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Abstract 

Dispersal is a critical driver of gene flow, with important consequences for population genetic 

structure, social interactions and other biological processes. Limited dispersal may result in kin-

structured populations in which kin selection may operate, but it may also increase the risk of kin 

competition and inbreeding. Here, we use a combination of long-term field data and molecular 

genetics to examine dispersal patterns and their consequences for the population genetics of a highly 

social bird, the sociable weaver (Philetairus socius), which exhibits cooperation at various levels of 

sociality from nuclear family groups to its unique communal nests. Using 20 years of data, involving 

capture of 6508 birds and 3151 recaptures at 48 colonies, we found that both sexes exhibit philopatry 

and that any dispersal occurs over relatively short distances. Dispersal is female-biased, with females 

dispersing earlier, further, and to less closely related destination colonies than males. Genotyping data 

from 30 colonies showed that this pattern of dispersal is reflected by fine-scale genetic structure for 

both sexes, revealed by isolation by distance in terms of genetic relatedness and significant genetic 

variance among colonies. Both relationships were stronger among males than females. Crucially, 

significant relatedness extended beyond the level of the colony for both sexes. Such fine-scale 

population genetic structure may have played an important role in the evolution of cooperative 

behaviour in this species, but it may also result in a significant inbreeding risk, against which female-

biased dispersal alone is unlikely to be an effective strategy. 

 

Introduction 

The genetic structure of populations (i.e. the frequency and distribution of alleles and genotypes) is a 

fundamental demographic characteristic that influences many biological processes, including local 

adaptation (Winker et al. 2013; Papadopulos et al. 2014), life-history decisions (Postma & van 

Noordwijk 2005), inbreeding risk (Keller & Waller 2002), and the evolution of sociality via kin 

selection (Hamilton 1964; Hewitt & Butlin 1997; Bourke 2014). The genetic structure of a population 

describes patterns of isolation that may emerge through the existence of physical barriers (Watts et al. 

2007; Frantz et al. 2010; Edelaar et al. 2012), and/or of behavioural traits, such as natal philopatry or 

territoriality (Sugg et al. 1996; Woxvold et al. 2006; Lee et al. 2010; Leslie et al. 2015) that limit 
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gene flow between groups of organisms. In highly mobile animals, such as birds, gene flow within 

populations is generally expected to be high, with genetic structure most likely to be observed at a 

landscape scale, i.e. between populations (Avise 1996; Van Treuren et al. 1999). However, 

demographic patterns associated with certain social systems, for instance coloniality or cooperative 

breeding in social vertebrates, may lead to or result from genetic structure at a much finer spatial 

scale, which is apparent at the level of discrete social groups or across territories (Emlen 1997; 

Hatchwell 2009).  

 

Many social animals live in kin-based groups, and such fine-scale spatial genetic structure has 

far-reaching consequences in terms of its effect on the behaviour and fitness of individuals 

(Cornwallis et al. 2009; Hatchwell 2010). Although a number of hypotheses have been proposed to 

explain the evolution of cooperative breeding that do not require cooperation among kin, including 

pay-to-stay (Gaston 1978) and group augmentation (Kokko et al. 2001), high relatedness among 

individuals is likely to be a critical factor in the evolution of cooperative breeding, because kin-

selected helping can evolve only when individuals have the opportunity to interact with kin. Indeed, 

population viscosity leading to the emergence of kin-structured populations is usually a precursor to 

the evolution of cooperation via kin selection (Hamilton 1964; Dickinson & Hatchwell 2004).  

 

The demographic and behavioural processes that operate at a range of spatial scales to 

generate the genetic structure observed in diverse social systems are, however, still not fully 

understood (Hatchwell 2009; García-Navas et al. 2014). For example, although kin-selected 

cooperation has often evolved within discrete family groups that form through delayed dispersal, kin-

directed cooperation has also evolved within ‘kin neighbourhoods’ (Dickinson & Hatchwell 2004), 

where natal dispersal over a limited distance precedes cooperative interactions among kin (e.g. 

Dickinson et al. 1996; Painter et al. 2000; Woxvold et al. 2006). Moreover, even when dispersal 

outside the natal area does occur, kin associations may be retained via the coordinated dispersal of 

family members to the same destination (Heinsohn et al. 2000; Sharp et al. 2008; Wang & Lu 2014). 

Finally, other demographic processes, such as strongly skewed reproductive success, may influence 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

the kin structure of populations by reducing effective population size (Lehmann & Balloux 2007; 

Lehmann & Rousset 2010). Another example of such demographic processes is predation acting on 

entire broods, rather than on individuals, which may increase the kin structure of adult populations, 

potentially influencing kin-selected cooperation (Beckerman et al. 2011). 

 

Genetically structured populations that result in long-term associations with kin are clearly 

important in the evolution of cooperative breeding systems, but such structure is more widespread 

than cooperative breeding alone, at least among birds (Covas & Griesser 2007). Indeed, there are 

several potential benefits of interacting with kin in contexts other than cooperative breeding, including 

cooperative investment in public goods, communal defence, and mate attraction (Krams et al. 2008; 

Díaz-Muñoz et al. 2014; van Dijk et al. 2014), that have received little attention in vertebrates 

(Hatchwell 2010). On the other hand, interactions among kin may be costly if they result in kin 

competition for resources or mates (Taylor 1992; West et al. 2002; Lehmann & Rousset 2010) or 

increase the likelihood of inbreeding (Keller & Waller 2002; Koenig & Haydock 2004). These costs 

may be mitigated by sex-biased dispersal strategies that reduce the chance of competing or mating 

with relatives (Greenwood 1980; Johnson & Gaines 1990) or by kin recognition mechanisms that 

reduce the risk of kin competition or inbreeding (Komdeur & Hatchwell 1999). However, the 

relationship between sex-biased dispersal and social behaviours is not clear (Mabry et al. 2013), 

partly as a consequence of the difficulty of studying the dispersal of marked individuals in finite 

natural populations (Koenig et al. 1996). 

 

Here, we use a combination of molecular genetics and field observations to investigate 

dispersal behaviour and population genetic structure in a long-term study of sociable weavers 

(Philetairus socius). Sociable weavers have a social organisation that is unique among birds. They 

construct massive communal nests that may house hundreds of birds and last for decades (Maclean 

1973a). Nests are occupied throughout the year, buffering environmental extremes and providing 

support for the nest chambers of breeding groups (van Dijk et al. 2013). Previous studies have shown 

that sociable weavers are cooperative breeders, with some pairs being assisted by non-breeding 
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helpers that are usually male relatives of the breeders they help and that may gain indirect fitness 

benefits by assisting kin (Doutrelant et al. 2011; Covas et al. 2006). Furthermore, cooperative 

investment in the communal structure of a colony is kin-directed (van Dijk et al. 2014). These kin-

directed cooperative behaviours are expected to be related to genetic structure, and it was previously 

found that there is fine-scale kin structure among males within colonies (Covas et al. 2006) and 

limited dispersal of individuals between colonies (Altwegg et al. 2014). However, little is known 

about the demographic processes that maintain this structure or the consequences of dispersal for 

genetic patterns at different spatial scales.  

 

First, we describe the pattern of dispersal in relation to the age and sex of birds, expecting 

delayed, female-biased dispersal as typically found in cooperatively breeding species (Doutrelant et 

al. 2004; Ekman et al. 2004). Second, we address the hypothesis that the function of dispersal is to 

reduce the risk of inbreeding. We therefore investigate whether dispersing females were less related to 

members of their destination colony than they were to their original colony. In contrast, males are 

predicted to benefit more than females from being among kin, because their access to breeding and 

roosting chambers, their social interactions and their contribution to communal nest construction 

appear to be driven by kin-associations (van Dijk et al. 2014), and helpers of parents are usually male 

relatives (Doutrelant et al. 2004; Covas et al. 2006). Males were thus expected to be less likely to 

disperse and to disperse over a shorter distance than females. Third, we investigate whether these 

patterns of dispersal were reflected in population genetic structure, predicting that limited dispersal by 

either sex would be associated with patterns of isolation by distance and genetic differentiation among 

colonies. Such patterns were expected to be stronger for males than for females if dispersal is female-

biased. Finally, we discuss how the dispersal behaviour of males and females and patterns of 

relatedness within and between colonies are related to cooperative behaviour and inbreeding risk.  
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Materials and Methods 

Study area and field methods 

The sociable weaver is a colonial, cooperatively breeding passerine endemic to the semi-arid Acacia 

savannahs of southern Africa that are associated with the Kalahari ecosystem (Maclean 1973a; 

Spottiswoode 2005). These socially and genetically monogamous weavers live in huge, colonial nests 

varying in size from five to over 300 individuals that are built communally by the colony members 

(Covas et al. 2006). We studied sociable weavers at Benfontein, Kimberley, South Africa (28°52ƍS, 

24°50ƍE), at 48 different colonies between 1993 and 2013. This study area covers approximately 15 

km
2
. GPS-coordinates were taken for each colony (n = 48) and a Cartesian two-coordinate system 

(UTM) was used to describe distance between colonies. Some colonies were abandoned (and 

sometimes subsequently re-occupied) or, more rarely, physically collapsed during the period of our 

study, partly explaining the variable number of colonies between years and analyses. Adults were 

captured at 6 – 30 colonies annually (except 2006 when only nestlings were ringed and 2007 when no 

birds were ringed), outside the breeding season at sunrise using mist-nets and were ringed with a 

numbered aluminium ring (6508 adult and juvenile birds in total) and, from 1999 (except 2007 and 

2009), three colour rings for individual recognition in the field. Altwegg et al. (2014) found that 

capture of sociable weavers might have contributed to the observed decline in population size over 17 

years of study (capture accounted for 7.1% of variance in survival), but that the estimated effect of 

researchers’ disturbance on movement between colonies appeared to be minimal. From 1998 (except 

2007 and 2009), at most nests juveniles and nestlings were ringed with a numbered aluminium ring 

and a combination of three colour rings. In addition, the population has been subject to several small-

scale experimental treatments, including nest protection against predation by snakes, food 

provisioning and within-colony brood switches (Covas et al. 2004; Spottiswoode 2009; Paquet et al. 

2015a; Rat et al. 2015). However, the population genetic structure we describe here is unlikely to be 

affected by these experiments because the number of individuals included in these experiments is very 

small relative to the number of individuals used in our analyses. Additionally, these experiments were 

largely carried out after 2010, so analyses that used data from 2010 only were not affected.  

 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

Estimates of dispersal based on recapture of ringed birds 

Male and female dispersal was estimated based on our long-term dataset of individuals captured and 

ringed between 1993 and 2013. Dispersal was defined as an individual recaptured at a different 

colony from where it was first captured or was known to have hatched. Dispersal frequency was 

estimated by dividing the number of birds that dispersed by the total number of birds initially ringed 

or subsequently recaptured. This dataset also allowed us to assess the age of individuals if they were 

ringed as a nestling or juvenile, or to estimate the minimum age if birds were first caught as adults. It 

is a common feature of cooperatively breeding species that individuals often disperse only as adults 

when breeding opportunities arise elsewhere (Ekman et al. 2004). However, here, we combine adults 

and juveniles in our analyses of dispersal because dispersal between colonies in sociable weavers may 

occur at any time after the first four months in an individual’s lifetime, i.e. there is no single age 

group that disperses (see Results). In particular, it is important to note that inter-colony dispersal is 

not a prerequisite for reproduction because many birds recruit as breeders within their natal colony 

(Covas et al. 2002). Captured individuals with incomplete development of their black plumage throat 

patch were classified as juveniles (< 1 year-old, n = 78) because the black bib is fully developed only 

four months after fledging (Maclean 1973b). These birds were assumed to have hatched in the colony 

at which they were captured, because dispersal during the first four months of an individual’s life was 

never observed during eight years of intense monitoring of colonies (RC, M. Paquet, CD & L. Broom, 

unpublished data).  

 

Genetic analyses 

Because our population is not closed, a pedigree is inevitably incomplete and the use of molecular 

markers to estimate relatedness and population genetic structure is essential. Recent evidence shows 

that molecular estimates are robust to severe reductions in genetic diversity and the limitations of 

using molecular marker-based relatedness estimates might not be so severe as previously thought 

(Robinson et al. 2013). Therefore, during capture, a small blood sample (ca. 50 ȝl) was collected by 

puncture of the brachial vein using a sterile needle and heparinised capillary tube, and was preserved 

in 1 ml of absolute ethanol. Genomic DNA was extracted from blood samples collected from 2004 
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onwards. Because sociable weavers are sexually monomorphic, sex was determined molecularly using 

the P2-P8 sex-typing primers (Griffiths et al. 1998). For further details on molecular genetic analyses 

see van Dijk et al. (2014). 

 

To assess the genetic structure of our population, including patterns of isolation by distance, 

we performed spatial autocorrelation analyses, i.e. regression analyses of Queller and Goodnight’s 

(1989) rQG estimate of pairwise genetic relatedness between pairs of individuals as a function of 

geographic distance, using SPAGeDi v. 1.4 (Hardy & Vekemans 2002). The natural logarithm (ln) of 

distance was used in these analyses. Additionally, we used the microsatellite allele size-based estimate 

of genetic differentiation RST (Slatkin 1995), as calculated in SPAGeDi, to describe the population 

genetic structure among individuals across colonies and within colonies in separate spatial 

autocorrelation analyses. We observed regular gene flow within our geographically restricted 

population of this relatively long-lived species (sociable weavers may live up to 16 years; Covas 

2012), so that mutation rates are likely to be outweighed by gene flow and thus unlikely to influence 

RST estimates (Balloux & Lugon-Moulin 2002). Although we focus on RST-values, we follow the 

suggestion of Balloux and Lugon-Moulin (2002) and also analyse patterns of genetic differentiation 

using FST-values (Weir & Cockerham 1984). Values of pairwise RST (or FST), used to compare genetic 

diversity within and among colonies, were provided as RST / (1–RST) ratios (Rousset 1997).  

 

Our population of sociable weavers consists of spatially, genetically and socially distinct 

colonies (Covas et al. 2006; van Dijk et al. 2014), which have previously been described as having 

meta-population characteristics (Marsden 1999; Altwegg et al. 2014), thereby providing a clear, a 

priori subdivision of our population. Additionally, although dispersal does occur, it takes place within 

a geographically restricted, environmentally homogeneous population, so that environmental 

gradients and ecology, other than social effects such as colony size, are unlikely to influence the 

population genetic structure in our study (Orsini et al. 2013). Furthermore, temporal sampling effects 

may arise because allele frequencies and, thus, the genetic composition of colonies and the population 

may vary over time due to demographic processes such as dispersal, mortality and recruitment 
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(Balloux & Lugon-Moulin 2002; Liebgold et al. 2013). We therefore also performed our spatial 

analyses of genetic structuring of our population within one ‘snapshot’ year (2010) in addition to our 

analyses based on all genotyped individuals (n = 1846 adults). We chose 2010 because this was the 

year with the largest number of individuals trapped and genotyped (n = 646 genotyped adults out of 

697 captured in total at 23 colonies; mean ± SD number of individuals captured at colonies across 

years from 2004 onwards = 535.4 ± 183.0). Finally, we restricted our spatial autocorrelation analyses 

of relatedness and genetic differentiation for data originating from multiple years to females older 

than three years and males and individuals of unknown sex of more than four years of age (see 

Goudet et al. 2002; Fig. 1). The great majority of birds within these age classes are likely to be 

independent breeders because the mean ± SD age of male helpers at our study site is just 1.2 ± 0.4 

years, while females only help as yearlings (Doutrelant et al. 2011). For our analyses concerning the 

population in 2010, we did not enforce this restriction, because the sample size from that single year is 

not large enough to allow meaningful analyses after such a restriction. Genetic relatedness and 

differentiation estimates were calculated with reference to genotypes from the entire population 

caught between 1993 and 2013 or, for the analyses of data from within one year, with reference to the 

population in 2010. We included only adults in our analyses of population genetic structure, which 

were assigned to the colony where they were trapped and sampled for blood as an adult. If a blood 

sample was taken from an individual as a nestling or juvenile, they were assigned membership of the 

colony where they were first observed as an adult.  

 

Statistical analysis 

Non-parametric tests were used to analyse dispersal frequency and dispersal distance and whether 

these depend on the sex or the age of the disperser or on the distribution of colonies, because neither 

dispersal frequency or dispersal distance were normally distributed. To test whether relatedness of 

dispersers to the rest of the colony was associated with dispersal, we focussed on the first dispersal 

event per individual only (most individuals dispersed only once). We calculated the difference 

between mean relatedness of the dispersing individual to the rest of the colony, and the mean 

relatedness of the entire colony. We did not use a mixed-model approach for these analyses with 
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colony and individual identity as random factors, due to non-normality and heteroscedasticity of 

residuals from these models. 

Analyses were performed at the level of individuals (rQG) and spatially discrete groups (RST 

and FST). Statistical significance of mean observed rQG-values, global RST-values, and global FST-

values within colonies, and significance of the regression slope ȕ of pairwise statistics on ln(distance) 

between colonies, was assessed using 10000 permutations of individuals among spatial positions. To 

test for an effect of the sex difference in dispersal strategies on fine-scale population genetic structure, 

we performed our spatial autocorrelation analyses of relatedness and genetic differentiation for males 

and females separately, with individuals permuted among spatial locations. To account for a potential 

clustering effect of nearby colonies, spatial analyses were also performed using 10 specified classes of 

equal distance (500 m) from the same colony (0 m) to the most distant colony (5000 m). Colonies 

were classified to each of these 10 distance intervals depending on the distance between each colony 

and the focal colony, and average relatedness and genetic differentiation estimates were then 

calculated for each set of predefined distance intervals. 500 m was chosen to generate enough 

variation in genetic structuring while maintaining a sufficiently large sample size of colonies to ensure 

meaningful analyses. It also ensured that the median distance of dispersal was larger than each 

distance class. We used a jackknife procedure over loci to estimate standard errors of genetic 

relatedness and differentiation estimates and of the slopes of their regression over ln(distance). All 

tests were two-tailed. 

 

Results 

Dispersal frequency and distance 

In total, 491 birds were known to have dispersed at least once from the colony of first capture. This 

represented 7.5% (n = 6508) of all juvenile and adult birds that were ringed, and 15.6% (n = 3151) of 

all birds that were recaptured at least once. Of the dispersing birds that were of known sex (n = 231), 

34.2% were males and 65.8% were females (binomial test: P < 0.001). Thus there was a significant 

female bias in dispersal because the sex ratio of neither adults (52.2% were males; binomial test: P = 
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0.087, n = 1579) nor juveniles (53.4%; P = 0.067, n = 743) was different from parity in our study 

population (see also Doutrelant et al. 2004).  

 

The median age at which males of known age moved to a different colony (n = 21 dispersing 

males of known age) for the first time was four years (inter-quartile range, IQR: 2–6, range: 1–12), 

whereas for females (n = 51) the median age was three years (IQR: 2–4, range: 1–8; Kruskal-Wallis 

rank-sum test: Ȥ2
 = 3.515, df = 1, P = 0.061). Including all individuals of known age (n = 152, 

including individuals of unknown sex) and all repeated observations of individuals that dispersed 

more than once (n = 23 individuals), the median age of dispersal was three (Fig. 1; medianmale = 4, 

medianfemale = 3).  

 

Birds that dispersed between colonies did so on average 1.17 ± 0.42 times (mean ± SD; range: 

1–4, with 73 out of 491 birds dispersing twice, two three times and two four times), but among 

dispersing birds of known sex, there was no significant sex difference in the frequency of dispersal 

(Wilcoxon rank-sum test: W = 4425, P = 0.986, n = 199), with dispersing males moving on average 

1.04 ± 0.21 (range 1–2) times and dispersing females 1.05 ± 0.21 (range 1–2) times. The distance for 

the second recorded dispersal event of those birds that dispersed at least twice was not different from 

that of their first move (W = 3022, P = 0.937, n = 77). 

 

Considering all dispersal events, the median distance between the colony of origin and the 

destination colony was 721.9 m (IQR: 460.9–1019.7 m), with females (751.2 m, 530.8–1174.0 m, n = 

182) dispersing further than males (641.5 m, 413.2–992.8 m, n = 96; W = 7401, P = 0.036, n = 278; 

Fig. 2 & 3). Dispersal distances must be determined in part by the distribution of other colonies (Fig. 

3d), but the minimal distance between neighbouring colonies was just 215.8 m ± 133.4, so birds did 

not simply move to the nearest available colony (Fig. 4). The distance to the chosen colony was 

greater than the distance to the nearest colony (W = 295858.5, P < 0.001, n = 566 dispersal events) 

when all dispersal events were considered, and this was true for both males (W = 8248.5, P < 0.001, n 
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= 96) and females (W = 31034.5, P < 0.001, n = 182) in the subset of dispersers of known sex. 

Considering all dispersal events, dispersal distance decreased with age (Ȥ2 = 36.275, df = 21, P = 

0.020, n = 491), but when we ran separate analyses for each sex, we found no effect of age on 

dispersal distance in either males (P = 0.158, n = 79), or females (P = 0.293, n = 152).  

 

Dispersal and relatedness 

Each individual was genotyped using 17 polymorphic microsatellite markers (multilocus averages 

across all genotyped individuals (n = 1846) and all colonies where individual genotypes were 

obtained (n = 33): 12.00 alleles, 4.07 effective alleles (Nielsen et al. 2003), allelic richness = 9.23, 

gene diversity corrected for sample size = 0.717, and individual inbreeding coefficient Fi = 0.020). 

None of these markers showed significant deviations from Hardy-Weinberg equilibrium or showed 

significant linkage disequilibrium after false-discovery-rate correction (van Dijk et al. 2014). In total, 

163 alleles were detected. Heterozygotes were observed for males and females at all 17 loci, 

indicating they were autosomal in sociable weavers.  

 

We investigated whether the decision of individuals to disperse from a colony was associated 

with their relatedness to other colony members. The mean relatedness of dispersers to the rest of their 

original colony, i.e. the colony they were first found in, did not differ significantly from the mean 

relatedness among all members of their original colony (Table 1a), showing that dispersers were 

randomly drawn from the original colony with respect to relatedness. In contrast, as expected, the 

mean relatedness of dispersers to the rest of their destination colony was significantly lower than 

mean relatedness among all members of their destination colony (Table 1a). Similarly, the relatedness 

of a disperser to members of its destination colony was lower than its relatedness to members of its 

original colony (Table 1a), showing that dispersers had a reduced chance of encountering relatives at 

their destination colonies.  
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When we ran separate analyses for each sex, we found qualitatively similar results for 

females, but not for males. In females, the difference between relatedness of dispersing females to 

their original colony and that among all members of the females’ original colony was not different 

from zero (Table 1b). However, at the destination colony, the relatedness of dispersing females to 

other colony members was significantly lower than the relatedness among other colony members 

(Table 1b). For males, however, neither was different from zero (Table 1c). The relatedness of neither 

female (Table 1b) nor male (Table 1c) dispersers to members of their destination colony differed from 

their relatedness to members of their original colony. Critically, however, the relatedness of females 

to males at their original colony was significantly higher than that to males at their destination colony 

(Table 1d), whereas the relatedness of males to females at their original colony was not significantly 

different from that to females at their destination colony (Table 1d). 

 

 Overall, our results concerning individual dispersal by sociable weavers indicate male-biased 

philopatry, with females dispersing more often and greater distances than males and tending to 

disperse at an earlier age. Our results on the relatedness between dispersing birds and the rest of their 

original and destination colony indicate that these dispersal decisions by females, but not males, result 

in lower relatedness with potential mates.  

 

Spatial analyses of relatedness 

Mean colony-level relatedness, rQG, was 0.026 ± 0.004 SE, which is similar to the value we reported 

previously for a subset of colonies in this population (0.032 ± 0.175 SD; van Dijk et al. 2014) and 

significantly higher than expected by chance under a null model of random association within the 

population among all individuals, among males, among females, and among males and females (Table 

2).  

The maximum distance between the 33 colonies containing genotyped individuals in our 

study population was 4872 m (mean ± SD = 1879 m ± 1079). We found strong support for isolation 

by distance, with pairwise relatedness decreasing with geographic distance between colonies across 

all categories of birds (Table 2).  When we restricted these analyses to relatedness estimates from 
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2010 only, using birds of all age classes, including juveniles and young birds that had remained with 

their parents as helpers, our main results remained unchanged, except for pairwise individual 

relatedness between colonies for males, which did not decrease with distance (see Supporting 

Information).  

 

When we performed spatial analyses of all genotyped females that were more than three year-

old and all males that were more than four year-old plus birds of unknown sex (i.e. restricting the 

analysis to likely breeders) using 10 predefined classes of equal distance, we found that pairwise 

relatedness among all individuals was significantly higher than expected (based on permuted pairwise 

relatedness) among colonies up to 500 m distance, with a near-significant level of relatedness among 

individuals in colonies within a 1000 m radius. Beyond 1000 m, pairwise relatedness did not differ 

from that expected by chance (Fig. 5a). The spatial pattern for male-male relatedness showed that 

males within or among nearby colonies exhibited a higher relatedness than expected by chance, but 

such pairwise relatedness did not extend to ≥ 500 m (Fig. 5b). For females, however, we found a 

higher than expected relatedness among colonies within a 500 m radius, but not beyond (Fig. 5c). 

Finally, and importantly in terms of potential inbreeding risk, we found that the dyadic relatedness 

between males and females was significantly higher than expected by chance within a radius of 1000 

m. At a radius of 3000 m and 4000 m, pairwise relatedness was marginally lower than expected (Fig. 

5d). 

 

Spatial analyses of genetic differentiation 

Isolation by distance can lead to significant genetic differentiation (Frantz et al. 2009), and our 

analyses of global RST supported our finding of genetic structuring among colonies (Table 3). Global 

RST among 30 colonies was 0.021 ± 0.016 (P = 0.025, n = 396 birds), indicating that small but 

significant genetic variance within the population existed between colonies at a small spatial scale of 

≤ 4872 m. This genetic differentiation was significant among males and between males and females, 

but showed only a non-significant trend among females (Table 3). However, our estimates of genetic 

differentiation were not related to the degree of geographic separation between colonies for all 
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individuals, or among different combinations of males and females (Table 3). These results indicate 

that high philopatry with limited within-population gene flow has led to fine-scale population genetic 

structuring.  

 

Despite the positive genetic structure that we found in terms of relatedness up to a distance of 

1000 m between colonies (Fig. 5), when we defined ten equal distance intervals of 500 m, we found 

that pairwise genetic differentiation among groups of individuals was not significantly different from 

what is expected by chance at any distance interval (all P > 0.119). These results suggest that allelic 

diversity is maintained through regular dispersal between colonies.  

 

We found qualitatively largely consistent results within our subset of data from 2010 (which 

was analysed separately to account for potential temporal sampling effects) and for analyses of FST-

values, except that FST-values were negatively associated with geographic distance among all 

individuals (see Supporting Information). 

 

Discussion 

Sociable weavers live year-round and breed in large and permanent communal nests that may house 

tens to hundreds of individuals. We have used a combination of long-term capture data and population 

genetic analyses to investigate sex- and age-specific patterns of dispersal and their consequences for 

kin structure and genetic differentiation in this highly unusual social system. Our key findings are 

that: (i) male and female sociable weavers exhibit high levels of philopatry to their natal colony, with 

only 7.5% of all ringed birds and 15.6% of recaptured birds being observed to disperse to another 

colony; (ii) dispersal is female-biased, with females dispersing earlier and further than males; and (iii) 

these dispersal patterns are reflected in population genetic structure with isolation by distance in 

estimated relatedness and genetic differentiation among colonies, with both relationships being 

stronger among males than females.  
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The low dispersal estimates found here agree with previous studies that found low movement 

between colonies (Covas et al. 2002; Altwegg et al. 2014), confirming that sociable weavers are 

highly philopatric. However, as with any study on open populations, it is likely that these figures 

exclude birds that moved within the study area but were not recaptured and birds that dispersed away 

from the study area. Nonetheless, given the high number of colonies used in this study and the high 

recapture effort, it can be expected that a large proportion of the birds that moved were recaptured, 

and hence the low dispersal pattern described here is likely to provide a good indication of movement 

in this population. 

 

Dispersal in sociable weavers, when it happens, is delayed relative to that of many other small 

passerine species, where it usually occurs during the first non-breeding season following fledging 

(Greenwood & Harvey 1982). Delayed dispersal is a widespread demographic trait among 

cooperative breeders (Ekman et al. 2004), resulting in the opportunity for helpers to gain direct and/or 

indirect fitness benefits by assisting breeders in subsequent breeding attempts (Cockburn 1998; 

Dickinson & Hatchwell 2004). However, with only 7.5% – 15.6% of birds known to have dispersed 

and > 60% of birds known to become a breeder in their natal colony (Covas et al. 2002), the 

frequency of dispersal exhibited by sociable weavers appears much lower than that observed for many 

other cooperatively breeding birds, where the majority of birds, especially females, usually disperse 

from their natal territory. For example, five studies of dispersal each on a different cooperatively 

breeding species have found dispersal to be up to 85% for males and to range from 54% to 100% for 

females (Blackmore et al. 2011; Sankamethawee et al. 2010; Temple et al. 2006; Double et al. 2005; 

Harrison et al. 2014). It is important to note, however, that in all the cases described above, dispersal 

entails movement away from the natal group, while in sociable weavers we have described dispersal 

as movement between colonies. The dispersal frequency we found is more similar to another colonial, 

but non-cooperatively breeding bird, the cliff swallow (Petrochelidon pyrrhonota), where 18.3% of 

males and 19.8% of females disperse to a non-natal colony (Brown & Brown 1992). The distinction 

between dispersal away from the natal group and dispersal between colonies is important, because in 

many cooperatively breeding species, dispersal from the natal group is often a prerequisite for 
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reproduction to avoid inbreeding (Koenig & Haydock 2004) or to find a breeding vacancy (Emlen 

1982). By contrast, in sociable weavers males and females may recruit as breeders within their natal 

colony, effectively dispersing from their natal group, but remaining within the colony. Thus, a colony 

of sociable weavers can be likened to the ‘kin neighbourhoods’ exhibited by a minority of 

cooperatively breeding species where, rather than existing in discrete family group, neighbours are 

closely related to each other as a consequence of limited natal dispersal, e.g. western bluebirds (Sialia 

mexicana; Dickinson et al. 2014), long-tailed tits (Aegithalos caudatus; Hatchwell et al. 2004) and 

rifleman (Acanthisitta chloris; Preston et al. 2013).   

 

Sociable weavers’ age of dispersal is around four years for males and three years for females. 

This estimated dispersal age might have been biased slightly upwards because some dispersers would 

not be found immediately after dispersal. Nevertheless, the estimated age at which sociable weavers 

were most likely to disperse generally coincides with the age at which they are expected to start 

breeding, i.e. three years for males and two years for females (Covas et al. 2004; RC, unpublished 

data). Once they start breeding, pairs of sociable weavers usually stay together for multiple years 

(Paquet et al. 2015b), so dispersal would be expected to occur prior to initial pair formation, as 

observed. This interpretation is supported by our finding that the relatedness of dispersers to the 

members of their destination colony was lower than to members of their original colony, especially 

when comparing the relatedness of dispersing females to male colony members. This again suggests 

that dispersal, at least in females, is related to finding a mate or breeding opportunity. This 

explanation might be less likely to account for the occasional dispersal of much older birds, for 

example, some > 7-year old birds (Fig. 1; 6 males and 4 females). Although we have no indication 

that dispersal of these birds was driven by the physical collapse of colonies (e.g. the branch 

supporting the nest falling down), such older birds may have lost their mate or close relatives in the 

colony, providing an incentive for dispersal. Other factors, such as food depletion or repeated nest 

failure due to predation (Marsden 1999, Brown et al. 2003), might drive such dispersal events by 

established breeders. In particular, nest predation by snakes is extremely high (an average of 70%, but 
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over 90% in some colonies; Covas et al. 2008) and anecdotal evidence indicates that weavers may 

abandon colonies after long periods of repeated nest failure (RC & CD unpublished data). 

 

Colony size of both the original and the destination colony may also be an important driver of 

dispersal, because it is likely to influence the availability of mates and other resources, such as food 

and nest chambers, as well as the level of competition between individuals for such resources. A 

previous study on the same population showed, consistent with our results, that sociable weavers 

disperse more often to nearby colonies than to colonies that are further away (Altwegg et al. 2014). 

Moreover, Altwegg et al. (2014) also showed that not just colony size per se, but trends of colony size 

(increasing or declining) at both colonies of origin and destination influence dispersal decisions in 

sociable weavers. Colony sizes and trends in colony size, however, are highly variable among the 

years included in our study and are thus unlikely to have influenced our results in a consistent manner.  

 

The dispersal patterns that we have described would be expected to generate fine-scale 

population genetic structure. At a population level, we found that genetic relatedness did indeed 

decrease significantly with geographic distance between colonies, such that related individuals (r > 0) 

were clustered within and among colonies that are near each other. Although subtle, we found an 

important difference between males and females in such isolation by distance, which matched the 

observed sex difference in dispersal. Previous studies had described females-biased dispersal in this 

species (Doutrelant et al. 2004) and the resulting genetic structure at the colony level (Covas et al. 

2006; van Dijk et al. 2014). Here, by analysing dispersal and genetic patterns on a larger number of 

colonies and investigating spatial effects, we found that relatedness among females, and, crucially, 

between males and females, was significant among colonies within a larger radius (≤ 1000 m) than 

was relatedness among males (< 500 m), reflecting female-biased dispersal.  

 

Such within- and between-colony relatedness in sociable weavers generates within-population 

kin neighbourhoods and an opportunity for kin selection to operate. This is likely to have important 

consequences for a range of cooperative behaviours including cooperative breeding, which is largely 
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directed towards kin within nuclear families (Covas et al. 2006), communal nest-building behaviour 

(van Dijk et al. 2014), and potentially other ‘cryptic’ kin-directed behaviours (Hatchwell 2010). Here 

we have shown that significant levels of relatedness extend between colonies that are near each other, 

which could also influence social dynamics among near-neighbours (Temple et al. 2006; Kurvers et 

al. 2014). For example, neighbouring colonies occasionally forage or move together (REvD & RC 

unpublished data), creating opportunities for kin-directed alarm calls or nepotistic resource sharing 

among relatives from these colonies. 

 

Such spatial clustering of relatives also has important consequences in terms of mate choice. 

Firstly, spatially clustered kinship generates a risk of potentially deleterious inbreeding (Keller & 

Waller 2002; Blyton et al. 2015). Previous studies on cooperatively breeding birds have shown that 

dispersal by either both sexes or, more commonly, by females can be an efficient mechanism to avoid 

inbreeding (Walters et al. 2004; Blackmore et al. 2011; Nelson-Flower et al. 2012). Pied babblers 

(Turdoides bicolor), for example, disperse twice as far from natal groups as from non-natal groups, 

thus moving outside the range within which an inbreeding risk exists (Nelson-Flower et al. 2012). We 

found that although dispersal is female-biased, thereby reducing the risk of inbreeding (Greenwood 

1980; Johnson & Gaines 1990; Lebigre et al. 2010; Clutton-Brock & Lukas 2012), most females 

remain in their natal colony and even females that do disperse do not move far and so are likely to 

encounter related individuals at their destination colonies. The risk of incestuous pairings actually 

occurring will depend on the rules governing mate choice and on the costs of inbreeding (Keller & 

Waller 2002). Moreover, in addition to sex-biased dispersal, there may be active discrimination 

against kin as mates via kin recognition (Komdeur & Hatchwell 1999). Consistent with the possibility 

that kin recognition mechanisms may serve to reduce inbreeding risk, a previous study found that 

paired males and females were not significantly related to each other (Covas et al. 2006). Future 

studies will need to quantify the incidence of inbreeding relative to the risk of choosing a related 

partner under alternative mate choice rules.  
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Secondly, as predicted by the optimal inbreeding or kin selection model, spatial clustering of 

kin facilitates mating with relatives, by which individuals may increase their inclusive fitness (Parker 

1979; Lehmann & Perrin 2003; Kempenaers 2007). Any inbreeding costs (Szulkin et al. 2013) could 

be outweighed by potential fitness benefits of mating with (distant) relatives, such as enhanced 

breeding success and recruitment (Nelson-Flower et al. 2012; García-Navas et al. 2014), and through 

local adaptation to selection pressures such as predation, parasitism, or food availability. Previous 

studies on our study population of sociable weavers reported phenotypic sorting among colonies 

(Spottiswoode 2007), and suggested that fine-scale life-history variation between colonies might be 

adaptive (Spottiswoode 2009). Such structuring of fine-scale life-history and phenotypic variation 

might be facilitated by the limited dispersal and the structuring of genetic variation we present here. 

 In conclusion, we have shown that spatial analysis of fine-scale population genetics closely 

matches estimated patterns of male and female dispersal within our study population of sociable 

weavers. Such demographic information is difficult and time-consuming to obtain from field 

observations, yet of fundamental relevance for an understanding of a range of important biological 

processes. We found significant fine-scale genetic structure within this population, which is likely to 

have played an influential role in the evolution of the high levels of sociality observed in sociable 

weavers and/or to have emerged as a result of selection for sociality in this species. Importantly, we 

found that the average dispersal distance is such that the pairwise relatedness among males, among 

females and between the sexes is higher than expected by chance within and among nearby colonies, 

so that in addition to the opportunity for kin selection to operate, there may be a significant risk of 

inbreeding.  
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TABLE 

 

Table 1 Mean relatedness, r, of dispersers to other colony members, concerning (a) all dispersers, (b) 

female dispersers, (c) male dispersers, and (d) male and female dispersers. Wilcoxon signed-rank (the 

V-value corresponds to the sum of ranks assigned to positive differences) and one-sample t tests were 

used to assess statistical significance with ȝ = 0. 

(a) 

 ǻr (mean ± SD) V P n 

r dispersers to original colony members versus  

r among all members of original colony 

0.001 ± 0.079 11365 0.699 212 

r dispersers to destination colony members versus  

r among all members of destination colony 

-0.024 ± 0.077 8523 <0.001 225 

r dispersers to destination colony members versus 

r dispersers to original colony 

-0.017 ± 0.116 12679 0.027 207 

 

(b) 

 ǻr (mean ± SD)  P n 

r dispersers to original colony members versus  

r among all members of original colony 

-0.006 ± 0.078 V = 2197 0.759 95 

r dispersers to destination colony members versus  

r among all members of destination colony 

-0.022 ± 0.064 t = 3.471 0.001 99 

r dispersers to destination colony members versus 

r dispersers to original colony 

-0.020 ± 0.117 V = 2497 0.110 94 

 

(c) 

 ǻr (mean ± SD)  P n 

r dispersers to original colony members versus  

r among all members of original colony 

-0.005 ± 0.074 t = 0.477 0.635 53 

r dispersers to destination colony members versus  

r among all members of destination colony 

-0.003 ± 0.077 t = 0.287 0.776 61 

r dispersers to destination colony members versus 

r dispersers to original colony 

0.021 ± 0.129 V = 554 0.221 53 

 

(d) 

 ǻr (mean ± SD) V P n 

r female dispersers to males at original colony versus 

r female dispersers to males at destination colony  

0.024 ± 0.157 2676 0.037 91 

r male dispersers to females at original colony versus  

r male dispersers to females at destination colony 

-0.035 ± 0.174 462 0.060 52 
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Table 2 Mean colony-level relatedness estimates, rQG, of sociable weavers for males and individuals 

of unknown sex aged > 4 years and females aged > 3 years. Relatedness estimates are shown among 

all individuals, within males, within females, between males and females, and the slope ȕ of the 

regression between pairwise spatial and genetic distance (ln[geographic distance] versus rQG) as a 

measure of spatial genetic structure. Statistical significance was based on two-sided tests using 10000 

permutations of spatial group locations among spatial groups. A jackknife-procedure over loci was 

used to estimate standard errors. n indicates the number of individuals with the number of colonies in 

parentheses. (*)
P < 0.10, *P < 0.05, **P < 0.01, ***P < 0.001 

 

 rQG 

 All Males Females Males/Females 

Colony 0.026 ± 0.004*** 0.054 ± 0.010*** 0.015 ± 0.005** 0.018 ± 0.005*** 

ȕ ± SE -0.008 ± 0.003*** -0.006 ± 0.004(*) -0.010 ± 0.031** -0.010 ± 0.003*** 

n  396 (30) 196 (26) 177 (28) 373 (30) 

 

 

 

Table 3 Mean genetic differentiation estimates, global RST, among colonies within a population of 

sociable weavers for males and individuals of unknown sex aged > 4 years and females aged > 3 

years. Genetic differentiation estimates are shown among all individuals, within males, within 

females, between males and females, and the slope ȕ of the regression between pairwise spatial and 

genetic distance (ln[geographic distance] versus global RST) as a measure of spatial genetic structure. 

Statistical significance was based on two-sided tests using 10000 permutations of spatial group 

locations among spatial groups. A jackknife-procedure over loci was used to estimate standard errors. 

n indicates the number of individuals with the number of colonies in parentheses. 
(
*

)
P < 0.10, *P < 

0.05, **P < 0.01, ***P < 0.001, n.s. = not significant 

 

 RST 

 All Males Females Males/Females 

Population 0.021 ± 0.016* 0.048 ± 0.011** 0.028 ± 0.020
(
*

)
 0.039 ± 0.058** 

ȕ ± SE 0.001 ± 0.004n.s. -0.006 ± 0.006n.s. -0.027 ± 0.040n.s. -0.014 ± 0.019n.s.

n 396 (30) 196 (26) 177 (28) 373 (30) 
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Fig. 1 The likelihood of dispersal against age (n = 180 dispersal events of 152 individuals of known 

age). 
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Fig. 2 Dispersal distance of males and females. Box plots indicate the median (thick line inside box), 

the interquartile range (box), the maximum and minimum values excluding outliers (dashed line from 

box), and outliers (dots).
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(a – all birds)     (b – males) 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance between colonies

P
e
rc

e
n
ta

g
e
 o

f 
d
is

p
e
rs

a
l 
e
v
e
n
ts

0
1

0
2

0
3

0
4

0
5

0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance between colonies

P
e
rc

e
n
ta

g
e
 o

f 
d
is

p
e
rs

a
l 
e
v
e
n
ts

0
1

0
2

0
3

0
4

0
5

0

 
 

(c – females)     (d) 
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Fig. 3 The percentage of dispersal events per distance class. (a) all birds, (b) males, and (c) females. 

(d) The percentage of available colonies to disperse to from each colony per distance class. The values 

on the x-axis are the maximum distances for each distance class. 
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Fig. 4 The frequency of dispersal to the 1
st
, 2

nd
, … x

th
 nearest colony to the colony of origin. (a) All 

known dispersers, (b) male dispersers, and (c) female dispersers.  
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Fig. 5 Pairwise relatedness ± SE over 11 classes of maximum distance between colonies. (a) Among 

all individuals, (b) within males, (c) within females, and (d) between males and females. Distance 

class 0 represents within-colony relatedness. Dashed lines indicate the 95% confidence intervals, and 

the dotted lines r = 0. (*)
P < 0.10, * P < 0.05, ** P < 0.01, *** P < 0.001 


