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Miniaturized Dielectric Waveguide Filters 

Design techniques for a new class of integrated monolithic high permittivity 

ceramic waveguide filters are presented. These filters enable a size reduction of 

50% compared to air-filled TEM filters with the same unloaded Q-Factor. 

Designs for chebyshev and asymmetric generalized chebyshev filter and a 

diplexer are presented, with experimental results for an 1800 MHz chebyshev 

filter and a 1700 MHz generalized chebyshev filter showing excellent agreement 

with theory.  

Keywords: Microwave filter; ceramic filter; dielectric waveguide filter; 

integrated waveguide filter; ceramic bandpass filter 

1. Introduction 

Cellular radio base stations routinely use TEM filters and multiplexers. These filters are 

relatively simple to manufacture and offer high Q and good spurious performance, 

although they use significant physical volume (Atia, Williams et al. 1974). There is 

significant pressure for future systems to increase the number of filters and 

consequently a reduction in size without compromising electrical performance is 

required. A survey of most often used techniques in microwave filter design is 

presented by Levy (Levy, Snyder et al. 2002). Dielectric resonator filters were first 

introduced by Cohn in 1968 using the dielectric material titanium dioxide (TiO2) of 

relative permittivity 100 and loss tangent 0.0001 (Cohn 1968). Dielectric materials are 

evaluated based on their relative permittivity, temperature coefficient and Q value due 

to dielectric loss (Nishikawa 1988). A compact dielectric filled waveguide band pass 

filter operating at X-band (8-12 GHz) is reported by Ghorbaninejad (Khalaj-

Amirhosseini 2008). A monolithic multiple dielectric loaded waveguide filter is 

designed by Kapilevich (Kapilevich and Trubekhin 1989). 

 In this paper, we present new designs for ceramic filled rectangular waveguide filters. 

These filters offer for a given unloaded Q a reduction in size of 50% or more. The filters 

consist of mono-blocks of high permittivity ceramic with various through and blind 

holes to realize the complex inter-resonator couplings for both in-line and cross coupled 

filters. The exterior surface is metallized with conductive ink. Experimental results are 

presented for a Chebyshev and a generalized Chebyshev design with an EM simulation 



of more complex diplexer. 

2. Ceramic Waveguide Resonator 

Consider the resonator shown in Figure 1 (iii), consisting of a solid rectangular block of 

high permittivity ceramic, with the exterior metalized. The resonant frequency and Q-

Factor of waveguide modes are readily computed from (Matthaei 1980). For the 

fundamental TE10 mode, as the dielectric constant is increased then the physical 

dimensions and unloaded Q decrease by a factor of 
ଵξఌೝ (Sebastian 2008). 

 

Figure 1 (i) Coaxial Resonator   Top View (ii) Coaxial resonator Side View (iii) 

Ceramic waveguide resonator     

A numerical simulation of a comparison between an air filled coaxial resonator (Figure 

1) and the ceramic waveguide resonator for a resonant frequency of 1GHz is shown in 

Figure 2. This demonstrates that the dielectric waveguide offers a potential size 

reduction of 50% or more when compared with air- filled coaxial comb-line resonators 

with the same Q-Factor. 

 



 

Figure 2 Q vs Volume comparison between comb-line coaxial and ceramic waveguide 

resonator at 1GHz 

3. Chebyshev Filter Realization  

A six pole ceramic waveguide filter with the following specification was designed using 

Ȝg/2 resonators separated by metalized holes in ceramic.  

       Centre frequency            :     1842MHz 

       Bandwidth                      :      75MHz 

      Ceramic Permittivity       :     45 

     The filter consists of a silver plated rectangular ceramic bar with various 

through holes. The holes provide inductive inter-resonator couplings and the design 

technique described in (Hunter 2001) may be used. Adjustment in inverter susceptance 

can be achieved with fixed number of holes of fixed diameter by varying the distance 

among them (Marcuvitz and Engineers 1951). Inductive holes are placed symmetrically 

across the waveguide broad dimension in order to suppress the higher order modes. The 

equivalent circuit of a six pole Chebyshev ceramic waveguide filter is shown in Figure 

3. 



 

Figure 3   Six pole ceramic waveguide filter equivalent circuit 

The structure is silver plated except for the input /output coupling probe positions. Input 

/output coupling is achieved using coaxial probes. The probe position from the shorted 

back end, diameter and depth inside the waveguide determine the amount of coupling 

achieved, bandwidth and centre frequency. Comparison of HFSS simulation and 

measured filter response is given in Figure 4.  

 

Figure 4  Six pole Chebyshev filter measured vs HFSS simulated response without 

tuning screws  

Simulations give a resonator Q-factor of 2400 however the measured pass band 

insertion loss was higher than the simulated loss. This was mainly due to leakage at the 

input and output and also slightly due to reflection, as there were no tuning screws in 

the filter. This is being corrected in future designs.  A photograph of the fabricated filter 

is shown in Figure 5. 



 

Figure 5.  Fabricated six pole Chebyshev ceramic waveguide filter 

4. Generalized Chebyshev Ceramic Waveguide Filter 

A more complex design of a six section cross coupled ceramic waveguide filter 

operating at DCS uplink frequency was designed using two cross coupled triplets to 

meet the following specifications. 

Centre frequency 1730MHz 

Bandwidth 60MHz 

Ceramic Permittivity 43 

Rejection 80 dB at f  < 1645MHz       

80 dB at f  > 1845MHz 

Achieving higher out of band rejection with a lower number of elements is possible by 

introducing finite frequency transmission zeros. There are several methods in the 

literature to introduce transmission zeros in a waveguide band pass filter e.g. by cross 

couplings between non-adjacent resonators (Atia, Williams et al. 1974; Levy and Petre 

2001) or by introducing suitable parasitic resonators in the filter (Rhodes and Cameron 

1980; Cameron 2003; Sorrentino, Pelliccia et al. 2011). A finite frequency transmission 

zero is produced due to the destructive interference of multipath (direct and cross 

coupled) in a cross coupled arrangement (Thomas 2003). Kurzrok (Kurzrok 1966; 

Kurzrok 1966) introduced cross coupled triplet and quadruplet in waveguide band pass 

filter in the early stages of microwave filter designs. The coupling matrix for the 

generalized Chebyshev filter was derived with the method described in (Cameron 1999) 

and is given below. 
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A transmission zero at the high side of pass band is produced by introducing an 

inductive cross coupled triplet to achieve specified out of band rejection level. In a 

ceramic waveguide filter all positive cross couplings can be achieved by metal plated 

through holes. The position of transmission zero above the pass band can be controlled 

by varying the cross coupling across non-adjacent resonators i.e. varying the distance 

and radius of through holes placed between cross coupled resonators. The stronger is 

the cross coupling, the closer is the transmission zero to the pass band. The transmission 

zero at the lower side of the passband is produced by introducing a capacitive cross 

coupled triplet. The capacitive cross coupling is achieved by placing a metal plated 

blind hole at the centre of the broad wall of the waveguide between cross-coupled 

resonators as shown in Figure 6. 

 

 Figure 6: Waveguide capacitive impedance inverter (i) Side view (ii) Top view (iii) 

Equivalent circuit 

 The transfer matrix of the capacitive shunt discontinuity embedded in a uniform length 

of waveguide with electrical length ߖǡ can be written as 

 
                     ሾܶሿ ൌ  ߖݏܿ ߖ݊݅ݏ݆ߖ݊݅ݏ݆ ߖݏܿ ൨  ͳ Ͳ݆ܤ ͳ൨  ߖݏܿ ߖ݊݅ݏ݆ߖ݊݅ݏ݆ ߖݏܿ ൨ 

 



 ൌ cosଶ ߖ െ ߖ݊݅ݏߖݏܿܤ െ sinଶ ߖ ʹሾߖ݊݅ݏ݆ cos ߖ െ ߖ݊݅ݏʹሾߖݏሿ݆ܿߖ݊݅ݏܤ  ሿߖݏܿܤ cosଶ ߖ െ ߖ݊݅ݏߖݏܿܤ െ sinଶ  ൨ߖ
(1) 

In an ideal shunt capacitive impedance inverter transfer matrix ܣ ൌ  , = 0ܦ

therefore  

 cosଶ ߖ െ ߖ݊݅ݏߖݏܿܤ െ sinଶ ߖ ൌ Ͳ (2) 

ൌ cosଶ ߖ െ sinଶ ߖ ൌ  ߖ݊݅ݏߖݏܿܤ

ൌ ߖʹݏܿ   ൌ ʹߖʹ݊݅ݏܤ  

 ൌ ߖʹݏܿ          ൌ  ߖʹ݊݅ݏܤ 

                    ൌ ܤ   ൌ ʹcot ሺʹߖሻ (3) 

 

Also by comparing transfer matrix to an ideal shunt capacitor transfer matrix 

ܭ݆  ൌ ߖ݊݅ݏʹ ሾߖݏ݆ܿ   ሿ (4)ߖݏܿܤ

ൌ ܭ     ൌ ߖ݊݅ݏʹ ሾߖݏܿ   ሿߖݏܿܤ
 ൌ ܭ  ൌ ߖ݊݅ݏߖݏܿʹ  ܤ cosଶ  (5) ߖ

From trigonometric identity cosଶ ߖ ൌ    ൌ  ሾͳ  ݏܿ ሺʹߖሻሿȀʹ   ܽ݊݀       ʹܿߖ݊݅ݏߖݏ ൌ sinሺʹߖሻ  
Therefore by putting in (5) ܭ ൌ sin ሺʹߖሻ  ሾͳܤ  ܭ ሻሿȀʹሿߖʹሺݏܿ ൌ sin ሺʹߖሻ  ʹcot ሺʹߖሻሾͳ   ሻሿȀʹሿߖʹሺݏܿ



ܭ ൌ sin ሺʹߖሻ  cot ሺʹߖሻ  cot ሺʹߖሻܿݏሺʹߖሻ ܭ ൌ sin ሺʹߖሻ  cosሺʹߖሻȀsin ሺʹߖሻ  cosଶሺʹߖሻȀsin ሺʹߖሻ ݇ ൌ ሾͳ  ܿ   ሻߖʹሻሿȀsin ሺሺߖʹሺݏ
 ݇ ൌ ʹ cosଶሺߖሻȀ ʹ sinሺߖሻ  ሻ (6)ߖሺݏܿ

 ݇ ൌ  ሻ (7)ߖሺݐܿ

Now from eq:(3)                                    ܤ ൌ ʹcot ሺʹߖሻ 

But cotሺʹߖሻ ൌ ሾͳ െ tanଶሺߖሻሿ Ȁʹ(8)  ߖ݊ܽݐ 

ܤ ൌ ʹሾͳ െ tanଶሺߖሻሿ Ȁʹߖ݊ܽݐ 

Put ߖ݊ܽݐ ൌ ͳȀ cot ߖ ൌ ͳȀ݇, Thus 

ܤ ൌ ͳ െ ͳ݇ଶ൨ ȀͳȀ݇ 

ܤ  ൌ ሾ݇ଶ െ ͳሿȀ݇ (9) 

As |k| <1    => k<0 

This metal plated blind hole behaves as a frequency dependent resonating structure. 

Therefore, besides providing capacitive cross coupling it resonates at a higher frequency 

and it produces another transmission zero. The position of this extra transmission zero 

can be moved away from the passband by selecting the proper diameter of the blind 

hole. The input and output couplings are achieved by 50 ohm coaxial probes. The Probe 

diameter, depth inside the waveguide, its distance from the shorted backend and offset 

from centre determines its coupling bandwidth, power handling and centre frequency 

(Liang, Chang et al. 1992). Figure 7 shows the final layout and the fabricated filter 

hardware of the cross coupled generalized Chebyshev filter designed to operate at DCS 

uplink frequency band. 



 

Figure 7 Generalized Chebyshev Cross Coupled Ceramic Waveguide Filter (i) Top view 

(ii) Cross sectional view (iii) Hardware 

Figure 8 shows the comparison of HFSS simulated and measured S-parameters of a six 

section cross coupled ceramic waveguide filter without tuning screws. Measurement 

shows that bandwidth of the passband is increased, the overall passband is shifted to the 

lower side and a severe mismatch occurs at the higher side of the passband. This is due 

to the presence of curved radii of side resonators in the physical design, which are not 

included in the EM simulations. Also the lower side transmission zero is moved further 

away from passband, due to change in resonance and coupling bandwidth of the side 

resonators of the filter. The high side transmission zero is not clearly visible in 

measured response as it is buried in the noise floor.  The passband insertion loss is about 

0.7 dB in the region of passband where filter is well matched. The next design with 

tuning screws includes the curved radii of side resonators in EM simulation. 



 

Figure 8. Generalized Chebyshev ceramic waveguide simulated and measured filter 

response (HFSSTM)  

5. Generalized Chebyshev filter with tuning screws 

The measured response of Chebyshev ceramic waveguide filter designed in section.4 

needs tuning to mitigate the effects of material discrepancies and physical dimension 

tolerances. The silver tuning screws are placed at the bottom broad wall of the filter in 

each resonator section to compensate discrepancies in the fabricated filter. Tuning 

screws are placed at the centre of the each resonator to perturb maximum E-field region 

of resonator except first and last resonator section, where tuning screws are placed 

midway between centre of the broad wall and side wall so as to keep input coupling 

unaffected when tuning resonance of the resonator. The waveguide filter is simulated 

with tuning screws half way inside the tuning hole, so as to keep the option of both way 

post production tuning mechanism.  The fabricated generalized Chebyshev ceramic 

waveguide filter having transmission zeros at above and below the pass band and with 

tuning screws in it is shown in Figure 9.  

A comparison of HFSS simulated and measured results of generalized 

Chebyshev ceramic waveguide filter with tuning screws is shown in Figure 10. The 



measured results show an agreement with simulated S-parameters except position of 

low side transmission zero shifted towards passband. This is mainly due to physical 

tolerance of blind hole depth used to provide cross coupling between resonator 4-6.  

 

Figure 9. Fabricated generalized Chebyshev filter with tuning screws  

 

Figure 10. Simulated and measured response of generalized Chebyshev ceramic 

waveguide filter with tuning screws 

6. Integrated Diplexer Design 

A miniaturized integrated ceramic waveguide diplexer is designed for the following 

channel specifications. 



Table 1 : Specification for diplexer 

Specifications      Transmit Channel Filter Receive Channel Filter 

Passband Bandwidth 60 MHz (2100 MHz-2160 MHz) 60 MHz 

Centre Frequency 2130 MHz 1730 MHz  

Passband  RL > 20 dB  > 20 dB  

Stopband 

Attenuation 

>50 dB  at   f<  2060 MHz  

& f > 2200 MHz 

> 70 dB at  DC  < f  < 1650 

MHz 

> 80 dB at 1880 MHz < f  < 

2200 MHz 

Diplexers are essentially two channel multiplexers and can be accomplished by 

designing individual doubly terminated band pass filters for each branch and then 

connecting them in parallel (Matthaei 1980). However, interaction between two filters 

must be avoided by optimizing the common junction. Although there exist some exact 

synthesis methods to design a diplexer in the literature (Rhodes 1976; Haine and 

Rhodes 1977; Levy 1990; Macchiarella and Tamiazzo 2006). Yet the most common 

approach used to design a microwave diplexer is based on the optimization techniques 

(Sanghoon and Kanamaluru 2007; Wolansky, Vorek et al. 2010). If the separation 

between RX and TX band filters is wide enough then optimisation techniques can give 

satisfactory results in a very small time. Due to the loading effect, the first resonator and 

the input coupling bandwidths need to be slightly modified. If the centre frequencies of 

both filters are not too close then only a small amount of tuning is needed. Figure 11 

represents the block diagram of the diplexer combining a Chebyshev (TX) bandpass 

filter and a generalized Chebyshev (RX) bandpass filter and its circuit simulated S-

parameter response is given in Figure 12. 

 



Figure 11 : Diplexer coupling scheme 

 

Figure 12. Circuit simulated S-parameters of diplexer 

Ceramic waveguide realization 

The ceramic waveguide diplexer can be designed by adding the two filters in parallel to 

a common junction. A T-Junction is a three port lossless reciprocal device which 

connects two TE10 mode waveguide channel filters to the common input port (Helszajn 

and Engineers 2000). The phase length between input of each filter and common port 

determines the isolation of each filter in opposite filter pass band. The length of the 

common junction is needed to be optimized in order to provide isolation between 

outputs of the side ports. Figure 13 shows the physical layout of a monolithic integrated 

ceramic waveguide diplexer. Doubly terminated waveguide filters are designed first and 

then they are connected in parallel through a common junction. The common junction is 

the extra ceramic piece which sits between TX and RX filter. The common coaxial 

probe is placed in this junction to achieve the input couplings to both filters. Each filter 

section is coupled through metal plated through holes (shunt inductors) placed between 

common junction and each individual filter. Each filter section and the common 

junction are optimized individually to reduce the EM simulation time and afterwards an 

optimization of full diplexer was carried out using HFSSTM EM simulator. The length of 

the input probe inside the waveguide used at common junction is optimized to provide 

wideband optimal return loss in both TX and RX passband. The bandwidth of the probe 

is increased by moving its position from the centre of the waveguide towards the side 



wall of the waveguide (Keam and Williamson 1994). Figure 14 shows the S-parameter 

response of the EM simulated integrated ceramic waveguide diplexer. 

 

Figure 13. Ceramic waveguide diplexer layout (i) Top view (ii) Side view 

 

Figure 14. Simulated response of ceramic rectangular waveguide diplexer (HFSSTM) 



7. Practical Issues 

Practical issues for fabrication are; the ceramic material used was Barium titanate with ߝ = 45 and tan0.00004= ߜ for chebyshev filter and ߝ = 43 and tan0.00004= ߜ for rest 

of the designs. The ceramic was fired and pressed and details were added by machining. 

The surface finish was 0.5ȝm. The metallic coating was a silver loaded ink which was 

sprayed on to the ceramic; it had a conductivity of 4.4x1e7 s/m. The temperature 

coefficient of the ceramic was -4.5 ppm/0C. 

8. Conclusion 

The design of miniaturized integrated ceramic waveguide filters and a diplexer is 

presented in this paper. A monolithic six pole Chebyshev and a cross coupled 

generalized Chebyshev ceramic waveguide filter with tuning screws in it were designed 

and measured. The design of a monolithic integrated ceramic waveguide diplexer is also 

presented. Potential volume reduction of 50% is achieved as compared to conventional 

coaxial filters using high permittivity ceramics. Measured results for Chebyshev design 

are in good agreement with the simulated results with the one exception of pass band 

loss where leakage at input and output increases the pass band insertion loss. The 

measured results for generalized Chebyshev design are also well matched to the 

simulated results except the position of the lower side transmission zero which has 

moved closer to the passband. This is mainly due to mechanical tolerance of the blind 

hole in the ceramic providing stronger cross coupling than required.   
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