecular masses of 12 kDa, 15.2 kDa 
and 26.9 kDa for INCENP503-597, INCENP598-

715 and INCENP503-715, respectively (data not 
shown).  

All of the above strongly suggest that 
INCENP’s middle region is a SAH domain 
and not a coiled coil as previously proposed. 
Consequently, intact INCENP is likely a 
monomer and not a dimer, which has 
implications for its mechanisms of action. 

 
The full length SAH and its N-terminal half 

bind directly to microtubules in vitro 

The INCENP putative coil domain has 
been previously shown to be important for 
microtubule binding (24,37,39,40). However, 
it remained unclear whether the SAH domain 
alone can bind to microtubules directly.  We 
therefore used purified INCENP503-715, 
INCENP503-597 and INCENP598-715 
recombinant proteins to perform microtubule 
co-sedimentation assays (41). INCENP503-715 

and INCENP503-597 bound to microtubules 
(Figure 1G), whereas the C-terminal portion 
of the SAH region, INCENP598-715, did not 
bind to microtubules in this assay. Thus, the 
INCENP SAH binds directly to microtubules, 
and the microtubule-binding activity resides 
mainly in its N-terminal region. 

 
Establishment of various INCENP SAH 

mutant cell lines 

To analyse the function of the 
INCENP SAH domain in living cells we used 
chicken DT40 conditional INCENP knockout 
cells (27) to generate DT40 cell lines stably 
expressing a variety of INCENP domain-swap 
mutants. The exogenous INCENP constructs 
were visualised by the addition of a GFP-
TrAP tag at the N-terminus of the proteins 
(28). We generated cell lines carrying the full-
length wild type INCENP class 1 cDNA (GFP-

TrAP-INCENPwt SAH), as well as mutants where 
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the C-terminal half of the SAH had been 
deleted (INCENPN-half SAH), a duplication of 
the entire SAH (INCENPDouble SAH), and a 
corresponding length fragment derived from 
the Dictyostelium MyoM SAH (INCENPMyoM 

SAH)  (Figure 2A). (In order to preserve the 
over-all length of the coil, this was actually a 
duplication of the MyoM SAH.) We used the 
double length SAH to extend the length of the 
“dog leash” tethering Aurora B and the MyoM 
SAH to provide a sequence with similar 
physical properties, but unlikely to contain 
protein recognition motifs in common with 
INCENP. We note that in order to 
accommodate reported modifications within 
the SAH domain (42,43), INCENPN-half-SAH 
contained an extra19 amino acids 
(INCENP598-616) that were absent from the 
SAH-INCENP503-597 recombinant protein used 
for microtubule-binding studies. 

Based on our previous work with the 
INCENP conditional knockout cells, 
endogenous INCENP protein becomes 
undetectable 26-28 hrs after addition of 
doxycycline to the medium (27). This allowed 
us to analyse the localisation and function of 
INCENP mutants in the absence of 
endogenous INCENP. Protein levels of the 
GFP-TrAP-INCENPwt SAH and GFP-TrAP-

INCENPN-half SAH domain-swap mutants were 
similar to those of endogenous INCENP as 
detected by Western blotting (Figure 2B). The 
expression level of GFP-TrAP-INCENPDouble SAH 
in the stable cell line was lower than 
endogenous INCENP and the expression level 
in the GFP-TrAP-INCENPMyoM SAH stable cell 
line was even lower (Figure 2B), suggesting 
that those two constructs may be toxic, not 
fully functional or unstable. 

 
INCENP with an altered SAH domain can 

sustain life of DT40 cells  

Surprisingly, all of the INCENP SAH 
mutant proteins tested could sustain cell 
proliferation in the absence of endogenous 
INCENP protein (Figure 2C). However, cells 
expressing only GFP-TrAP-INCENPDouble SAH or 

GFP-TrAP-INCENPMyoM SAH
 exhibited a higher 

frequency of cell death and proliferated more 
slowly than wild type cells. Interestingly, GFP-

TrAP-INCENPN-half SAH cells proliferated 
comparably to wild type cells suggesting that 
the C-terminal half of the SAH is dispensable 
for INCENP function.  
 
The INCENP SAH domain controls CPC 

localisation  

Domain-swaps of the INCENP SAH 
domain had complex effects on CPC 
localisation during mitosis. GFP-TrAP-

INCENPwt SAH localised as expected, 
concentrating at the inner centromere during 
early mitosis (prometaphase and metaphase), 
and transferring to the central spindle in 
anaphase before finally concentrating at the 
midbody during cytokinesis (Fig 3A-C, J, 6A, 
D). Interestingly, careful examination of cells 
expressing GFP-TrAP-INCENPwt SAH revealed 
that this protein also associates with 
centrosomes and the mitotic spindle to a minor 
extent, at least in some metaphase cells (Fig 
3A,C).  

GFP-TrAP-INCENPN-half SAH behaved 
exactly like the wild type. This supports the 
suggestion that the C-terminal half of the SAH 
is indeed dispensable for INCENP localisation 
(Fig 3D-F, J, 6B,E).  

GFP-TrAP-INCENPDouble SAH localised to 
centromeres during prometaphase and 
metaphase but in addition, it often decorated 
the mitotic spindle, concentrating strongly at 
the centrosomes. Central spindle and midbody 
localisation of GFP-TrAP-INCENPDouble SAH at 
the later stages of mitosis remained similar to 
GFP-TrAP-INCENPwt SAH (Fig 3G-I, J, 6C,F). 
These results suggested that having two 
microtubule binding sites within the SAH 
domain may enhance the affinity of INCENP 
for microtubules. Importantly, chromosome 
alignment at the metaphase plate appeared 
normal in GFP-TrAP-INCENPDouble SAH cells (Fig 
3G, I).  

The expression level of GFP-TrAP-

INCENPMyoM SAH
 in stable cell lines fell to 

 JBC

 
C

 o
 n

 f
 i 

d 
e 

n 
t 

i a
 l



INCENP SAH domain regulates the localisation of CPC complex 
   

 7 

extremely low levels while we were 
expanding the culture, and was often below 
our detection limit. Where it could be seen, 
GFP-TrAP-INCENPMyoM SAH

 was found at the 
inner centromere or on chromosomes during 
prometaphase/metaphase and occasionally at 
the midbody during cytokinesis in those cells 
(Fig 4A-C). In order to confirm its cell cycle 
localisation, we transiently transfected cells 
with a construct expressing GFP-TrAP-

INCENPMyoM SAH. In those cells, GFP-TrAP-

INCENPMyoM SAH
 was again occasionally seen 

at the inner centromere or on chromosomes 
but it usually appeared diffuse throughout the 
entire mitotic cell (Fig 4D-F). Moreover, high 
levels of GFP-TrAP-INCENPMyoM SAH

 turned out 
to have a disruptive effect on cell division, 
giving rise to tripolar spindles in most of the 
transfected cells 27 hrs after transfection in the 
presence of doxycycline (Fig 4E). Thus we 
focused our further studies on WT SAH, N-
half SAH and Double SAH mutants. 

The above results strongly suggest that 
a combination of microtubule binding activity 
plus flexibility is important for INCENP 
localisation and function throughout mitosis. 

 

Mutations in the INCENP SAH domain do 

not abolish Aurora B kinase activity but 

regulate CPC localisation  

INCENP is the scaffolding subunit of 
the chromosome passenger complex, of which 
Aurora B kinase is the catalytic subunit 
(12,44). To determine whether the catalytic 
activity of the CPC is compromised by 
changes within the SAH domain, we stained 
cells expressing various SAH domain swaps 
with antibody against H3S10ph. H3S10ph 
levels appeared similar in all mutant cells 
(Fig. 3C, F, I, K, Fig 4F). Thus, Aurora B 
kinase activity was not impaired by these 
modifications of the INCENP SAH domain. 
We next investigated whether the INCENP-
SAH mutants affected the localisation of 
Aurora B kinase. In cells expressing GFP-TrAP-

INCENPwt SAH, Aurora B co-localised with 
INCENP, concentrating at the centromeres 

during early stages of mitosis and then 
transferring to the central spindle during 
mitotic exit (Fig. 5A, B). In cells expressing 
GFP-TrAP-INCENPDouble SAH, Aurora B again 
co-localised with INCENP, decorating the 
mitotic spindle close to centrosomes and then 
transferring to the central spindle during 
mitotic exit (Fig 5C-E). The above results 
indicated that the INCENP SAH domain 
influences the localisation of not only 
INCENP but also the rest of the CPC 
complex. This prompted us to use the 
INCENP SAH mutants to test the “dog leash” 
model of CPC regulation. 
 
INCENP SAH length influences Aurora B 

substrate phosphorylation 

According to the flexible “dog-leash” 
model [a term first proposed by(9)], Aurora B 
kinase binding to the INCENP C-terminus can 
move freely even though the centromere 
targeting module of the CPC including the N-
terminus of INCENP is tethered to static 
nucleosomes during early mitosis (Fig 7). If 
this model is correct, a short SAH domain (N-
half) should favour phosphorylation of 
substrates proximal to the inner centromere, 
but should be disfavour phosphorylation of 
substrates further away, such those in the 
outer kinetochore.  

Despite extensive efforts, we failed to 
obtain any phospho-specific antibodies 
recognising Aurora B substrates in the outer 
kinetochore of chicken DT40 cells. However, 
we noted that GFP-tagged INCENP SAH 
mutants all localised normally to inner 
centromeres in HeLa cells (Fig 6D-I) as they 
did in DT40 cells (Fig 6A-C). We carried on 
image analysis and quantification of 
phosphorylation using HeLa cells transiently 
transfected with GFP-TrAP-GgINCENPs and 
treated with siRNA oligonucleotides to 
deplete endogenous HsINCENP. Histone 
H3Ser28-Ph and DSN-1-Ph (MIS12 complex) 
were chosen as representative substrates of 
Aurora B kinase in the inner centromere and 
outer kinetochore, respectively. 

 JBC

 
C

 o
 n

 f
 i 

d 
e 

n 
t 

i a
 l



INCENP SAH domain regulates the localisation of CPC complex 
   

 8 

As expected, phosphorylation of both 
H3Ser28 and DSN-1 was significantly 
reduced after depletion of HsINCENP, but 
could be rescued by expression of GFP-TrAP-

GgINCENPWT (Fig 6J,K). Expression of 
INCENP Double SAH was substantially less 
effective at phosphorylating H3Ser28 (the 
inner centromere marker). In contrast 
expression of INCENP N-half SAH was less 
effective at rescuing phosphorylation of DSN-
1 (the outer kinetochore marker). These results 
show clearly that the length of the INCENP 
SAH could influence the phosphorylation 
status of inner centromere and outer 
kinetochore substrates of Aurora B kinase. 

 
DISCUSSION 

Since the original analysis of the 
INCENP amino acid sequence, the central 
portion of INCENP class I (Gg residues 503-
717) has been assumed to form a coiled-coil 
structure (37,45). This region has been found 
to be required for interactions with 
microtubules and to play a role in the spindle 
assembly checkpoint functions of the CPC 
(24,37,46). However, the exact role of the 
INCENP putative coiled coil in CPC 
regulation and function remained largely 
unclear (24,37,46,47). Here we demonstrate 
that amino acids 503-717 of GgINCENP 
behave in vitro as a SAH domain whose N-
terminal region directly binds to microtubules 
in vitro. 
INCENP contains a monomeric SAH 

domain: Single α-helices are generally 
thought to be inherently unstable in aqueous 
solution (48).  However, the INCENP coil 
region forms a highly helical, monomeric 
SAH domain that is relatively stable over a 
broad range of temperatures, salt 
concentrations, and pH. Similar results have 
been obtained for the SAH domain of myosin 
10, and other SAH domains (20,49,50). The 
97 aa MyoM SAH domain is thought to 
behave as a constant force spring, as described 
for the SAH domain of myosin 10 (20). The 
myosin10 SAH domain unfolds non-

cooperatively at very low forces (<30 pN), 
from a fully folded length of 14.5 nm to a 
completely extended coil structure with a 
length of 37 nm with very little additional 
increase in force. Moreover, it can refold 
when the force exerted on it is reduced. 
INCENP has an even longer SAH domain 
(213 aa). As a result, the INCENP SAH can 
likely alter its length from a resting length of  
~32 nm long, (based on a rise per residue of 
0.15 nm) to as long as ~80 nm (~0.36 nm per 
residue when unfolded), thereby acting as a 
highly flexible linker between its flanking 
domains. This elastic feature of a monomeric 
INCENP SAH domain has not previously 
been incorporated into models explaining the 
dynamic localization and function of the CPC.  
The INCENP SAH domain binds 

microtubules: INCENP has at least two direct 
microtubule-binding sites (37,39,40,51,52). 
One, located near the N-terminus of the 
protein, is negatively regulated by CDK1 
phosphorylation, and functions in vivo only 
after anaphase onset (53,54). We have found 
that the other, in the N-terminal half of the 
SAH domain GgINCENP503-597, appears to 
function in early mitosis. Consistent with its 
possessing an extra microtubule binding site, 
the GFP-TrAP-INCENPDouble SAH domain-swap 
mutant often associates with the entire mitotic 
spindle and accumulates around centrosomes 
during early mitosis, taking Aurora B along 
with it. Aurora B kinase has previously been 
reported to localise and be active on mitotic 
spindles in hTERT-RPE1 cells and on mitotic 
spindles of Xenopus egg extracts (24).  

Interestingly, localisation of GFP-TrAP-

INCENPDouble SAH at centrosomes ceased at the 
metaphase/anaphase transition, and the protein 
concentrated on the central spindle, similar to 
wild type INCENP. This suggests either that 
the INCENP-SAH domain loses its 
microtubule binding activity at anaphase onset 
or possibly that MKLP2-mediated INCENP 
translocation to the central spindle (54) 
becomes dominant.  
Roles of the INCENP SAH ”dog leash”: 
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Aurora B activation is thought to be promoted 
by INCENP clustering in the inner centromere 
and on spindle microtubules (12,22,24,40,55). 
However, this mechanism suggests a 
conundrum that has apparently not previously 
been considered.  Formation of an INCENP 
coiled-coil would presumably involve 
INCENP dimerization and therefore, the 
dimerization of CPC complexes. If that is true, 
each complex would contain two Aurora B 
molecules, which would presumably be free to 
trans-phosphorylate the partner INCENP and 
one another, thereby auto-activating the CPC 
with no need for microtubule or chromosome 
association (12,23,24,40,55). Thus, coiled-coil 
formation would have to be carefully 
regulated. If, instead, the INCENP coil is a 
SAH, this concern is eliminated and existing 
models of CPC activation are readily 
explained. 

In addition to solving the activation 
problem, we suggest that the flexible “dog 
leash” [a term first proposed by(9)] is also an 
efficient mechanism to allow Aurora B 
molecules to move freely over regions of tens 
of nanometers even though the targeting 
module of the CPC is tethered to static 
nucleosomes during early mitosis (Figure 7). 
This might enable the kinases to find one 
another and perform the trans-phosphorylation 
that produces full kinase activation.  

Importantly, the forces required for 
extension of an SAH are in the range provided 
by interactions between microtubules and the 
kinetochore. The myosin 10 SAH domain can 
extend by up to ~2.5 fold when forces of less 
than 30 pN are exerted on it (20). Single 
microtubule protofilaments can generate up to 
5 pN during depolymerization, and it has been 
proposed that a single microtubule (composed 
of 13 protofilaments) can produce a force of 
65 pN (56). One yeast kinetochore complex 
can associate with one microtubule 
persistently supporting loads up to 11 pN 
(57,58). In vertebrates, kinetochores associate 
with ~4-20 microtubules. Thus the aggregate 
forces exerted within and around kinetochores 

are well above the ~30 pN required to extend 
a SAH peptide. Interestingly, coiled coils can 
also exhibit the behavior of constant force 
springs and the myosin coil can be extended 
by about 2-2.5 times its original length at 
forces of 20-25 pN (59).  

Because microtubules bind to the N-
terminal half of the SAH, extension of this 
portion of the SAH domain (we estimate that a 
~ 20 nm extension is possible given the 
parameters assumed above and a length of 92 
aa) could bridge the gap between the three-
helix CPC targeting module associated with 
chromatin and microtubules in the outer 
kinetochore (Fig 7). The flexible C-terminal 
half of the SAH domain might then allow 
Aurora B to remain associated with 
kinetochore substrates such as the NDC80 and 
Ska complexes, which are presumably 
significantly altering their conformations as 
microtubules grow and shrink during 
chromosome oscillations. Overall, the SAH 
domain could act as a shock absorber allowing 
CPC to remain associated with dynamic 
substrates close to microtubules while at the 
same time being docked to static chromatin. 

The distance between CENP-A and the 
C-terminal region of the Ndc80 complex can 
extend from 65 nm to 100 nm under tension in 
Drosophila melanogaster S2 cells in a process 
referred to as intra-kinetochore stretch (60). 
HeLa chromosomes were also shown to 
undergo a similar stretch (61). In chicken 
DT40 cells, the width of the inner kinetochore 
extends by 35 nm and the width of the outer 
kinetochore extends by 28 nm under tension 
(62). In human cells, intra-kinetochore stretch 
is typically around 20 nm, but can extend as 
far as 60 nm (63). Thus, these extensions tend 
to be slightly greater than the ~20 nm 
extension allowed by stretching the N-
terminal half of the INCENP SAH. This might 
explain how Aurora B kinase can reach 
substrates in the outer kinetochore when the 
kinetochore is under no or low tension but is 
not able to reach those substrates when the 
kinetochore is maximally stretched, thereby 
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stabilizing kinetochore microtubule 
interactions. Our study provides experimental 
support for this model by showing clearly that 
the length of the INCENP SAH can influence 
the phosphorylation status of inner centromere 
and outer kinetochore substrates of Aurora B 
kinase. 

It is now clear that the SAH domain of 
INCENP is one of several factors regulating 

the dynamic CPC localisation and functions 
during mitosis. A challenge for the future will 
be to combine established structural 
techniques such as crystallography and 
electron cryomicroscopy with emerging 
methods, such as cross-linking with mass 
spectrometry (CLMS) to fully characterise the 
structural basis of CPC regulation of 
kinetochore function. 
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FIGURE LEGENDS 

 

Figure 1. Residues 503 – 715 from GgINCENP form a SAH domain in which N-terminal 

half SAH (503-597) directly bind to microtubules in vitro 
(A) The predicted SAH domain from INCENP.  Acidic residues  (E + D) are shown in red. Basic 
residues (K + R) are shown in blue. Potential i, i+4 ionic interactions between E and K, or E and 
R residues are shown as brackets between residues above the sequence, and potential i, i+3 
interactions as brackets below. The positions of residues 597, 616 are indicated (red dotted line, 
green dotted line). Corresponding residues reported to be modified in Phosphoplus are pointed 
by green arrows. The N-terminal SAH construct (INCENPN) consisted of residues 503 – 597, 
and the C-terminal SAH construct (INCENPC) of residues 598 – 715. (B – D) CD spectra for the 
full length SAH construct from INCENP (INCENPFL) (B), the N-terminal (C) and C-terminal 
(D) constructs. Two spectra are shown for each, the first at 10 °C prior to heating, and the second 
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at 10 °C after heating to 85°C and allowing the peptide to refold. (E) The thermal melt curves for 
all three constructs. The change in the mean residue ellipticity (MRE) value at 222 nm, which 
reports on the α-helical content of the protein, is plotted against temperature. (F) The response of 
all three constructs to increasing salt concentration. Helical content has been normalized to the 
value at 0.1M NaCl (10 °C). (G) Bound fraction (+SD) of INCENP SAH proteins co-
sedimenting with microtubules. Average of 4 independent experiments. 
  
Figure 2. DT40 cells stably expressing INCENP SAH mutants can proliferate in the 

absence of endogenous INCENP.  

(A) Diagram of INCENP SAH domain-swap mutants. Exchange of SAH domains was facilitated 
by the creation of Hind III, Eco RI and Bam HI sites that did not affect the amino acids 
sequence. A GFP-TrAP tag was attached to the N-terminus of INCENP class 1 cDNA to 
visualise the proteins.  
(B) Expression of INCENP domain-swap mutants in stable cell lines 26 h following addition of 
doxycycline in the medium. Apparently GgINCENP617-717 is highly antigenic. All our INCENP 
antibodies have epitopes in this region including the 3D3 antibody (monoclonal antibody against 
GgINCENP). Consequently GFPTrAP INCENP with the N-half SAH or MyoM SAH is not 
detected by the 3D3 monoclonal antibody. The lower panel shows that GFPTrAP INCENP with 
the wt SAH was expressed at similar levels to the endogenous INCENP in clone 18 (wild type 
cells). The upper panel shows that all GFPTrAP INCENP mutants were expressed at comparable 
levels except for INCENP with the MyoM SAH, which was expressed at lower levels. In 
addition, 3D3 antibody recognises a band at 80 kDa, which is the U35610 PTB-associated 
splicing factor, which shares some limited peptide sequence with the INCENP coil domain. 
Alpha-tubulin serves as loading control. 
(C) Growth curves of cells expressing INCENP domain-swap mutants in the absence of 
endogenous INCENP. All mutant INCENP cells show no defect in cell proliferation. GFP-TrAP-

INCENPMyoM SAH expressing and GFP-TrAP-INCENPDouble SAH expressing cells show a higher 
percentage of cell death. Average of 4 independent experiments.  
 
Figure 3. Localisation of various INCENP SAH mutants.  

Micrographs of cells from stable cell lines expressing: (A-C) GFP-TrAP-INCENPwt SAH (D-F) GFP-

TrAP-INCENPN-half SAH (G-I) GFP-TrAP-INCENPDouble SAH. INCENP is shown in green, DNA in 
blue, Tubulin or CENP-T is shown in red. Yellow arrows point the faint GFP signal of GFP-TrAP-

INCENPPwtSAH around centrosomes. Scale bar, 5 µm. (J) Quantification of various INCENP 
mutants localization. Twenty cells were counted for each sample. Average of two independent 
experiments. (K) Quantification of Histone H3 Ser10 phosphorylation status of various INCENP 
mutants were quantified in 12-20 cells each at prometaphase. p values were calculated based on 
Student t-test with unpaired variants.  
 
Figure 4. Localisation of GFP-TrAP-INCENP

MyoM SAH
 mutants.  

Cells expressing (A-C) GFP-TrAP-INCENPMyoM SAH (D-F) INCENP knockout cells transiently 
transfected with GFP-TrAP-INCENPMyoM SAH were fixed and immunostained for 27 hrs following 
addition of doxycycline in the medium. INCENP is shown in green, DNA in blue, Tubulin or 
CENP-T is shown in red. Scale bar, 5 µm. 
 

 

Figure 5. Aurora B kinase co-localises with INCENP SAH mutants.  
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Micrographs of cells from stable cell lines expressing: (A-B) GFP-TrAP-INCENPwt SAH (C-E) GFP-

TrAP-INCENPDouble SAH. Cells were fixed and immunostained 27 hrs following addition of 
doxycycline in the medium. INCENP is shown in green, DNA in blue, Aurora B in red. Scale 
bar, 5 µm. 
 
Figure 6. Phosphorylation status of inner/outer kinetochore proteins affected by INCENP 

SAH mutants.  

Micrographs of chicken DT40 stable cell lines expressing: (A) GFP-TrAP-INCENPwt SAH (B) GFP-

TrAP-INCENPN-half SAH (C) GFP-TrAP-INCENPDouble SAH. Cells were fixed and immunostained 27 
hrs following addition of doxycycline in the medium. Micrographs of HeLa cells transiently 
transfected with various GFP-TrAP-GgINCENP mutants and siRNA against endogenous INCENP 
(D, G) GFP-TrAP-INCENPwt SAH (E, H) GFP-TrAP-INCENPN-half SAH (F, I) GFP-TrAP-INCENPDouble 

SAH. (G-I) Representative line profile across paired kinetochores. INCENP is shown in green, 
CENP-T or HEC1 in red. Scale bar, 5 µm. Yellow arrows point to the pool of GFP-TrAP-

INCENPDouble SAH on mitotic spindle close to centrosomes. Phosphorylation status of Histone H3 
Ser28 (inner centromere) (J) or Dsn1 (outer kinetochore) (K) were quantified in 18-20 cells each 
at prometaphase. p values were calculated based on Student t-test with unpaired variants.  
 
 
Figure 7. Model for INCENP action.  
 (A) Outer and inner kinetochore proteins are heavily phosphorylated when tension from mitotic 
spindle is OFF. When bipolar attachment of microtubules to kinetochore is established, the 
centromere is stretched and outer kinetochore proteins are less phosphorylated.  
(B) INCENP, Borealin, Survivin and Aurora B form the CPC.  The INCENP SAH domain 
consists of 213 amino acids. The N-terminal half of the INCENP SAH domain binds to 
microtubules.  
(C) The CPC phosphorylates inner/outer kinetochore proteins. The N-terminus of INCENP, 
associated with Borealin and Survivin tethers the CPC to the inner centromere. Microtubule 
binding activity within the INCENP SAH domain directs the Aurora B towards substrates near 
microtubules (MT). Flexibility within the SAH domain allows Aurora B to follow substrates on 
dynamic MT while protecting the integrity of the CPC complex. Aurora B can not reach its outer 
kinetochore substrates when tension is fully ON. 
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