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Abstract

In this paper, we consider a couple of inverse problems of determining the time-dependent
thermal/hydraulic conductivity from Cauchy data in the one-dimensional heat/diffusion
equation with space-dependent heat capacity/ specific storage. The well-posedness of
these inverse problems in suitable spaces of continuously differentiable functions are stud-
ied. For the numerical realisation, the problems are discretised using the finite-difference
method and recast as nonlinear least-squares minimization problems with a simple posi-
tivity lower bound on the unknown thermal/ hydraulic conductivity. Numerically, this is
effectively solved using the lsqnonlin routine from the MATLAB toolbox. Regularization
is included wherever necessary. Numerical results are presented and discussed for sev-
eral benchmark test examples showing that accurate and stable numerical solutions are
achieved. The outcomes of this study will be relevant and of importance to the applied
mathematics inverse problems community working on thermal/hydraulic property deter-
mination in heat transfer and porous media.

Keywords: Inverse problem; Finite-difference method; Thermal/hydraulic conductivity;
Nonlinear optimization.

1 Introduction

The scope of inverse problems has existed in various branches of physics, engineering
and mathematics for a long time. The theory of inverse problems has been extensively
developed within the past decade due partly to its importance in applications; on the
other hand the numerical solutions to such problems need huge computations and also
reliable numerical methods. For instance, deconvolution in seismic exploration, image
reconstruction and parameter identification all require high performance computers and
reliable solution methods to carry out the computation [17].

Parameter identification problems consist in using the input of actual observation
or indirect measurement contaminated with noise, to infer the values of the parameters
characterizing the system under investigation. Often, these inverse problems are ill-posed
according to the Hadamard concept which is: if the solution does not exist or, is not
unique or, if it violates the continuous dependence upon input data. Most identification
problems satisfy the first two conditions and violate the third one which is the stability.

Inverse coefficient identification problems have been the point of interest to many sig-
nificant researchers in recent years. Determination of leading coefficient or, the coefficient
of highest-order derivative in the parabolic heat equation has been investigated widely and
in many practical applications. For example, in [6] the problem of space-dependent diffu-
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sivity identification has been studied, while the time-dependent case has been investigated
in [14]. Also, for the temperature-dependent case we refer to [2, 18].

In this paper, we consider obtaining the numerical solution of inverse time-dependent
multiplier of the highest-order derivative in the parabolic heat equation. Physically, in
heat transfer this unknown thermal property coefficient corresponds to the thermal con-
ductivity of an inhomogeneous heat conductor which has a space-varying known heat
capacity. It is this later physically realistic feature that makes some of the methods of
previous studies [3, 9, 10, 19] of time-dependent thermal diffusivity identification inappli-
cable. The same problem can be formulated in porous media by replacing the thermal
properties with the corresponding hydraulic ones.

With respect to what boundary conditions are specified and what additional measure-
ments are performed, the mathematical formulations of two inverse problems are given
in Section 2. In that section, we also recall the previous unique solvability results of [13,
Section 4.3]. Furthermore, new stability theorems are stated and proved. Moreover, since
obtaining the solution of these problems has never been attempted before it is therefore,
the purpose of our study to undertake such a numerical investigation. Consequently, a
numerical method based on the Crank-Nicholson finite-difference scheme is employed as
direct solver in a nonlinear least-squares minimization, as described in Sections 3 and 4,
respectively. This combination yields accurate and stable numerical solutions, as it will
be discussed in Section 5. Finally, the conclusions of this research and possible future
work are highlighted in Section 6.

2 Mathematical Formulation

Let L > 0 and T > 0 be fixed numbers and consider the inverse problem of finding
the time-dependent thermal conductivity C[0, T ] ∋ a(t) > 0 for t ∈ [0, T ], and the
temperature u(x, t) ∈ C2,1(QT ) ∩ C1,0(QT ), which satisfy the heat equation

c(x)
∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + F (x, t), (x, t) ∈ QT := (0, L)× (0, T ), (1)

where c(x) > 0 is the heat capacity and F is a heat source, the initial condition

u(x, 0) = ϕ(x), x ∈ [0, L], (2)

the Dirichlet boundary conditions

u(0, t) = µ1(t), u(L, t) = µ2(t), t ∈ [0, T ], (3)

and the heat flux additional measurement

−a(t)ux(0, t) = µ3(t), t ∈ [0, T ]. (4)

Dividing equation (1) by c(x) and denoting

b(x) =
1

c(x)
, f(x, t) =

F (x, t)

c(x)
(5)

we obtain

∂u

∂t
(x, t) = a(t)b(x)

∂2u

∂x2
(x, t) + f(x, t), (x, t) ∈ QT . (6)
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2.1 Inverse Problem I

The above inverse problem (termed Inverse Problem I) was previously investigated theo-
retically in Section 4.3 of [13] where its unique solvability has been established, as follows.

Theorem 1. (Existence of solution of Inverse Problem I)
Suppose that the following conditions hold:

1. (regularity conditions) b ∈ C1[0, L], ϕ ∈ C1[0, L], µi ∈ C1[0, T ] for i = 1, 2, µ3 ∈
C[0, T ], f ∈ C1,0(QT );

2. (compatibility conditions) ϕ(0) = µ1(0), ϕ(L) = µ2(0).

3. (non-vanishing and monotonicity conditions) ϕ′(x) > 0, b(x) > 0, b′(x) ≤ 0 for
x ∈ [0, L], µ3(t) < 0, µ′

1(t) − f(0, t) ≤ 0, µ′

2(t) − f(L, t) ≥ 0 for t ∈ [0, T ],
fx(x, t) ≥ 0 for (x, t) ∈ QT ;

Then there exists a solution to the inverse problem (2)–(4) and (6).

Theorem 2. (Uniqueness of solution of Inverse Problem I)
If b ∈ C1[0, L], b(x) > 0 for x ∈ [0, L], µ3(t) ̸= 0 for t ∈ [0, T ], then the solution of the
inverse problem (2)–(4) and (6) is unique.

Lower-order terms, e.g. c1(x, t)ux + c2(x, t)u, with known functions c1 and c2 can also
be added to the right-hand-side of equation (6) to model convection and reaction.

Next, we address the stability of solution.

Theorem 3. (Local stability of solution of Inverse Problem I)
Suppose that the conditions of Theorem 1 are satisfied. Let µ3 and µ̃3 be two data in (4)
and let (a(t), u(x, t)) and (ã(t), ũ(x, t)) be the corresponding solutions of the inverse prob-
lem (2)–(4) and (6). Then, for sufficiently small T , the following local stability estimate
holds:

∥a− ã∥C[0,T ] ≤ C∥µ3 − µ̃3∥C[0,T ], (7)

for some positive constant C.

Proof: We observe first that the pair of differences A(t) = a(t)− ã(t), U(x, t) = u(x, t)−
ũ(x, t) is a solution of the following inverse problem:

Ut = a(t)b(x)Uxx + A(t)b(x)ũxx, (x, t) ∈ QT , (8)

U(x, 0) = 0, x ∈ [0, L], (9)

U(0, t) = U(L, t) = 0, t ∈ [0, T ], (10)

−a(t)Ux(0, t) = A(t)ũx(0, t) + µ3(t)− µ̃3(t), t ∈ [0, T ]. (11)

The function U(x, t) satisfying (8)–(10) can be expressed with the aid of its Green’s
function G1 as

U(x, t) =

∫ t

0

∫ L

0

G1(x, t; ξ, τ)A(τ)b(ξ)ũξξ(ξ, τ)dξdτ, (x, t) ∈ QT . (12)
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Differentiating (12) with respect to x and substituting into (11), one obtains

−a(t)

∫ t

0

A(τ)

(∫ L

0

G1x(0, t; ξ, τ)b(ξ)ũξξ(ξ, τ)dξ

)

dτ = A(t)ũx(0, t) + µ3(t)− µ̃3(t),

t ∈ [0, T ].
(13)

Since µ̃3(t) ̸= 0, from (4) we have that ũx(0, t) ̸= 0 for t ∈ [0, T ]. This means that (13) is
a linear Volterra integral equation of the second kind in A(t) written in the form

A(t) = g(t) +

∫ t

0

H(t, τ)A(τ)dτ, t ∈ [0, T ], (14)

where

g(t) :=
µ̃3(t)− µ3(t)

ũx(0, t)
t ∈ [0, T ], (15)

is a continuous function and the kernel

H(t, τ) := −
a(t)

ũx(0, t)

∫ L

0

G1x(0, t; ξ, τ)b(ξ)ũξξ(ξ, τ)dξ (16)

has a weak integrable singularity. This follows from the estimates of [13, p.147], where
we have that there exists a positive constant C1 such that

∣

∣G1x(0, t, ξ, τ)
∣

∣ ≤
C1

θ(t)− θ(τ)

∞
∑

n=−∞

exp

(

−
(β(ξ) + 2nβ(L))2

8(θ(t)− θ(τ))

)

, t > τ, (17)

which upon integration yields

∫ L

0

∣

∣G1x(0, t, ξ, τ)
∣

∣dξ ≤
C2

√

θ(t)− θ(τ)
, t > τ, (18)

for some positive constant C2. In (17), we used the notations

θ(t) =

∫ t

0

a(τ)dτ, β(x) =

∫ x

0

dξ
√

b(ξ)
. (19)

Note that θ ∈ C1[0, T ] is a strictly increasing function with θ(0) = 0 and θ′(t) = a(t) > 0
for t ∈ [0, T ]. For convenience, let us deduce from (18) that

∫ L

0

∣

∣G1x(0, t, ξ, τ)
∣

∣dξ ≤
C2

minρ∈[0,T ] a(ρ)

a(τ)
√

θ(t)− θ(τ)
, t > τ, (20)

which when used into (16) integrated produces the inequality

∫ t

0

∣

∣H(t, τ)
∣

∣dτ ≤ C3

∫ t

0

a(τ)
√

θ(t)− θ(τ)
dτ = 2C3

√

θ(t), (21)

for some positive constant C3. Now since the function
√

θ(t) is a monotonically increasing

function and limt→0

√

θ(t) = 0, according to standard theory of linear Volterra integral
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equations of the second kind, see e.g. [1, Section 8.2], it follows that equation (14) is
uniquely solvable. Furthermore, from (14) and (21) it follows that

∣

∣A(t)
∣

∣ ≤ ∥g∥C[0,T ] +

∫ t

0

∣

∣H(t, τ)
∣

∣

∣

∣A(τ)
∣

∣dτ

≤ ∥g∥C[0,T ] + 2C3

√

θ(T )∥A∥C[0,T ], t ∈ [0, T ]. (22)

Since θ(0) = 0 and θ is a monotonically increasing function, then, for sufficiently small
T we have that 1 > 2C3

√

θ(T ). Then, (15) and (22) yield that the stability estimate (7)
holds, where we have used that from (15),

∥g∥C[0,T ] ≤
∥µ̃3(t)− µ3(t)∥C[0,T ]

mint∈[0,T ] |ũx(0, t)|
. (23)

A similar local stability can be obtained from (12) and (7) for the norm of the temperature
difference ∥U∥C(Q

T
) = ∥u− ũ∥C(Q

T
).

Altogether, we have established that under the assumptions of Theorem 1, the solution
(a(t), u(x, t)) locally depends continuously upon the input data (4) in the maximum norm
of C[0, T ].

Later on, in the numerical results of Section 5.1, the well-posedness of the Inverse
Problem I established in Theorems 1–3 will be highlighted through the fact that no
regularization is needed for obtaining a stable and accurate numerical solution.

2.2 Inverse Problem II

For completeness, we also investigate another related inverse problem (termed Inverse
Problem II) which requires the determination of the thermal conductivity C[0, T ] ∋ a(t) >
0 for t ∈ [0, T ] and the temperature u(x, t) ∈ C2,1(QT ), which satisfy the heat equation
(6), the initial condition (2), the Neumann boundary conditions

−ux(0, t) = ν1(t), ux(L, t) = ν2(t), t ∈ [0, T ], (24)

and the boundary temperature additional measurement

u(0, t) = µ1(t), t ∈ [0, T ]. (25)

This inverse problem was also previously investigated in Section 4.3 of [13], where its
unique solvability has been established, as follows.

Theorem 4. (Existence of solution of Inverse Problem II)
Suppose that the following conditions hold:

1. b ∈ C2[0, L], ϕ ∈ C2[0, L], νi ∈ C1[0, T ], i = 1, 2, µ1 ∈ C1[0, T ], f ∈ C1,0(QT );

2. b(x) > 0, ϕ′(x) ≥ 0, (ϕ′(x)
√

b(x))′ > 0, b′(x) ≤ 0, b′′(x) ≤ 0 for x ∈ [0, L];
ν1(t) ≤ 0, ν2(t) ≥ 0, µ′

1(t)− f(0, t) > 0, fx(0, t) + µ′

1(t) ≥ 0, ν ′

2(t)− fx(L, t) ≥ 0 for
t ∈ [0, T ]; fx(x, t) ≥ 0, (fx(x, t)

√

b(x))x ≥ 0 for (x, t) ∈ QT ;

3. ϕ′(0) = −ν1(0), ϕ
′(L) = ν2(0), ϕ(0) = µ1(0).

Then there exists a solution to the inverse problem (2), (6), (24) and (25).
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Theorem 5. (Uniqueness of solution of Inverse Problem II)
If b ∈ C1[0, L], b(x) > 0 for x ∈ [0, L], µ′

1(t)− f(0, t) ̸= 0 for t ∈ [0, T ], then the solution
of the inverse problem (2), (6), (24) and (25) is unique.

Theorem 6. (Local stability of solution of Inverse Problem II)
Suppose that the conditions of Theorem 4 are satisfied. Let µ1 and µ̃1 be two data in
(25) and let (a(t), u(x, t)) and (ã(t), ũ(x, t)) be the corresponding solutions of the inverse
problem (2), (6), (24) and (25). Then for sufficiently small T, the following local stability
estimate holds:

∥a− ã∥C[0,T ] ≤ C∥µ1 − µ̃1∥C1[0,T ], (26)

for some positive constant C.

Proof: As in the proof of Theorem 3, first observe that the pair of differences (A(t), U(x, t))
is a solution to the problem given by equations (6), (25),

−Ux(0, t) = Ux(L, t) = 0, t ∈ [0, T ], (27)

U(0, t) = µ1(t)− µ̃1(t), t ∈ [0, T ]. (28)

Write the solution of the problem (6), (25), and (27) with the aid of its Green’s function
G2 as

U(x, t) =

∫ t

0

∫ L

0

G2(x, t; ξ, τ)A(τ)b(ξ)ũξξ(ξ, τ)dξdτ, (x, t) ∈ QT . (29)

Differentiating condition (28) with t and using equation (25) at x = 0, we obtain

A(t)b(0)ũxx(0, t) + a(t)b(0)

∫ t

0

A(τ)

(∫ L

0

G2xx(0, t; ξ, τ)b(ξ)ũξξ(ξ, τ)dξ

)

dτ

= µ′

1(t)− µ̃′

1(t), t ∈ [0, T ]. (30)

Since ũ(x, t) satisfies equations (6) and (25) we obtain

ã(t)b(0)ũxx(0, t) = µ′

1(t)− f(0, t) ̸= 0, t ∈ [0, T ] (31)

This means that (30) is a linear Volttera integral equation of the second kind in A written
in the form

A(t) = h(t) +

∫ t

0

Q(t, τ)A(τ)dτ, t ∈ [0, T ], (32)

where

h(t) :=
(µ′

1(t)− µ̃′

1(t))ã(t)

µ′

1(t)− f(0, t)
, t ∈ [0, T ], (33)

is a continuous function and the kernel

Q(t, τ) := −
a(t)

ũxx(0, t)

∫ L

0

G2xx(0, t; ξ, τ)b(ξ)ũξξ(ξ, τ)dξ (34)
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has an integrable singularity, see [13, pp. 66-67]. Therefore, (32) is uniquely solvable.
Furthermore,

∣

∣A(t)
∣

∣ ≤ ∥h∥C[0,T ] +

∫ t

0

∣

∣Q(t, τ)
∣

∣

∣

∣A(τ)
∣

∣dτ

≤ ∥h∥C[0,T ] + C3(T )∥A∥C[0,T ], t ∈ [0, T ], (35)

where C3(t) :=
∫ t

0
|Q(t, τ)|dτ . Clearly since C3 ≥ 0 and C3(0) = 0, for sufficiently small

T we can have C3(T ) < 1. Remark also that from (32)

∥

∥h
∥

∥

C[0,T ]
≤ C4∥µ1 − µ̃1∥C1[0,T ]. (36)

Then (35) and (36) yield the local stability estimate (26). This concludes the proof of
Theorem 6.

Note that unlike Inverse Problem I, in the Inverse Problem II, the estimate (26) in-
volves the derivatives of the noisy functions µ1 and µ̃1 which in itself is an unstable
procedure which needs to be regularized.

We finally mention that another related inverse formulation given by equations (2),
(3), (6) and the additional measurement

−ux(0, t) = ν1(t), t ∈ [0, T ] (37)

has been investigated in [11]. The choice of additional measurements (4), or (25), or
(37), is important for the inverse problem formulation, as it contains the richness of the
information supplied in order to retrieve more effectively the unknown time-dependent
conductivity.

3 Solution of Direct Problems

3.1 The Dirichlet direct problem

In this section, we consider the direct (the inverse of the Inverse Problem I) initial Dirichlet
boundary value problem given by equations (2), (3) and (6), where a(t), b(x), f(x, t), ϕ(x)
and µi(t), i = 1, 2, are known and the temperature u(x, t) is the solution to be determined.
We use the finite-difference method (FDM) with a Crank-Nicholson scheme [15], which is
unconditionally stable and second-order accurate in space and time.

The discrete form of the direct problem (2), (3) and (6) is as follows. We subdivide
the domain QT = (0, L)× (0, T ) into M ×N subintervals of equal step length ∆x = L/M
and ∆t = T/N . At the node (i, j) we denote ui,j = u(xi, tj), a(tj) = aj, b(xi) = bi and
f(xi, tj) = fi,j, where xi = i∆x, tj = j∆t for i = 0,M , j = 0, N .

The Crank-Nicolson FDM for the general partial differential equation

ut = G(x, t, uxx) (38)

is

ui,j+1 − ui,j

∆t
=

1

2
(Gi,j +Gi,j+1) , i = 1, (M − 1), j = 0, (N − 1). (39)
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where

Gi,j = G

(

xi, tj,
ui+1,j − 2ui,j + ui−1,j

(∆x)2

)

, i = 1, (M − 1), j = 0, (N − 1). (40)

Equation (39) has to be solved subject to the discretised form of equations (2) and (3),
namely,

ui,0 = ϕ(xi), i = 0,M, (41)

u0,j = µ1(tj), uM,j = µ2(tj), j = 0, N. (42)

For our problem, equation (1) can be discretised in the form of (39) as

− Ci,j+1ui−1,j+1 + (1 +Bi,j+1)ui,j+1 − Ci,j+1ui+1,j+1

= Ci,jui−1,j + (1−Bi,j)ui,j + Ci,jui+1,j +
∆t

2
(fi,j + fi,j+1) (43)

for i = 1, (M − 1), j = 0, (N − 1), where

Ci,j =
(∆t)ajbi
2(∆x)2

, Bi,j =
(∆t)ajbi
(∆x)2

.

At each time step tj+1 for j = 0, (N − 1), using the Dirichlet boundary conditions (42),
the difference equation (43) can be reformulated as a (M − 1)× (M − 1) system of linear
equations of the form,

Duj+1 = Euj + b, (44)

where

uj+1 = (u1,j+1, u2,j+1, ..., uM−1,j+1)
tr,

D =















1 + B1,j+1 −C1,j+1 0 · · · 0 0 0
−C2,j+1 1 + B2,j+1 −C2,j+1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −CM−2,j+1 1 + BM−2,j+1 −CM−2,j+1

0 0 0 · · · 0 −CM−1,j+1 1 + BM−1,j+1















,

E =















1−B1,j C1,j 0 · · · 0 0 0
C2,j 1−B2,j C2,j · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · CM−2,j 1− BM−2,j CM−2,j

0 0 0 · · · 0 CM−1,j 1−BM−1,j















,

and

b =















∆t
2
(f1,j + f1,j+1) + C1,j+1µ1(tj)

∆t
2
(f2,j + f2,j+1)

...
∆t
2
(fM−2,j + fM−2,j+1)

∆t
2
(fM−1,j + fM−1,j+1) + CM−1,j+1µ2(tj)















.
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3.1.1 Example

As an example, consider the direct problem (2), (3) and (6) with T = L = 1 and

a(t) = 1 + t, b(x) = 2− x2, ϕ(x) = u(x, 0) = x+ sin(x),

µ1(t) = u(0, t) = 8t, µ2(t) = u(1, t) = 1 + sin(1) + 8t,

f(x, t) = 8 + (1 + t)(2− x2) sin(x).

The exact solution is given by

u(x, t) = x+ sin(x) + 8t (45)

and the desired heat flux output (4) is

µ3(t) = −a(t)ux(0, t) = −2− 2t. (46)

The numerical and exact solutions for the temperature u(x, t) at interior points are shown
in Figure 1 and one can observe that an excellent agreement is obtained. Figure 2 shows
the numerical solution in comparison with the exact one for µ3(t) and the curves look
indistinguishable. The x-partial derivative of u(x, t) at x = 0 has been evaluated using
the following O(h2) finite-difference approximation formula:

ux(0, tj) =
4u1,j − u2,j − 3u0,j

2(∆x)
, j = 0, N. (47)
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Figure 1: Exact and numerical solutions for the temperature u(x, t) and the absolute error for

the Dirichlet direct problem obtained with M = N = 40.

9



0 0.2 0.4 0.6 0.8 1
−4.5

−4

−3.5

−3

−2.5

−2

µ 3(t
)

t

 

 
exact
numerical

Figure 2: Exact and numerical solutions for the heat flux µ3(t) of the Dirichlet direct problem

obtained with M = N = 40.

3.2 The Neumann direct problem

The FDM analysis for the direct (the inverse of the Inverse Problem II) initial Neumann
boundary value problem given by equations (2), (6) and (24) is similar to that of direct
Dirichlet problem of previous subsection. In this case, we discretise equations (38), (2)
and (24) as:

ui,j+1 − ui,j

∆t
=

1

2
(Gi,j +Gi,j+1) , i = 0,M, j = 0, (N − 1), (48)

ui,0 = ϕ(xi), i = 0,M, (49)

u−1,j − u1,j = −2(∆x)ν1(tj), uM+1,j − uM−1,j = 2(∆x)ν2(tj), j = 1, N, (50)

where Gi,j is given by (40), and u−1,j and uM+1,j for j = 1, N are fictitious values at
points located outside the computational domain. Equations (48) can be rewritten in
the form of the system (43) for i = 0,M , j = 0, (N − 1). At each time step tj+1 for

j = 0, (N − 1), using the Neumann boundary conditions (50), we obtain a M×M system
of linear equations of the form,

D̃ũj+1 = Ẽũj + b̃, (51)

where

ũj+1 = (u0,j+1, u1,j+1, ..., uM,j+1)
tr,

D̃ =















1 + B0,j+1 −2C0,j+1 0 · · · 0
−C1,j+1 0

0 D ...
... −CM−1,j+1

0 · · · 0 −2CM,j+1 1 + BM,j+1















,
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Ẽ =















1−B0,j 2C0,j 0 · · · 0
C1,j 0

0 E ...
... CM−1,j

0 · · · 0 2CM,j 1− BM,j















,

and

b̃ =















∆t
2
(f0,j + f0,j+1)− 2(∆x)(C0,jν1(tj) + C0,j+1ν1(tj+1))

∆t
2
(f1,j + f1,j+1)

...
∆t
2
(fM−1,j + fM−1,j+1)

∆t
2
(fM,j + fM,j+1) + 2(∆x)(CM,jν2(tj) + CM,j+1ν2(tj+1))















.

In the above expressions the matrices D̃ and Ẽ contain the matrices D and E of the
Dirichlet direct problem defined in subsection 3.1.

3.2.1 Example

As an example, consider the direct problem (2), (6) and (24) with T = L = 1 and

a(t) = 1 + t, b(x) = 2− x2, ϕ(x) = u(x, 0) = x+ sin(x),

ν1(t) = −ux(0, t) = −2, ν2(t) = ux(1, t) = 1 + cos(1),

f(x, t) = 8 + (1 + t)(2− x2) sin(x).

The exact solution is given by (45) and the desired boundary temperature output (25) is

µ1(t) = u(0, t) = 8t. (52)

The numerical and exact solutions for the temperature u(x, t) at interior points are shown
in Figure 3 and one can observe that an excellent agreement is obtained. Figure 4 shows
excellent agreement between the numerical solution and the exact one for µ1(t).
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Figure 3: Exact and numerical solutions for the temperature u(x, t) and the absolute error for

the Neumann direct problem obtained with M = N = 40.
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4 Solution of Inverse Problems

We wish to obtain stable and accurate reconstructions of the time-dependent thermal
conductivity a(t) and the temperature u(x, t) satisfying the equations (2)–(4) and (6) for
Inverse Problem I, and equations (2), (6), (24) and (25) for Inverse Problem II.

The most common approach based on imposing the measurement (4) or (25) in a
least-squares sense, is minimizing

FI(a) :=
∥

∥a(t)ux(0, t) + µ3(t)
∥

∥

2
+ β

∥

∥a(t)
∥

∥

2
, (53)

for Inverse Problem I, and

FII(a) :=
∥

∥u(0, t)− µ1(t)
∥

∥

2
+ β

∥

∥a(t)
∥

∥

2
, (54)

for Inverse Problem II, where β ≥ 0 is a regularization parameter to be prescribed and
the norm is usually the L2[0, T ]-norm. The discretization of (53) and (54) yields

FI(a) =
N
∑

j=0

[

ajux(0, tj) + µ3(tj)
]2

+ β

N
∑

j=0

a2j , (55)

FII(a) =
N
∑

j=1

[

u(0, tj)− µ1(tj)
]2

+ β
N
∑

j=0

a2j , (56)

where a = (aj)j=0,N . It is worth mentioning that in (55) at the first time step, i.e. j = 0,
the derivative ux(0, 0) is obtained from the initial condition (2), via (47), as

ux(0, 0) =
4ϕ1 − ϕ2 − 3ϕ0

2(∆x)
, (57)

12



where ϕi = ϕ(xi) for i = 0,M . Also, in (56), the value of a(0) can be obtained by
differentiating condition (25) with respect to t and using equation (1) at x = 0, namely,

a(0) =
µ′

1(0)− f(0, 0)

b(0)ϕ′′(0)
. (58)

The minimization of the objective function (55), or (56), subjected to the physical
simple lower bound constraints a > 0 is accomplished using the MATLAB toolbox routine
lsqnonlin, which does not require supplying (by the user) the gradient of the objective
function, [16].

This iterative routine attempts to solve a nonlinear least-squares minimization prob-
lem, starting from an initial guess, subject to constraints, and this generally is referred to
as a constrained nonlinear optimization. We use the Trust-Region-Reflective (TRR) op-
timization algorithm from lsqnonlin [16] and the positive components of the vector a are
sought in the interval (10−10,103). The algorithm is based on the interior-reflective New-
ton method, [4, 5], and some details about how this is implemented for the minimization
of a least-squares functional like (55), or (56), has recently been given in [10].

In the numerical implementation, we take the parameters of the routine lsqnonlin as
follows:

• Number of variables M = N = 40.

• Maximum number of iterations = 102 × (number of variables).

• Maximum number of objective function evaluations = 103 × (number of variables).

• Solution Tolerance (aTol) = 10−20 ÷ 10−15.

• Object function Tolerance (FunTol) = 10−20 ÷ 10−15.

• Nonlinear constraint tolerance = 10−6.

The inverse problems under investigation are solved subjected to both exact and noisy
heat flux measurement, (4) or (25) for Inverse Problems I and II, respectively. The noisy
data is numerically simulated as

µϵ
k(tj) = µk(tj) + ϵ

(k)
j , j = 0, N, k ∈ {1, 3}, (59)

where ϵj are random variables generated from a Gaussian normal distribution with mean
zero and standard deviation σk given by

σk = p× max
t∈[0,T ]

|µk(t)|, k ∈ {1, 3}, (60)

where p represents the percentage of noise. We use the MATLAB function normrnd to

generate the random variables ϵk =
(

ϵ
(k)
j

)

j=0,N
as follows:

ϵk = normrnd(0, σk, N + 1). (61)

The total amount of noise ϵk is given by

ϵk =
∣

∣ϵk
∣

∣ =

√

√

√

√

N
∑

j=0

(µϵ
k(tj)− µk(tj))2, k ∈ {1, 3}. (62)

In the case of noisy data (59), we replace µ3(tj) by µϵ
3(tj) for j = 0, N in (55) and µ1(tj)

by µϵ
1(tj) for j = 1, N in (56).
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5 Numerical Results and Discussion

In this section, we present a few test examples to illustrate the accuracy and stability of
the numerical scheme based on the FDM combined with the minimization of the least-
squares functional (55), or (56), as described in Section 4. In order to explain the accuracy
of the numerical results we introduce the root mean square error (rmse), defined as

rmse(a) =

√

√

√

√

1

N + 1

N
∑

j=0

(anumerical(tj)− aexact(tj))
2. (63)

We take L = T = 1 and present the numerical results obtained with M = N = 40. Unless
otherwise specified, we take the initial guess as a(0) = 1.

5.1 Numerical Results for Inverse Problem I

We consider a couple of examples for the Inverse Problem I. Before we present the numer-
ical results, we mention that regularization has not been found necessary and hence we
consider β = 0 in the functional (55). Thus was to expected since, according to Theorem
3, the Inverse Problem I is stable in the C[0, T ] maximum norm with respect to small
errors in the input data µϵ

3.

5.1.1 Example 1

In this example, we consider the inverse problem (2)-(4) and (6) with the input data

ϕ(x) = u(x, 0) = x+ sin(x), b(x) = 2− x2,

µ1(t) = u(0, t) = 8t, µ2(t) = u(1, t) = 1 + sin(1) + 8t,

f(x, t) = 8 + (1 + t)(2− x2) sin(x), µ3(t) = −a(t)ux(0, t) = −2− 2t.

One can observe that the conditions of Theorems 1 and 2 are satisfied hence the problem
is uniquely solvable. The analytical solution is given by

a(t) = 1 + t, u(x, t) = x+ sin(x) + 8t. (64)

We start with the case of exact input data, i.e. there is no noise included in (4). Figure
5 represents the objective functional (55), as a function of the number of iterations. From
this figure it can be seen that the decreasing convergence is very fast and is achieved
in 10 iterations to reach a stationary value of O(10−24). In fact, the objective function
reaches this plateau immediately after only four iterations. The numerical results for the
time-dependent thermal conductivity a(t) are depicted in Figure 6. From this figure it can
be seen that the agreement between the numerical (final iteration 10) and exact solutions
for a(t) is excellent. Also, the rmse values versus the number of iterations are shown in
Figure 7. From this figure it can be easily remarked that the rmse(a) quickly decreases
in the first two iterations after which it becomes stationary at a very low value of 0.0002.
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Figure 5: The objective function (55), for Example 1 with no noise.
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Next, we investigate the stability of the numerical solution with respect to noise in
the data (4), defined by equation (59). We include p ∈ {2%, 20%} noise and then, the

15



total amount of noise that is applied is ϵ3 ∈ {0.3540, 3.5392}, respectively, as defined by
equation (62). Figure 8 represents the exact µ3(t) and a typical noisy measurement input
data µϵ

3(t).
Figure 9 represents the objective functional (55), as a function of number of iterations,

when p ∈ {2%, 20%}. From this figure it can be seen that a very fast decreasing conver-
gence is achieved for p ∈ {2%, 20%} in 8 iterations each, to reach a stationary value of
O(10−24).

Figures 10–12 show the numerical solutions for the thermal conductivity a(t), the heat
flux a(t)ux(1, t) at x = 1, and the rmse(a) values, respectively, for p ∈ {2%, 20%} noise.
From these figures, as well as Figure 6, it can be seen that the numerical solution for the
thermal conductivity a(t) converges to the exact solution a(t) = 1 + t, as the percentage
of noise p decreases from 20% to 2% and then to 0. The nonlinear least-squares mini-
mization produces good and consistent retrievals of the solution even for a large amount
of noise such as 20%. In Figure 12, for p = 20% a slight ’semi-convergence’ phenomenon
seems to appear after a couple of iterations, but this is more likely to be attributed to
a non-monotonic decreasing convergence rather than to the former phenomenon which is
commonly encountered when solving ill-posed problems iteratively, [8]. That is to say,
our inverse problem is rather stable and in fact, as mentioned before at the beginning of
Section 5.1, no regularization was needed to be included in the least-squares functional
(55).

Finally, Figure 13 shows the exact solution, the numerical solution for the temperature
u(x, t) and the relative error between them. From this figure it can be seen that the
numerical solution is stable and furthermore, its accuracy is consistent with the amount
of noise shown in Figure 8, which was included into the input data (4).
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Figure 8: The noisy µϵ
3(t) and exact µ3(t), for Example 1 with p ∈ {2%, 20%} noise.
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Figure 9: The objective function (55), for Example 1 with p ∈ {2%, 20%} noise.
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Figure 13: The exact and numerical temperature u(x, t), for Example 1 with (a) p = 2% and

(b) p = 20% noise. The relative error between them is also included.

5.1.2 Example 2

In the previous example we have inverted the unknown thermal conductivity a(t) = 1+ t
which is a smooth function. In this example, we consider a non-smooth test function, see
equation (65). We consider the inverse problem (2)–(4) and (6) with the following input
data

ϕ(x) =u(x, 0) = xex, b(x) = 2− x2, µ1(t) = u(0, t) = t2,

µ2(t) = u(1, t) = e+ t2, µ3(t) = −a(t)ux(0, t) = −1−
∣

∣

∣
t−

1

2

∣

∣

∣
,

f(x, t) = 2t−

(

1 +
∣

∣

∣
t−

1

2

∣

∣

∣

)

(2− x2)(xex + 2ex).

One can notice that the conditions of Theorem 2 are satisfied hence the uniqueness of the
solution holds. With this data, the analytical solution of the Inverse Problem I is given
by

a(t) = 1 +
∣

∣

∣
t−

1

2

∣

∣

∣
, u(x, t) = xex + t2. (65)

19



We study the case of exact and noisy input data (4). The objective function (55), as a
function of the number of iterations, is presented in Figure 14. Form this figure it can be
seen that the same fast decreasing convergence is achieved as in Example 1.

The numerical results for the corresponding time-dependent thermal conductivity a(t),
the heat flux a(t)ux(1, t), the rmse(a) values and the interior temperature u(x, t) are
presented in Figures 15–18, respectively. The same conclusions as those obtained for
Example 1 can be drawn by observing these figures.
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Figure 14: The objective function (55), for Example 2 with p ∈ {0, 2%, 20%} noise.
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Figure 15: The thermal conductivity a(t), for Example 2 with (a) p = 0, (b) p = 2% and (c)

p = 20%.
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Figure 16: The exact and numerical heat flux a(t)ux(1, t), for Example 2 with p ∈ {0, 2%, 20%}

noise.
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Figure 18: The exact and numerical temperature u(x, t), for Example 2 with (a) p = 2% and

(b) p = 20% noise. The relative error between them is also included.

Numerical outputs such as the number of iterations and function evaluations, as well
as the final value of the convergent objective function are provided in Table 1 for both
Examples 1 and 2.

Table 1: Number of iterations, number of function evaluations, value of objective function (55)

at final iteration, for Examples 1 and 2 with p ∈ {0, 2%, 20%} noise.

Example Numerical outputs p = 0 p = 2% p = 20%

1

No. of iterations 10 8 8
No. of function evaluations 451 328 328
Function value 1.7E − 24 1.1E − 24 1.6E − 24
rmse(a) 1.7E − 4 0.0282 0.2809

2

No. of iterations 9 7 6
No. of function evaluations 369 287 246
Function value 5.8E − 27 7.4E − 27 2.8E − 26
rmse(a) 2.6E − 4 0.0197 0.2041
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5.2 Numerical Results for Inverse Problem II

We now consider a couple of examples for the Inverse Problem II. Unlike for the Inverse
Problem I which has been found stable with respect to noise in the input data (4), for the
Inverse Problem II regularization was found necessary to be included in the functional
(56) in order to obtain stable numerical solutions. This is to be expected since in the
stability estimate (26) of Theorem 6, the right-hand side term contains the noisy data
(µϵ

1 − µ1) in the C1[0, T ]-norm which where differentiated produce an unstable numerical
solution.

5.2.1 Example 3

In this example, we consider the inverse problem (2), (6), (24) and (25) with the input
data

ϕ(x) = u(x, 0) = 1 + xex, b(x) = 2− x2,

ν1(t) = −ux(0, t) = −1, ν2(t) = ux(1, t) = −2e,

f(x, t) = et − (1 + t)(2− x2)(xex + 2ex), µ1(t) = u(0, t) = et.

One can observe that the conditions of Theorem 5 are satisfied hence, a solution is unique.
The analytical solution is given by

a(t) = 1 + t, u(x, t) = xex + et. (66)

We start the investigation with exact input data (25), i.e. there is no noise included.
Figure 19 represents the evolution of objective functional (56), as a function of the num-
ber of iterations, with no regularization, i.e. β = 0. From this figure it can be seen
that a fast decreasing convergence is achieved in 7 iterations to reach a very low value
of order O(10−26). The corresponding numerical results of the time-dependent thermal
conductivity a(t) are displayed in Figure 20. From this figure it can be seen that there
is an excellent agreement between the exact and numerical solutions with an rmse(a)=
0.0086.
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Figure 19: The objective function (56), for Example 3 with no noise and no regularization.
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Figure 20: The thermal conductivity a(t), for Example 3 with no noise and no regularization.

In order to test the stability of the problem, we add p = 2% random Gaussian additive
noise as in (59) which, according to (62), yields the total amount of noise ϵ1 = 0.2314.
Let us denote by

RII(a) =
N
∑

j=1

[u(0, tj)− µϵ
1(tj)]

2, (67)

the least-squares residual associated to the regularized Tikhonov functional (56).
Figure 21 shows the residual functional (67), as a function of the number of iterations,

for various regularization parameters β ∈ {0, 10−3, 10−2, 10−1}. From this figure one can
observe that convergence is rapidly achieved for each value of β. The resulting thermal
conductivity is plotted in Figure 22 for various regularization parameters. As expected,
when no regularization is employed, i.e. β = 0, the estimated a(t) is highly unstable and
inaccurate. This shows that the Inverse Problem II is ill-posed. Consequently, a small
perturbation in input data (25) causes a drastic error in the output solution a(t). In order
to overcome this instability, we employ the Tikhonov regularization method with β > 0.
From Figure 22 and Table 2, it can be observed that the stability is indeed restored and
the value of β = O(10−2) produces the most accurate numerical results.

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of Iterations 

R
es

id
ua

l f
un

ct
io

na
l

 

 
β=0

β=10−3

β=10−2

β=10−1

Figure 21: The residual function (67), for Example 3 with p = 2% noise, and various regular-

ization parameters.
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Figure 22: The thermal conductivity a(t), for Example 3 with p = 2% noise and various

regularization parameters.

Finally, Figure 23 shows the exact solution, the numerical solution for the temperature
u(x, t) and the relative error between them. From this figure it can be seen that the
numerical solution for u(x, t) is stable for all values of β with only very small instabilities
manifesting for β = 0 or 10−3.
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Figure 23: The exact and numerical temperature u(x, t), for Example 1 with p = 2% noise and

(a) β = 0, (b) β = 10−3, (c) β = 10−2, and (d) β = 10−1. The relative error between them is

also included.
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5.2.2 Example 4

Consider the inverse problem (2), (6), (24) and (25) with the input data

ϕ(x) = u(x, 0) = ex, b(x) = 2− x2,

ν1(t) = −ux(0, t) = −et, ν2(t) = ux(1, t) = e1+t,

f(x, t) = ex+t − (1 + 2π cos(2πt)2)(2− x2)ex+t, µ1(t) = u(0, t) = et.

The analytical solution is given by

a(t) = 1 + 2π cos2(2πt), u(x, t) = ex+t. (68)

For this thermal conductivity the initial guess was a0 = 1 + 2π. The objective function
(56), as a function of the number of iterations, is depicted in Figure 24 for no noise and
no regularization. From this figure it can be seen that the objective function (56) with
β = 0, i.e the residual functional (67), is decreasing over several orders of magnitude,
as the number of iterations increases, reaching a very low value of O(10−15) after 400
iterations. The computational time taken by the lsqnonlin to produce this convergence
was about 10.6 minutes. The resulting thermal conductivity is shown in Figure 25 and
very good agreement between the exact and numerical solutions can be observed.
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Figure 24: The objective function (56), for Example 4 with no noise and no regularization.
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Figure 25: The thermal conductivity a(t), for Example 3 with no noise and no regularization.
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Next, the input data (25) was perturbed by p = 2% noise. The residual function
(67), as a function of the number of iterations, and the numerical results for a(t) are
plotted in Figures 26 and 27, respectively, for various regularization parameters β ∈
{0, 10−3, 10−2, 10−1}. As in Example 3, one can see that the numerically obtained results
for β = 0 in Figure 27 are unstable being highly oscillatory and unbounded. However, the
inclusion of some regularization with β > 0 in the objective functional (56) restores the
stability of the numerical solution, as shown further in Figure 27. One can observe that the
choice β = 10−1 is too large and it oversmooths the solution, whilst the choice β = 10−3

is too small and it undersmooths the solution. It seems that a regularization parameter
β of O(10−2) realizes the desired compromise of balancing the under- and over-smooth
regions. Finally, Figure 27, as well as Figure 22 for Example 3, give some insight about
how one may choose the regularization parameters β > 0. Based on practical experience,
on can start with a rather large values for β, and then decrease it until oscillations in the
numerical solution start to appear [7].
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Figure 26: The residual function (67), for Example 4 with p = 2% noise and various regular-

ization parameters.
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Figure 27: The thermal conductivity a(t), for Example 4, with p = 2% noise and various

regularization parameters.

For completeness, numerical outputs such as the number of iterations and function
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evaluations, the final value of the convergent objective function, as well as the rmse(a)
are provided in Table 2 for Examples 3 and 4.

The numerical results for the temperature u(x, t) were found, as in Figure 23 for
Example 3, accurate and stable and therefore they are not presented. Finally, although
not illustrated, it is reported that an accurate and stable retrieval also was obtained for
a non-smooth thermal conductivity.

Table 2: Number of iterations, number of function evaluations, value of regularized ob-

jective function (56) at final iteration, and the rmse(a) for Examples 3 and 4 with β ∈

{0, 10−3, 10−2, 10−1} and p = 2% noise.

Example Numerical outputs β = 0 β = 10−3 β = 10−2 β = 10−1

3

No. of iterations 97 63 51 70
No. of function evaluations 4116 2688 2184 2982
Function value 0.0455 0.1818 1.0574 8.7697
rmse(a) 1.2697 0.6829 0.3158 0.4836

4

No. of iterations 976 49 41 42
No. of function evaluations 40016 2016 1764 1806
Function value 0.0286 1.029 8.917 73.817
rmse(a) 2.4973 0.7479 0.7135 1.7179

6 Conclusions

A couple of inverse problems which require determining a time-dependent thermal con-
ductivity when the spacewise dependent heat capacity is given for the heat parabolic
equation under overspecified conditions have been investigated. The Inverse Problem I
given by equations (2)–(4) and (6) was found to be well-posed, whilst the Inverse Problem
II given by equations (2), (6), (24) and (25) was found to be ill-posed and needed regu-
larization in order to obtain a stable solution. A direct solver based on a Crank-Nicolson
finite difference scheme has been developed. The inverse solver is based on a nonlinear
least-squares minimization which has been solved numerically using the MATLAB tool-
box routine lsqnonlin. Numerical results illustrated for several benchmarks test examples
show that an accurate and stable solution has been obtained.

Future work will consider extending the present study to the simultaneous identifica-
tion of several time-dependent parameters in the reaction-diffusion-convection equation,
[12].

Acknowledgments. M.S. Hussein would like to thank the Higher Committee of Edu-
cation Development in Iraq (HCEDiraq) for their financial support in this research. The
authors would like to thank Professor M. Ivanchov for discussions on the topic of this
work.

References

[1] Cannon, J.R. (1984) The One-Dimensional Heat Equation, Encyclopedia of Math-
ematics and its Applications, Vol. 23, Addison-Wesley Publishing Company, Menlo

30



Park, California.

[2] Cannon, J.R. and DuChateau, P. (1973) Determining unknown coefficients in a non-
linear heat conduction problem, SIAM Journal on Applied Mathematics, 24, 298–314.

[3] Cannon, J.R. and Rundell, W. (1991) Recovering a time-dependent coefficient in a
parabolic differential equation, Journal of Mathematical Anaysis and Applications,
160, 572–582.

[4] Coleman, T.F. and Li, Y. (1994) On the convergence of interior-reflective Newton
methods for nonlinear minimization subject to bounds, Mathematical Programming,
67, 189–224.

[5] Coleman, T.F. and Li, Y. (1996) An interior trust, region approach for nonlinear
minimization subject to bounds, SIAM Journal on Optimization, 6, 418–445.

[6] Doris, H.G., Peralta, J. and Luis, E.O. (2013) Regularization algorithm within two
parameters for the identification of the heat conduction coefficient in the parabolic
equation, Mathematical and Computer Modelling, 57, 1990–1998.

[7] Dennis, B.H., Dulikravich, G.S. and Yoshimura, S. (2004) A finite element formu-
lation for the determination of unknown boundary conditions for three-dimensional
steady thermoelastic problems, Journal of Heat Transfer, 126, 110–118.

[8] Elfving, T., Nikazad, T. and Hansen, P.C. (2010) Semi-convergence and relaxation
parameters for a class of SIRT algorithms, Electronic Transactions on Numerical
Analysis, 37, 321–336.

[9] Ismailov, M.I. and Kanca, F. (2012) The inverse problem of finding the time-
dependent diffusion coefficient of the heat equation from integral overdetermination
data, Inverse Problems in Science and Engineering, 20, 463-476.

[10] Ito, K. and Liu, J.-C. (2013) Recovery of inclusions in 2D and 3D domains for
Poisson’s equation, Inverse Problems, 29, 075005 (20 pages).

[11] Ivanchov, M.I. (1997) Inverse problem of finding a major coefficients in a parabolic
equation, Matematychni Studii, 8, 212–220.

[12] Ivanchov, M.I. (2000) Inverse problem of simultaneous determination of two coeffi-
cients in a parabolic equation, Ukrainian Mathematical Journal, 52, 379–387.

[13] Ivanchov, M.I. (2003) Inverse Problems for Equations of Parabolic Type, VNTL Pub-
lications, Lviv, Ukraine.

[14] Lesnic, D., Yousefi, S.A. and Ivanchov, M. (2013) Determination of a time-dependent
diffusivity from nonlocal conditions, Journal of Applied Mathematics and Computing,
41, 301–320.

[15] Smith, G.D. (1985) Numerical Solution of Partial Differential Equations: Finite Dif-
ference Methods, Oxford Applied Mathematics and Computing Science Series, Third
Edition.

31



[16] Mathworks R2012 Documentation Optimization Toolbox-Least Squares (Model Fit-
ting) Algorithms, available from www.mathworks.com/help/toolbox/optim/ug
/brnoybu.html.

[17] Wang, Y., Yang, C. and Yagola, A. (2011) Optimization and Regularization for Com-
putational Inverse Problems and Applications, Springer-Verlag, Berlin.

[18] Wang, P. and Zheng, K. (2002) Determination of an unknown coefficient in a nonlin-
ear heat equation, Journal of Mathematical Analysis and Applications, 271, 525–533.

[19] Yousefi, S.A., Lesnic, D. and Barikbin, K. (2012) Satisfier function in Ritz-Galarkin
method for the identification of a time-dependent diffusivity, Journal of Inverse and
Ill-Posed Problems, 20, 701–722.

32


