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Abstract  —  A generalized method for the synthesis of lossy 

microwave filters is given in this paper. An equation on the 
polynomials of S parameters is given to replace the power 
conservation. When the polynomials of S parameters satisfy a 
given condition, it is guaranteed that the admittance parameters 
as well as the coupling matrix (CM) can be derived from the S 
parameters. Two special cases are discussed for solving the 
refection function from a prescribed transfer function. In the first 
case, F11  (the numerator of S11) equals to F22  (the numerator of 
S22). This is the case that is equivalent to the even/odd mode 
analysis but is extended to be applied for asymmetric filter 
responses. In the second case, the loss distribution among a filter 
network is given. A method of iteration is applied to derive the 
CM with the prescribed loss distribution. The method is an 
extension to the conventional method of predistortion with non-
uniform resonator Qs and lossy invertors. 

Index Terms — Lossy synthesis, filter synthesis, predistortion. 

I. INTRODUCTION 

Generally speaking, there are two problems in the synthesis 

of lossy CMs: the determination of lossy transfer functions that 

can be realized by lossy networks and the derivation of lossy 

circuits based on the given responses. The lossy synthesis 

methods reviewed earlier solve these problems partially and 

are only applicable within certain constants. The method of 

predistortion [1] provides the denominator polynomial of lossy 

transfer functions with uniform resonator losses. The method 

given [2] determines lossy circuits based on even and odd 

modes analysis. The filter networks realized either have 

dissipations only at the input and output resonators or have 

complex cross couplings which are difficult to implement. In 

[3][4], the even and odd mode analysis which is originally 

only valid for symmetrical responses is extended to the case 

when S11=S22. However, the lossy network synthesized 

requires the use of hybrids to combine sub-networks. The 

method in [5] is based on a very specific type of lossy 

responses for which the characteristic polynomials are 

multiplied by certain constants so that the lossless synthesis 

method is still valid.  

A generalized lossy synthesis technique is presented in this 

paper. The method can (1) find the reflection function from the 

transfer function when unitary condition is not satisfied; (2) 

derive the expressions for the complex Y parameters and (3) 

synthesize the lossy CM with prescribed loss distribution. The 

method is based on a condition set for the polynomials of S 

parameters which replaces the use of power conservation in 

the lossless case and it is guaranteed that the admittance 

parameters and corresponding CMs can be derived.  

Two special cases are given for solving the refection 

function with a prescribed transfer function. In the first case, 

F11 the numerator of S11 equals to F22 the numerator of S22. 

The method is equivalent to the even and odd mode analysis 

for asymmetric filter responses. Since the networks are 

transversal arrays which have a parallel connection of the even 

and odd mode sub-networks, they can be transformed to any 

realizable configurations. In the second case, loss distributions 

are given. An method of iteration is applied so that the 

synthesized CM has the prescribed loss distribution. The 

method is equivalent to an extension of conventional method 

of predistortion with non-uniform resonator Qs and lossy 

invertors.  

The lossy synthesis method provided is capable of 

synthesizing lossy networks with prescribed non-uniform Qs. 

The application of this method is found in the implementation 

of filter networks consisting of two different kinds of 

resonators. Filter with both dielectric and coaxial resonators is 

used in to provide improved spurious [6]. Various examples of 

synthesizing CMs are given in this section to illustrate the 

design processes. A 6
th

 degree filter with TM dielectric and 

coaxial resonators is modeled in HFSS and simulated.  

II. THEORY 

A. Lossy Characteristics 

For the derivation of S parameters in this paper, the rational 

polynomial expressions in (1) are used. S21 is the general 

Chebyshev response or other filter characteristics. The lossy 

synthesis method presented can be applied to any lossy 

insertion loss functions in the form of rational polynomials. In 

this paper, as dissipations included in filter networks introduce 

rounding at bandedge and thus deteriorate the filter’s 
performance, an insertion loss which is the same as the lossless 

one multiplied by a constant smaller than one as shown in (2) 

is used to illustrate the synthesis process because it maintains 

the selectivity of the filter network. S21’ represents the lossy 

one and k21 determines the insertion loss level. Using the 

polynomial expression, the denominator polynomial is the 

same as in the lossless case and the numerator polynomial is 

given in (3). 
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B. S to Y Transformation 

In [7], the transformation between S parameters and 

admittance parameters is given. For a two-port network with 

unit reference impedance, the transformation could be 

simplified as in (4). These Y parameters are rational 

polynomials and the degree of the denominator is 2N. 
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For the N
th

 degree S parameters to be realizable by an N
th

 

degree filter network, the admittance parameters in (4) must 

also be a rational polynomial of degree N. This can only be 

achieved when the condition given in (5) is satisfied while Ex 

is an N
th

 degree polynomial. Substituting Ex into (4), the Y 

parameters can be expressed as in (6) which are rational 

polynomials of degree N and can be used for the synthesis of 

CM. As a result, the condition given in (5) for the polynomials 

of S parameters must be satisfied so that the response can be 

realized by an N
th

 degree network. This requirement is general 

for both lossless and lossy cases.  
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For lossless networks, according to the condition of power 

conservation, Ex is the complex conjugate of E. However, it is 

unknown for lossy networks. Using the lossy characteristics of 

(2), the condition is modified to (7). In this paper, two 

different cases are discussed for solving (7) in the following 

sections.  
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III. CASE I: F11=F22 

When F22=F11, or more generally as in (8) in which k11 is a 

constant, (9) can be derived from (7). The two terms in (9) 

which are combinations of F11 and P provides the roots of E. 

Given the expressions for P and E, F11 can be solved through a 

set of linear equations as in (10). 
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This method of deriving the reflection function is general 

that the filter response doesn’t need to be symmetric. Based on 
the synthesis procedure, the even and odd mode analysis of [2] 

and [3] which is originally used for symmetric networks could 

be applied to asymmetric networks when the response satisfies 

the conditions in (7) and (8).  

IV. CASE II: GIVEN LOSS DISTRIBUTION 

Solution to (8) could also be found when polynomial Ex is 

given. Losses of a filter network can be modeled in a modified 

CM with complex resonators and invertors. For any CM 

regardless of the configuration, it could be transform back to 

the transversal array so the admittance parameters for the 

network can be found directly. Then the response of the 

network could be derived by the transformation of Y 

parameters to S parameters given in (11) in which where Yx is 

a polynomial defined in (12).  

Polynomial expressions for S parameters are found here 

directly from admittance parameters without matrix inversions. 

The condition in (12) is equivalent to the one in (7) and this 

can be proved by polynomial substitutions. 
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A method of iteration is introduced for solving this problem. 

The initial values are chosen to be the polynomial Ex of the 

lossless network. For lossy network, Ex’ and P’ are updated in 

each iteration and are denoted as Exi and Pi. Using this Exi, Pi 

and E, the polynomial for F11i and F22i and a lossy coupling 

matrix Mt can be found. A new lossy coupling matrix Mi could 

be defined by adding the prescribed loss distribution to the 

real part of CM Mt. For this lossy network Mi, the new 

polynomials Exi+1 and Pi+1 can be found by the method given in 

the last section. And this procedure is applied iteratively until 

the loss of the synthesized coupling matrix is the same to the 

prescribed ones under a degree of precision. 

 1) Given E and loss distribution į which is a imaginary 

matrix with its diagonal elements representing the dissipation 

of each resonator and the off-diagonal ones representing the 

loss of invertors according to (13). 

 2) The initial values for Exi and Pi are equivalent to the 

ones in the lossless case. 

 3) Derive F11i and F22i using Exi, Pi and E using (7) 

 4) Synthesize lossy coupling matrix Mt according to [8]. 

 5) Derive Exi+1 and Exi+1 from lossy Mi which is 

equivalent to real(Mt)+ǻ according to (11). 



 

 6) go back to 3) if the imaginary part of Mt is not close 

enough to į.  
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In step 2), the zeros of F11i and F22i no longer lie on the 

imaginary axis as in the lossless case. In step 4), the coupling 

matrix might have loss distribution different from the given 

one. For example, when only resonator loss is concerned, the 

Mi might contain complex invertors. However, the loss 

distribution will converge to the prescribed one after about 10 

iterations.  

V. DESIGN EXAMPLE 

The example is a 6
th

 degree filter with general Chebyshev 

response. The filter is symmetric with four transmission zeros 

at 1.6j, -1.6j, 2.4j and -2.4j in the lowpass domain. The centre 

frequency is 2GHz and the bandwidth is 0.12 GHz. The filter 

is realized by two coaxial resonators at the input and output 

with Q of 3200 and four TM01 dielectric resonators with Q of 

2500. The original and designed CMs are compared in Table I. 

The EM model and the simulated results are shown in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. EM model and response of the 6th order mixed coaxial and 
TM mode dielectric filter 

V. CONCLUSION 

The lossy synthesis method is an extension to the lossless 

coupling matrix synthesis given in [8] which first derives the 

admittance parameters from the characteristic functions using 

the equation of power conservation, then generate a canonical 

CM that can be transformed to required configurations. The 

lossy synthesis method presented is based on a new condition 

for the lossy characteristic polynomials to replace the power 

conservation. When the lossy transfer function is defined, 

solutions to the characteristic polynomials are found under two 

conditions. In the first one, S11 equals to kS22 where k is a 

constant. This an even and odd mode of analysis applied to 

asymmetric filter responses. In the second one, the loss 

distribution is given and thus is a non-uniform predistortion.  
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[6] Michael Ḧft and Thore Magath, "Compact Base-Station 

Filters Using TM-Mode Dielectric Resonators", German 

Microwave Conference GeMIC, Karlsrhue, 2006. 

[7] K. Kurokawa, "Power Waves and the Scattering Matrix", 

IEEE Trans. Microwave Theory & Tech., Mar. 1965, 

pp194-202 

[8] R. J. Cameron, “Advanced Coupling Matrix Synthesis 
Techniques for Microwave Filters,” IEEE Trans. Microw. 
Theory Tech., vol.51 , no.1 , pp.1-10, Jan. 2003.C. J. 

Kaufman, Rocky Mountain Research Lab., Boulder, CO, 

private communication, May 1995. 

 

TABLE I 
COUPLING MATRIX MT IN THE FIRST AND LAST ITERATIONS 
MS1 0.9957 M56 0.8309 MS1 0.6608 M56 1.0458 

M12 0.8309 M6L 0.9957 M12 0.7055 M6L 1.2272 

M23 0.5823 M25 -0.1521 M23 0.5548 M25 -0.1595 

M34 0.6971 M16 0.0147 M34 0.7067 M16 0.0174 

M45 0.5823   M45 0.6353   

 


