UNIVERSITYW

This is a repository copy of A comparison of a novel neural spell checker and standard
spell checking algorithms.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/884/

Article:

Hodge, V.J. orcid.org/0000-0002-2469-0224 and Austin, J. orcid.org/0000-0001-5762-8614
(2002) A comparison of a novel neural spell checker and standard spell checking
algorithms. Pattern recognition. pp. 2571-2580. ISSN 0031-3203

https://doi.org/10.1016/S0031-3203(01)00174-1

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

White Rose

university consortium
A ‘A Universities of Leeds, Sheffield & York

White Rose Consortium ePrints Repository
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Pattern Recognition. This
paper has been peer-reviewed but does not include the final publisher proof-corrections
or journal pagination.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/archive/00000884/

Citation for the published paper

Hodge, V.J. and Austin, J. (2002) A comparison of a novel neural spell checker and
standard spell checking algorithms. Pattern Recognition, 35 (11). pp. 2571-2580.

Citation for this paper
To refer to the repository paper, the following format may be used:

Hodge, V.J. and Austin, J. (2002) A comparison of a novel neural spell checker and
standard spell checking algorithms. Author manuscript available at:
http://eprints.whiterose.ac.uk/archive/00000884/ [Accessed: date].

Published in final edited form as:

Hodge, V.J. and Austin, J. (2002) A comparison of a novel neural spell checker and
standard spell checking algorithms. Pattern Recognition, 35 (11). pp. 2571-2580.

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk

A Comparison of a Novel Neural Spell Checker

and Standard Spell Checking Algorithms

Victoria J. Hodge Jim Austin
Dept. of Computer Science, Dept. of Computer Science,
University of York, UK University of York, UK

vicky@cs.york.ac.uk austin@cs.york.ac.uk

Abstract

In this paper we propose a simple and flexible spell checker using
efficient associative matching in the AURA modular neural system. Our
approach aims to provide a pre-processor for an Information Retrieval
(IR) system allowing the user’s query to be checked against a lexicon and
any spelling errors corrected, to prevent wasted searching. IR searching
is computationally intensive so if we can prevent futile searches we can
minimise computational cost. We evaluate our approach against several
commonly used spell checking techniques for memory-use, retrieval speed
and recall accuracy. The proposed methodology has low memory use, high
speed for word presence checking, reasonable speed for spell checking and

a high recall rate.

Keywords: Binary Neural Spell Checker, Associative Matching, Supervised

Learning, Accuracy, Memory Usage.

1 Introduction

Spelling errors are abundant in the queries generated by the users and can eas-
ily defeat search and retrieval operations in IR systems if not detected. An
approximate string matching algorithm is required to detect errors in users’
queries and using some measure of similarity, recommend words to the user
which are most similar to each mis-spelt query word. This error checking would
prevent futile searching for mis-spelt words which wastes both computational

processing and user time and would make the system more robust to user errors.

We describe a spell checking method that allows a presence check of a query
word against the stored lexicon, identifies any spelling errors in queries and sug-
gests alternative spellings. The system is built in the AURA modular neural
network architecture [1]. We are producing an Information Retrieval applica-
tion on the architecture and have constructed a spell checker as a front-end
processor to the developing IR system, designed to integrate with the archi-
tecture of the system. The spell checker uses an integrated hybrid approach
to overcome the four main forms of spelling errors: insertion, deletion, substi-
tution and transposition (double substitution). We use an n-gram approach
to overcome the first two errors and integrate a Hamming Distance approach
to overcome substitution and transposition errors. N-gram approaches match
small character subsets. The words are divided into character subsets and the
subsets matched. N-gram approaches are able to accommodate letter omissions
or insertions. Hamming Distance matches query words against lexicon words
by left aligning the words and matching letter position by corresponding letter
position. Hamming Distance does not work well for insertion and deletion er-
rors as the letters of the query word do not align with the letters in the correct
spelling. However, Hamming Distance matching works well for transposition

and substitutions where most characters are still aligned. Our hybrid system

can exploit the best match from either Hamming Distance or n-gram and thus

overcome all four error types.

In our IR system, the user supplies a simple query, a list of the required search
words. Each word is matched against a list of all terms present in the text
corpus (the lexicon) by the spell checker. If the word is present the user can
either elect to just query on that term or search for similar terms using the
spell checker where the terms have the same word stem as the query term but
different suffixes, e.g. {engine, engines} or {search, searches, searched}. If the
word is not present the system assumes a spelling error and the spell checker
suggests a list of alternative spellings from which the user can select any number

to use in the query.

Our string matching approach is simple and flexible. We assume the query
words and lexicon words comprise sequences of characters from a finite alpha-
bet of 30 characters (a to z and four punctuation characters). The approach
translates words to binary bit vectors by mapping characters onto specific bit
positions. The lexicon is represented by a storage-efficient binary matrix that
stores all bit vectors. The bit vector approach is not language-specific so may
be used on other languages or for example on DNA sequences. Our spell checker
aims to be memory efficient and produce swift retrieval - although memory effi-
ciency and the ability to dovetail with the IR system being produced are more
important than pure speed. It aims to have high recall' possibly at the expense
of precision?. In this paper, we just return sets of matching words with no or-
dering. Where the retrieved word sets are large we can in future implement a

scoring system to rank and filter the retrieved sets to improve precision.

IThe percentage of correct spellings retrieved.
2The percentage of words other than the correct spelling retrieved.

Some alternative approaches include the Levenshtein Edit distance [2], agrep
[3] [4], pure Hamming Distance (see section 1.4.2) and pure n-gram (see section
1.4.3). We evaluate our approach against these alternatives. The reader is re-
ferred to Kukich [2] for a thorough exposition of spell checking techniques. We
compare our method with the other methods for speed of retrieval. We compare
our system for memory use with pure n-gram and Levenshtein Edit Distance
where the words are stored in an array of strings (agrep does not store the words
in memory but rather reads them in each query). Finally, we compare with all
alternatives and the MS Word 97 spell checker for quality of retrieval - the per-
centage of correct words retrieved from 40 mis-spelt words giving a figure for

the recall accuracy with noisy inputs (mis-spellings).

1.1 Levenshtein edit distance

Levenshtein edit distance [2] generates a score for the similarity between the
query word and each lexicon word in turn. The score is the number of single
character insertions, deletions or substitutions required to transform the query
word to the lexicon word, for example, to transform him to ham requires one
substitution or to transform ham to harm requires one insertion. The lexicon
word with the lowest score is deemed the best match. A function f(0,0) is set
to 0 as in equation 1 for all comparisons and the function f(i,j) is calculated,
iteratively counting the string difference between the query ¢i¢s...q; and the
lexicon word /115...[;. Each insertion, deletion or substitution is awarded a score

of one see equation 2.
f(0,0)=0 (1)
where d(qi,lj) =0if q; = lj else d(qi,lj) =1 (2)

Edit distance is O(mn) for retrieval as it performs a brute force comparison

with all n character of all m words in the lexicon and therefore can be slow for

a large lexicon.

1.2 Agrep

Agrep [3] [4] is based upon Edit Distance and finds the best match, the word with
the minimum single character insertions, deletions and substitutions. Agrep
uses several different algorithms for optimal performance with different search
criteria. For simple patterns with errors, agrep uses the Bayes-Moore algorithm
with a partition scheme (see [3] for details). Agrep essentially uses arrays of
binary vectors and pattern matching, comparing each character of the query
word in order, to determine the best matching lexicon word. The binary vector
asks as a mask so only characters where the mask bit is set are compared,
minimising the computation required. There is one array for each error number
for each word, so for k errors there are k + 1 arrays (R...RF) for each word.
R; denotes step j in the matching process of each word and R;i; the next
step. RShift is a logical right shift, AND and OR denote logical AND and OR
respectively and S, is a bit vector representing the character being compared
c. The following two equations describe the matching process for up to k errors

0<d<k.

R& =11...100...000 with d bits set (3)

RY,, = Rshift[R{] AND S, OR Rshift[R{~'] OR Rshift[R], {JORR] " (4

For a search with up to k errors permitted there are k + 1 arrays and there
are 2 shifts, 1 AND and 3 OR operations for each character comparison so the

running time is O((k + 1)n) for an n word lexicon (see [3]).

1.3 AURA

AURA [1], [5] is a modular binary neural network architecture that uses Cor-

relation Matrix Memories (CMMs) [1]. AURA uses a supervised learning rule,

similar to a hash function, to map inputs to outputs (see figure 1). AURA does
not suffer from the lengthy training problem of other neural networks; train-
ing and retrieval are one-pass processes producing the network’s high speed [6].
Storage is efficient in the CMMs as the matrix size is defined when the CMM
is instantiated so new inputs do not require additional memory allocation as
they are overlaid with existing trained patterns. AURA is able to partially
match inputs which is essential for a spell checking system as the query word

will partially match the lexicon words.

1.4 Owur methodology

The word spellings form the inputs and the matching words from the lexicon
form the outputs of the system. The spellings and words are translated to their
respective binary bit vectors by the data-to-binary lexical token converter (see
figure 1). For the inputs, we divide a binary bit vector of length 960 into a series
of 30-bit chunks. Each chunk represents a letter of the alphabet or one of four
punctuation characters so words of up to 30 characters may be represented. (We

need two additional character chunks for the shifting n-gram described later).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (5)

Each word is divided into its constituent characters. The appropriate bit is set
in the chunk to represent each character in order of occurrence (see equation
5 for the index of characters against bit set). The chunks are concatenated to
produce a binary bit vector to represent the spelling of the word and form the

input to the CMM. Any unused chunks in the bit vector are set to all zero bits.

Each word in the lexicon has a unique orthogonal binary bit vector to rep-

resent it and form the output from the CMM. A single bit is set corresponding

to the position of the word in the alphabetical list of all words (see equation 6).
bitVector? = p'"bit set Vp for p = position{words} (6)

The CMM represents the lexicon of all words in the corpus, the inputs are the

spellings and the outputs the matching words.

1.4.1 Training the network

The binary patterns representing the word spellings are input to the CMM
and the binary patterns for the matching words form the outputs for the CMM.
Essentially, we associate the spelling of the word to an orthogonal output vector
to uniquely identify it. Figure 2 shows a CMM after 1, 2 and 3 patterns have
been trained. The binary input vectors (word spellings) are 01001000, 00100100
and 00101000 and their respective output vectors (unique identifiers to retrieve
the matching words) are 01000000, 00010000 and 00100000. The CMM is set to
one where an input row (spelling bit) and an output column (word bit) are both
set (see figure 2). After storing all spelling-word associations, the CMM weight
wy; for row j column k (where V and A are logic ‘or’ and ‘and’ respectively
and inputSpelling and outputWord are the binary input and output vectors
respectively) is given by equation 7:

all i all i

wrj = \/ inputSpelling;-/\outputWordi = [ZinputSpelling;/\outpuﬂ/Vordfc

(7)

1.4.2 Recalling from the network - binary Hamming Distance

For binary Hamming Distance, we use the CMM to retrieve the lexicon words
that match the letters of the input spelling where ‘match’ implies the same letter
in the same position in the word. We use the CMM to count the aligned letters.
CMMs produce perfect recall - they retrieve ALL expected matches [5]. Only

the spelling pattern is applied to the network during recall and the matching

words are retrieved in an output vector. The columns are summed to produce
an output activation vector, see equation 8.
alli

output; = Z input; A wj; (8)
The output activation vector is thresholded generating a binary output vector
(see figure 3). The binary output vector represents the words trained into the
network matching the input spelling presented to the network. We use the
Willshaw threshold set to the number of bits in the input vector to threshold
the output activation vector (see figure 3). Willshaw threshold sets to 1 all the
positions in the binary output vector where the corresponding position of the
activation vector is greater than or equal to a predefined threshold value. The
remaining bits are set to 0. For an exact match, we wish to retrieve all outputs
that match all characters in the input. If the input has three bits set we retrieve

all columns that sum to three (see figure 4).

If only a partial match of the input spelling is required, i.e., only M of the
N letters (M < N) in the input must match exactly then this combinatorial
problem is easily resolved. The input is sent to the network and the Willshaw
threshold is set at M. This partial match provides a very efficient, single-step
mechanism for selecting those words that best match. We threshold the output
vector at the highest match value to retrieve ALL best matching lexicon words.
For example, in figure 4 to match only two letters of the input word, we thresh-

old at two and retrieve {‘therefore’, ‘the’, ‘she’, ‘three’}.

We are able to use the ‘?” convention from UNIX for unknown characters
by setting all bits in the chunk representing a universal OR, i.e., the chunk
represents a ‘don’t care’ during matching and will match any letter or punctu-
ation character for the particular letter slot. For example, if the user is unsure

whether the correct spelling is ‘separate’ or ‘seperate’ they may input ‘sep?rate’

to the system and the correct match will be retrieved as the chunk with all bits

set will match ‘a’ in the lexicon entry ‘separate’.

1.4.3 Recalling from the network - Shifting n-grams

We utilise three n-gram approaches [7] and select the most appropriate for the
query word, unigram for spellings with less than four characters, bigrams for
four to six characters and trigrams for spellings with more than six characters.
Mis-spelt words with less than four characters are unlikely to have any bigrams
or trigrams found in the correct spelling, for example ‘teh’ for ‘the’ have neither
common. Spellings with four to six characters may have no common trigrams
but should have common bigrams and words with more than six characters
should match trigrams. We describe a recall for a seven-letter word (‘theatre’)
using trigrams below and in figure 5. All n-gram techniques used operate on

the same principal, we just adjust the size of the comparison window.

For the shifting n-grams, we use the CMM to count the matching n-grams.
We take the first three characters of ‘theatre’, i.e. ‘the’ and input these left-
aligned to the CMM, see figure 5. We threshold the output activation vector
at three to find any words matching all three characters of the trigram. We
then shift the trigram vector one 30-bit chunk to the right, input to the CMM
and threshold at three to find any words matching all three characters of the
trigram but shifted one character right as in the second CMM of figure 5. We
continue sliding the trigram to the right until the first letter of the trigram is in
the position of the last character of the spelling and the third letter aligned with
the input plus two characters (as in figure 5) as nearly all spelling mistakes are
within two characters of the correct spelling [2]. We logically OR the output
vector from each trigram position to produce an output vector denoting any
word that has matched any of the trigram positions for this trigram see figure

5. We then move onto the second trigram ‘hea’; left align, input to the CMM,

threshold and slide to the right producing a second trigram vector of words that
match this particular trigram in any place relative to the length of the query
word. When we have matched all m trigrams {‘the’, ‘hea’, ‘eat’, ‘atr’, ‘tre’} from
the spelling, we will have m output vectors representing the words that have
matched each trigram respectively. We sum these output vectors to produce
an integer vector representing a count of the number of trigrams matched for
each word. We can then threshold at the maximum value of the integer vector
to find the best matching words. The thresholded output vector is passed to
the lexical token converter binary-to-data to retrieve the matching words as for

Hamming Distance.

1.4.4 Superimposed outputs

Partial matching with Hamming Distance and shifting n-grams generates mul-
tiple word vector matches superimposed in a single output vector after thresh-
olding (see figure 4). These outputs must be identified. A list of all valid output
vectors is held in a content-addressable memory and matched in the lexical to-
ken converter - binary to data see figure 1. The thresholded output vector is
passed to the lexical token converter which separates the bit vector into sepa-
rate orthogonal bit vectors and retrieves the word associated with each separate
orthogonal vector. The time for this process is proportional to the number of
bits set in the output vector ©(bits set), there will be one matching word in the

lexical token converter per bit set for orthogonal output vectors.

1.5 Hybrid

For exact matching (checking whether a word is present in a lexicon) we use the
Hamming Distance and a length match. If the word is not present in the lexicon
we can then spell check using the word and produce a list of alternative spellings

preventing a futile search for a mis-spelt word. For exact match, we perform the

10

Hamming Distance match described in section 1.4.2, thresholding at the length
of the input spelling (i.e., number of bits set in the input vector) to retrieve all
words beginning with the input spelling. The input spelling forms a word stem
to the words retrieved from the Hamming Distance match. In figure 4, the input
would be thresholded at three (length of ‘the’) to retrieve {‘the’, ‘therefore’}.
We then input a bit vector with all bits set to one and threshold the output at
the exact length of the input spelling (number of bits set) to count the number
of characters in each stored word. There is one bit per character so if all bits are
activated and summed we effectively count the length of the word. From figure
4, all bits are set in the input and the output thresholded at exactly three to
retrieve the three letter words {‘the’, ‘are’, ‘she’}. This negates the additional
storage requirement of storing the word length with each lexicon word and then
searching the word length array for appropriate length words. Our exact match
is rapid as we demonstrate later so we are not penalised, the approach is fast
and imposes no storage overheads. We can then logically AND the Hamming
Distance output vector with the length vector to retrieve the exact match if one
exists, i.e., matching all input characters AND the exact length of the input.
The ANDed bit vector is passed to the lexical token converter to retrieve the

matching word {‘the’}.

For the best match, we produce a union of the Hamming Distance best match
and the shifting n-gram best match, any word that is the best match for either.
We threshold the output of the Hamming Distance at the maximum value to re-
trieve the set of lexicon words matching the maximum number of input spelling
letters. We threshold the output of the shifting n-gram at the highest value to
retrieve the lexicon words matching the maximum number of input n-grams.
We logically OR the two thresholded outputs to produce the union and pass

this vector to the lexical token converter to retrieve the matching words.

11

1.6 Recalling from the network - N-grams

We also evaluate an alternative n-gram approach using only trigrams and con-
structed in AURA which builds upon Cherkassky [8] and Ullman [7]. A 3-
dimensional representation of all possible trigrams is produced with the x-
dimension representing the first letter, y the second and z the third. The char-
acters are represented by 30 bit chunks as with our hybrid approach. The 3-D
representation is then mapped onto a single dimension vector of length 30x30x30
with one bit position for each possible triple (see figure 6). Each word to be
trained is subdivided into its constituent trigrams and the appropriate bits are
set in the 1-D vector. The output vector is again a single-bit set (orthogonal)
binary vector. The approach is fundamentally similar to the n-gram approach
described in section 1.4.3, but there is no length limit imposed while matching
so we could match characters 28, 29, and 30 for a three letter input word. Our
hybrid approach limits matching to within two characters of the length of the
input. The trigram approach does not work well for less than 5 character words

as there may be no common triples between the query and the correct spelling.

2 Evaluation

For all evaluations we use the lexicon from the UNIX spell program comprising

23791 words and 194784 characters in total.

2.1 Memory use

We compare the memory usage of the trained CMM and word decoder (lexical
token converter) for our hybrid methodology where each 30-bit chunk uniquely
identifies each character in the spelling and for the trigram approach where all
possible trigrams are mapped onto a 1-D vector and the appropriate bits are

set for the trigrams present in each spelling.

12

From table 9, our hybrid approach uses approximately one third of the memory
used for the triple mapping approach. Triple mapping requires vectors of length
2700. Our approach requires vectors of length (30 bits per character * maxi-
mum word length to be stored). Here the maximum length word in the lexicon
is twenty-nine characters so we elected to use 960 length vectors (30 characters
+ 2 extra for the shifting n-gram). The matrix for the triple mapping is very
sparse as many of the triple possibilities never occur in the English language,
for example ‘xyz’, ‘aaa’, ‘zzz’ and storage space is wasted. In a standard matrix
structure many empty rows would be stored, although in the CMM approach
the empty rows are represented by null pointers so there is no wasted space.
The memory usage of the Edit distance word array and the hybrid CMM are
approximately equivalent. If we integrated Edit distance into the IR system we
are building, a word decoder would be required to map the best matching word
identified by the Edit Distance to the bit vector which forms the input vector for
the next stage of the IR system. Therefore, the memory use for Edit distance

and our hybrid approach would approximately be equivalent.

2.2 Training Time

The training time was the time to produce the bit vectors for each word spelling,
associate each word with an orthogonal output vector and train the spelling-
word association into the memory matrix. Our hybrid technique processes the
194784 characters of the UNIX ‘spell’ dictionary in 3.3 seconds. Therefore the
approach may process 59025 characters per second for training. Training is only

performed once and is a single epoch process.

13

2.3 Retrieval time

We compare the retrieval times for an exact match search and a best match
search for each of the approaches described in the paper. For comparison we
use a short word ‘the’ comprising one trigram and a very long word that we
added to the lexicon for evaluation purposes ‘floccinaucinihilipilification’ with
27 trigrams. The length variation enables us to compare the running time for
each algorithm and see whether they are closer to O(n) or O(1), i.e., dependent
on the length of the input or independent and approaching constant time for

retrieval.

2.3.1 Exact match

Our methodology implements exact match through a Hamming Distance and
length comparison as this is faster than the shifting n-gram approach from em-
pirical comparison (O(1) compared to O(n)). The triple mapping approach
retrieves the words matching all triples in a thresholded output vector and re-
trieves the words of equivalent length to the input in a second thresholded output
vector. Similar to our approach, it forms a logical AND of the two output vec-
tors to retrieve the word that have all triples in common AND are equivalent

length to the input, i.e., the exact match.

See table 9 for the exact match retrieval times. Our hybrid approach, the triple
mapping and agrep are all ©(1) as the retrieval is independent of the length
of the input, only Levenshtein is O(inputLength). For our hybrid, retrieval
time depends only on the number of matches for Hamming Distance match and
length match which must be retrieved from the lexical token converter. Our
hybrid matches against the 194784 characters of the UNIX ‘spell’ lexicon in
0.03 seconds so extrapolating would be able to process approximately 6492800

characters per second.

14

2.3.2 Best match

For best match (see table 9), our hybrid approach is dependent on the shifting
n-gram which is O(n). Our hybrid approach took 1.08 seconds to retrieve the
best match for ‘floccinaucinihilipilification’. The shifting n-gram requires 1.06
seconds so the shifting n-gram occupies 98% of the total retrieval time of the
hybrid. For a three letter word input, our approach took 0.03 seconds for 194784
characters so could process 6492800 characters per second. For the 29 letter
word the retrieval took 1.08 seconds so we can process 180356 characters per
second. We could speed this retrieval by having three CMMSs, one with unigrams
stored, one bigrams and the third trigrams. This would be faster, equivalent
to the n-gram triple mapping, i.e., 0.03 seconds for the 29 character word and
O(1) but the memory storage would be approximate six times higher. Three
times higher for the trigram CMM (as seen in the the memory use evaluation in
section 2.1), twice for the bigram and equivalent for the unigram. We feel the
slightly slower speed of our shifting n-gram is preferable to the higher memory
requirement of the alternative representation. Most searches are likely to be
approximate 7 or 8 characters. N.B. for the Hamming Distance and triple
mapping the search for ‘the’ took longer than the twenty-nine letter word. This
is because there are many possible matches for ‘the’ which must be retrieved
from the lexical token converter but there is only one to be retrieved for the
longer word. The retrieval speed of the lexical token converter is proportional

to the number of words retrieved.

2.3.3 Quality of retrieval

We extracted 40 spelling errors from news groups and unformatted electronic
text and input the spelling errors to each algorithm in turn. Each mis-spelt
word had either one or two errors and there was a roughly equal mixture of

insertion, deletion, substitution and transposition (double substitution) errors.

15

We counted the number of times each algorithm suggested the correct spelling
among the set of possibilities retrieved. We include the score for MS Word 97

spell checker for a benchmark comparison. The results are given in table 9.

Edit distance and agrep tend to produce a small number of possibilities (edit
distance < 6 returns and agrep < 58 returns) as they score the matched and
produce ranked word retrieval. On average edit distance produces a single best
match and agrep roughly three best matches. We have lower precision as we re-
turn more false positives. We just produce an unordered set of the best matches.
However, our hybrid approach has the best recall rate, only failing to find ‘dealt’
from the misspelling ‘delt’ - it retrieved ‘delta’ and ‘deltoid’ as the best matches.
Our hybrid and MS Word 97 were the only techniques that identified ‘the’ as the
best match for ‘teh’ and ‘him’ for ‘hmi’. Hamming distance is the weakest but
often succeeds when the shifting n-gram fails and vice versa hence we use the
union of both techniques in our hybrid system. Our shifting n-gram, restricted
to the length of the input word outperformed the free match of the standard n-
gram so even though the shifting n-gram is slower we feel the additional quality

mitigates the lower speed.

3 Conclusion

Spell checkers are somewhat dependent on the words in the lexicon. Some words
have very few words spelt similarly, so even multiple mistakes will retrieve the
correct word. Other words will have many similarly spelled words so one mis-
take may make correction difficult or impossible. Of the techniques evaluated,
our hybrid approach had the highest recall rate at 97.5%, only failing to find
‘dealt’ from ‘delt’ as both ‘delta’ and ‘deltoid’ were present in the lexicon and
matched higher. Humans averaged 74% for isolated word-spelling correction

[2] (where no word context is included and the subject is just presented with

16

a list of errors and must suggest a best guess correction for each word) so our
approach outperforms a human. Kukich [2] posits that ideal isolated word-error
correctors should exceed 90% when multiple matches may be returned which

we have comfortably exceeded.

Our exact match procedure is very rapid and independent of the length of
the input spelling. The best match process is slower as the shifting triple is
slower. However, we feel the superior quality of the shifting triple as compared
to the regular trigram offsets the lower speed. The approach does not rank
the retrieved best matching words. It just returns an unranked alphabetically
sorted list. We may include scoring later, for example, when matching ‘wprd’
for ‘word’, 710 best matches were returned, the average number of returns is
approximately eight. To prevent the user being overwhelmed we could score
when 10 or more best matches are found and return them in blocks of 10 in
score order. Our approach is only intended as a front-end to an IR system so we
require an implementation that amalgamates with the existing IR system as the
orthogonal word vectors will form the inputs to the next stage of the system. It
is efficient with respect to memory storage and speed of retrieval and identifies

the intended words from incorrect spellings but is still reasonably simple.

4 Acknowledgement

This work was supported by an EPSRC studentship.

References

[1] J. Austin. Distributed associative memories for high speed symbolic rea-

soning. In R. Sun and F. Alexandre, editors, IJCAI ’95 Working Notes of

17

[6]

8]

Workshop on Connectionist-Symbolic Integration: From Unified to Hybrid
Approaches, pages 87-93, Montreal, Quebec, August 1995.

K. Kukich. Techniques for Automatically Correcting Words in Text. ACM
Computing Surveys, 24(4):377-439, 1992.

S. Wu and U. Manber. Fast Text Searching With Errors. Communications
of the ACM, 35, October 1992.

S. Wu and U. Manber. AGREP - A Fast Approximate Pattern Matching
Tool. In Useniz Winter 1992 Technical Conference, pages 153-162, San

Francisco, CA, January 1992.

M. Turner and J. Austin. Matching Performance of Binary Correlation

Matrix Memories. Neural Networks, 10(9):1637-1648, 1997.

V.J. Hodge and J. Austin. An Evaluation of Standard Retrieval Algorithms
and a Binary Neural Approach. Neural Networks, 14(3), 2001.

J. R. Ullman. A Binary n-Gram Technique for Automatic Correction of
Substitution, Deletion, Insertion and Reversal Errors in Words. Computer

Journal, 20(2):141-147, May 1977.

V. Cherkassky, N. Vassilas, G. Brodt, and H. Wechsler. Conventional and
Associative Memory Approaches to Automatic Spelling Correction. Engi-

neering Applications of Artificial Intelligence, 5(3):223-237, 1992.

18

5 Biographies

Professor Jim Awustin has the Chair of Neural Computation in the Depart-
ment of Computer Science, University of York, where he is the leader of the
Advanced Computer Architecture Group. He has extensive expertise in neural
networks as well as computer architecture and vision. Jim Austin has published

extensively in this field, including a book on RAM based neural networks.

Victoria Hodge is a PostGraduate Research Student in the Department of
Computer Science, University of York. She is a member of the Advanced Com-
puter Architecture Group investigating the integration of neural networks and

information retrieval.

19

6 Author Details:

Contact Author:
Victoria J. Hodge

Dept. of Computer Science,
University of York,

UK

YO10 5DD

Tel: +44 1904 432729

Fax: +44 1904 432767

E-Mail: vicky@cs.york.ac.uk

Co-Author:

Prof. Jim Austin

Dept. of Computer Science,
University of York,

UK

YO10 5DD

Tel: +44 1904 432734

E-Mail: austin@cs.york.ac.uk

20

7 Figure Captions

Fig 1: Diagram of the AURA modular system.

Fig 2: Diagram showing three stages of network training.

Fig 3: Diagram showing system recall. The input pattern has 1 bit set so the
CMM is thresholded at 1.

Fig 4: Diagram showing Hamming Distance matching.

Fig 5: Diagram showing a trigram shifting right.

Fig 6: Diagram showing the triple mapping process.

21

8 Figures

22

Training

W$d
ILexical Token Converter
Data to Binary

Superimposition of
Vectors

Speiing
ILexical Token Converter

Data to Binary

Superimposition of

Vectors

Correlation Matrix

Memory

Recall

Superimposition of
Outputs
ILexical Token Converter

Binary to Data

Figure 1:

23

List of

Matched

Words

Output Output Output

01 00 0O0O0O0 000 1 0O0O0O0 0O 0 0O0O0OT1TO0O0

Inputs to be trained into the network. The input spelling is shown with 4-bit chunks for simplicity.
The input spellings are 2 letter words with 1 bit set in each chunk. The output vector serves as
an identifier for the input spelling to uniquely identify each spelling in the lexical token converter.

Figure 2:

Here the input spelling is shown with 4-bit

PY chunks for simplicity. The word is a 2 letter
word with 1 bit set in each chunk. To match
exactly, we set the Willshaw threshold to 2
to identify any lexicon words that match both

(=}

°
oo

L
0 ® characters in the relevant positions.
0
0
02000100 Activation - 2 input bits set: threshold at 2
01000000 Output pattern after thresholding
Figure 3:

24

The input word ‘the’ is compared to

7 lexicon words trained in to the CMM.
Any word matching the three letters in
the first three letters of the word will be
retrieved.

Both ‘the’ and ‘therefore’ match the
first 3 letters correctly.

S e
CEbRsal
°U3
T12ds
2ys
suou
o€

SI0J219U7]

2331 2 0 1 ‘ 3 characters input so threshold at 3.

‘ 01 1. 00 0 0 ‘ Superimposed output vector

Figure 4:

|y3
CEkisal
Ehiai=Els
sy3
112ds
I2Y10
suou
axe
|y3

EEEisjal
Eliai=Els
|y3
112ds
I9Y2l0
[uou
axe
EEEisjal
Eliai=Els
Sy3
112ds
I9Y2l0
Quou
ax®e

1000310‘ 00 0 0 0 0 0

2331001‘

[01 1000 0| [00001 00| [000000 0|

= e D=

(XY
OR

[o1 10100 |

Figure 5:

25

30 CMM of triples
Each word is
30 —> —> represented by its
X constituent triples.
30
Length = x*y*z | | Output
\ | Thresholded output
Figure 6:

26

9 Tables

27

Method

CMM size bytes

Word Decoder size bytes

Hybrid method 1211416 1432620
Triple mapping method 3184784 1432620
Edit Distance word array 1189550

Table 1: Table showing the memory usage for three comparable spell checking

approaches.
Method Time (secs) for ‘flocci...” | Time (secs) for ‘the’
Hybrid - Hamming A length 0.03 0.03
Triple mapping 0.02 0.02
Agrep 0.02 0.02
Levenshtein 1.53 0.17

Table 2: Table detailing the retrieval time in seconds for a 29-letter word exact

match retrieval and a 3-letter word exact match retrieval.

Method Time (seconds) for 'flocci...” | Time (seconds) for ’the’
Hybrid 1.08 0.03
Hamming Distance <0.01 0.01
Shifting n-gram 1.06 0.03
Triple mapping <0.01 0.03
Agrep 0.02 0.05
Levenshtein 1.53 0.17

Table 3: Table detailing the retrieval time in seconds for a 29-letter word best

match retrieval and a 3-letter word best match retrieval.

28

Method Recall || Method Recall

Hybrid 39/40 || Agrep 35/40
Levenshtein 38/40 || Triple mapping 29/40
MS Word 97 37/40 || Hamming Distance | 21/40

Shifting n-gram | 35/40

Table 4: Table detailing the recall accuracy for 40 spelling errors.

29

