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Many-body localization in periodically driven systems 

 

Introduction. The dynamics of closed quantum 
many-body systems driven out of equilibrium has been 
the subject of intense investigation over the past 
decade [1, 2]. Many-body systems with local Hamilto-
nians broadly fall into two classes with distinct dynam-
ical properties: ergodic systems, which reach local 
thermal equilibrium as a result of the Hamiltonian 
evolution, and non-ergodic ones which fail to 
thermalize. Thermalization in isolated ergodic systems 
can be linked to the properties of individual many-body 
eigenstates that are locally thermal [3–5]. 

While a complete classification of non-ergodic systems 
remains an open problem, it has recently been estab-
lished that many-body localization [6–17] provides a ro-
bust mechanism of ergodicity breaking in systems with 
quenched disorder. Many-body localized (MBL) systems 
are characterized by an extensive number of quasi-local 
conservation laws [13, 14], which strongly restrict quan-
tum dynamics and prevent energy transport and thermal-
ization. MBL systems have universal dynamical prop-
erties, such as the logarithmic-in-time growth of entan-
glement entropy for initial product states [9, 11–15], in 
contrast to ergodic and Bethe-ansatz-integrable systems 
where entanglement spreads linearly in time [18–20]. 

In this paper, we study disordered many-body systems 
with local time-dependent Hamiltonians H(t) that vary 
periodically in time, H(t + T) = H(t). The properties of 
periodically driven systems are determined by the unitary 
Floquet operator Fˆ , i.e., the evolution operator over one 
period: 

Z T 
Fˆ = T exp{_i H(t)dt}, (1) 

0 

where T exp denotes a time-ordered exponential. In 
the eigenstate basis |ψa), F ˆ takes the form F ˆ = 

PD a=1 e−iθα|ψa)(ψa|, where V is the Hilbert space di-
mension, and the quasi-energies 9a can be chosen to lie 
in the interval [0; 2π). One can introduce an effective 
Floquet Hamiltonian HF as F ˆ = e−iHF , with eigenstates 
|ψa) and eigenvalues 9a +2πna, where na is an arbitrary 
integer. Generally it is not known whether there exists a 
choice of na which brings HF into a sum of local terms, 
and therefore the Floquet problem cannot be reduced to 
the study of time-independent local Hamiltonians. It is the 
goal of this paper to explore different regimes of the 
Floquet dynamics in disordered many-body systems. 

We consider a generic class of periodically driven 1D 
models with quenched disorder, and find that, as system’s 
parameters are varied, two distinct phases are realized, 
which differ in the structure of their Floquet eigenstates, as 
well as in dynamical properties. One of them is the MBL 
phase in which the Floquet eigenstates at arbitrary quasi-
energy obey the area-law for entanglement entropy, 
similar to the ground states in gapped systems. Level re-
pulsion is absent, and the statistics of quasi-energy levels 
follows the Poisson statistics. Further, in the limit of an 
infinite system, the eigenstates with similar quasi-energies 
typically have different local properties, thus the eigenstate 
thermalization hypothesis (ETH) [3–5] breaks down. The 
second phase is the delocalized (ergodic) phase. Here the 
Floquet eigenstates have an extensive, volume-law 
entanglement; the quasi-energy levels repel, and their 
statistics is described by Circular Orthogonal Ensemble 
(COE). ETH holds in this phase, and the Floquet 
eigenstates have identical local properties, described by 
an infinite-temperature Gibbs ensemble. 

The two phases can furthermore be distinguished by 
their dynamical properties, e.g., the time evolution of 
the system prepared in a product state, which can be 
efficiently simulated numerically. In the MBL phase, the 
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states retain local memory of the initial state, and local 
observables at long times are correlated with their initial 
values. Similar to MBL systems with time-independent 
Hamiltonians, entanglement entropy grows logarithmically 
in time. This behavior reflects the presence of emergent 
local integrals of motion [13, 14], which we explicitly 
construct following Ref. [21] (see also Ref. [22]). In 
contrast, in the delocalized phase local observables relax 
to their “equilibrium” values at long times, which are given 
by the infinite-temperature Gibbs ensemble. In this case, 
entanglement spreads much faster, and we find a 
behaviour consistent with the linear growth of entan-
glement. 

Our results complement previous works [23–26], which 
considered translationally invariant driven systems, as well 
as Ref. [27], where the behaviour of disordered many-
body systems under local driving was studied. 

Model. Our system is a 1D spin 1/2 chain with open 
boundary conditions. Following Refs. [23, 24], we con-
sider a driving protocol in which the system’s Hamilto-
nian is periodically switched between two operators, H0 

and H1, both of which are sums of local terms. An ex-
ample of a disordered Hamiltonian H0, which describes 
an MBL phase and acts for time T0, is 

H0 = E hiσz
i + Jzσz

i σz
i+1, (2) 

i 

 
states. As a 
delocalizing 

Hamiltonian H1 we 
ch  = E

σxi σx i+1 +σy i σy
i+1, (3) 

 

which acts for time T1 such that the driving period is 
T = T0 + T1. The associated Floquet operator is 
given by: 

Fˆ = e−iH0T0e−iH1T1. (4) 

The protocol describes an MBL system periodically 
”kicked” with a delocalizing perturbation H1, and can be 
viewed as a many-body generalization of a periodically 
kicked rotor model [28–34]. Recent work has argued 
that a similar protocol for translationally-invariant 
Hamiltonians results in an infinite-temperature state at 
long times, and therefore a non-local Floquet operator 
[25]. We fix Jx = Jz = 1/4, T0 = 1, W = 2.5 and tune the 
strength of the kick – T1 – observing a transition at 
critical T1

∗ between an MBL phase (small T1 < T1
∗) and 

an ergodic phase (T1 > T1
∗). We note that the model 

(2,3) always has one conserved quantity, the z-
projection of the total spin, Sz = ENi=1 σz

i . However, we 
have checked that this global conservation law is not 
essential for the existence of MBL and ergodic phases, 
by studying other models where Sz is not conserved. 
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FIG. 1. Disorder-averaged level statistics parameter h7i as a 
function of the “kick” strength T1. At small values of T1, h7i 
≈0.386, indicating Poisson statistics of quasi-energy levels (no 
level repulsion). At larger T1 the system undergoes a transition 
into a delocalized phase with h7i ≈ 0.53, consistent with COE 
[25]. Data is for system sizes L = 10, 12, 14, and averaging is 
performed over 1000 disorder realizations. 

where random fields hi are uniformly 
distributed in the 
interval [—W; W]. The eigenstates of H0 are 
product 

Properties of Floquet eigenstates. We first explore 
the properties of the Floquet eigenstates Oα) and quasi-
energy spectrum θα E [0; 2π), using exact diagonalization 
(ED). By computing the consecutive quasi-energy gaps 
δα = θα+1 — θα, we characterize the level statistics by 
their ratio r = min(δα, δα+1)/max(δα, δα+1) [8, 25]. The 
averaged value of r serves as a probe of ergodicity 
breaking: it allows one to distinguish between the 
Poisson and Wigner-Dyson level statistics. In Fig. 1 we 
show (r) averaged over all quasi-energy spacings and 
over 1000 disorder realizations, for several system sizes. 
At small kick period T1, (r) becomes increasingly close to 
the Poisson-statistics value (r)POI 0.386 as the system 
size is increased. This indicates the absence of level re-
pulsion and suggests that ergodicity is broken at small T1 
and the system is in the MBL phase. At large T1 pa-
rameter (r) is approximately equal to 0.53, which is close 

to the COE value, (r)COE 0.527 [25]. This suggests 
that at large T1 the system delocalizes. The (r) curves 
for different system sizes cross at T1

∗ 0.9, suggesting 
a phase transition between MBL and ergodic phases. A 
drift of the crossing point towards smaller T1 is observed, 
similar to the time-independent case [10]. 

To further distinguish the nature of the two phases, we 
study the entanglement properties of the Floquet eigen-
states. The expectation from the static case is that MBL 
eigenstates should obey an area law for entanglement 
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entropy, i.e. in 1D their entropy should weakly depend 
on the chain size [13, 16], while in the ergodic phase the 
eigenstates are thermal and their entropy scales as L. 
Fig. 2 shows disorder- and ensemble-averaged von 
Neumann entropy (S) of the Floquet eigenstates, for the 
symmetric bipartition, plotted as a function of T1. The 
markedly different scaling of (S) at small and large val- 
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FIG. 2. Averaged entanglement entropy (S) and its fluctua-
tions (ΔS) (inset) as a function of T1. The scaling of entropy 
and its fluctuations with system size L are consistent with the 
existence of an MBL and a delocalized phase for small and 
large T1, respectively. 

effects. We have also directly tested the ETH and its 
violation in the MBL phase in the Floquet eigenstates, 
finding behaviour consistent with the existence of two 
phases [37] (see also Ref. [38], where ETH for driven er-
godic systems was tested). 
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ues of T1 lends further support to the existence of 
two phases. At T1 „, 

< T1
k , (S) is much smaller than the 

value expected for random vectors in the Hilbert space, 
STh L/2 ln 2 [35], which signals ergodicity breaking. 
Moreover, at T1 < 0.6 the entanglement entropy grows 
very weakly with system size, consistent with area-law in 
1D. On the contrary, at large T1 > T 1 k ,(S) approaches 
STh, indicating that almost all eigenstates are essentially 
random vectors in the Hilbert space, as expected in the 
ergodic phase. 

It is also instructive to study the fluctuations of en-
tanglement entropy, as they have been shown to provide 
a useful probe of the MBL-delocalization transition in time-
independent models [36]. The disorder-averaged 
fluctuations of S, defined as ΔS = \MS - (S))

2
) are expected 

to be small deeply in the delocalized phase, as well as in 
the MBL phase: in the former case, almost all eigen- 
states are highly entangled, with S STh, with small 
fluctuations around this value, while in the latter case, S 
obeys area-law and is therefore small, as are its stateto-
state fluctuations. In contrast, at the transition S has a 
broad distribution [13, 36], and therefore its fluctuations 
are maximal. Thus, the localization-delocalization 
transition can be detected by the location of the peak in 
ΔS. Fig. 2(inset) shows ΔS as a function of T1. Entan-
glement fluctuations ΔS exhibit a maximum at T1 1.1 that 
roughly agrees with T1

k value found from analyzing level 
statistics; further, we observe a slight drift of the 
maximum with the system size, similar to the previous 
study of the static case [36]. We attribute the difference 
between the position of the maximum in ΔS and value 
T1 determined from the level statistics, to the finite-size 

FIG. 3. Dynamical properties: decay of magnetization at a 
given site I = 1 for a N´eel initial configuration. Inset: Long-
time magnetization remains non-zero in the MBL phase as 
the system size is increased. In the delocalized phase, 
magnetization decays to zero at long times. Averaging was 
performed over 6000 disorder realizations. 

Dynamics. We next study the dynamical properties of 
the model (2,3). We consider a standard quantum 
quench protocol: the system is initially prepared in a Néel 
(product) state |ψ0) of spins σz

i = ±1 at t = 0, and this state 
is evolved under the Hamiltonian (2,3) at t > 0. This 
protocol is particularly easy to simulate using Krylov 
subspace projection methods [39] or time-evolving block 
decimation [40] method, both of which allow us to access 
larger systems beyond ED due to the sufficiently slow 
growth of entanglement in the MBL phase. For the TEBD 
algorithm we use a second order Trotter decomposition 
with time step Δt = 0.1. The growth of the bond 
dimension is controlled by requiring the neglected weight 
to be less than 10-7 at each Schmidt decomposition. 

Local observables. We first focus on the evolution of 
local observables, and compute the expectation value of 
the spin on a given site I, σz I (t), and its long-time limit 
(σz

I (oo)) [21, 41, 42]. Fig.3 illustrates the time evolution 
σz

I(t) for the Néel initial state |ψ0) and site I = 1, and for 
system sizes ranging from L = 10-14 (obtained via ED), 
L = 16, 18 obtained using Krylov subspace projection, 
and L = 24, 30 obtained using TEBD. We find that the 
on-site magnetization remains finite at very long times 
even for the largest systems without any visible finite-
size effects. This indicates that the MBL phase remains 
stable in the thermodynamic limit. 
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FIG. 4. Disorder-averaged entanglement entropy following a 
quantum quench, for the N´eel initial state. Data for system 
sizes L = 12, 14 was obtained by ED, for L = 16, 18 using 
Krylov subspace projection, and L = 24, 30 using TEBD. 
Averaging performed over 6000 disorder realizations. 

The long-time average hσz
I (∞)i can be expressed 

in terms of the Floquet eigenstates as hσz
I (∞)i = 

f 

limt  ot (Oo(e)10o)dt
0, which in terms of the 

" t 
eigenstates |ψαi reads Eα hψα |σ

z
I|ψαi | hψ0|ψαi|

2
. The 

long-time value hσz
I (∞)i, calculated using ED, and av-

eraged over 6000 disorder realizations, is illustrated in 
Fig. 3(inset). This quantity behaves differently in the two 
phases: at T < T1

∗ , hσz
I(∞)i is positive and weakly de-

pendent on the system size, which shows that in the MBL 
phase the local memory of the initial state is retained. 
Deep in the ergodic phase, at T1 ∗ ,hσz

I (∞)i → 0, re- 
flecting the decay of the initial magnetization and 
therefore a loss of the memory of the initial state. 

Entanglement growth. Finally, we explored the 
spreading of entanglement following a quantum quench, 
known to be a sensitive probe of many-body 
localization: in the MBL phase, entanglement grows 
logarithmically in time [9, 11–14], while in the ergodic 
phase, as well as in Bethe-ansatz-integrable systems, it 
grows linearly in time [18–20]. The disorder-averaged 
entanglement entropy as a function of time, calculated 
for fixed T1 = 0.4 and the symmetric bipartition, is shown 
in Fig. 4. Averaging was performed over 6000 disorder 
realizations. Entanglement initially rises from zero, 
followed by a plateau and a logarithmic growth for 
several decades in time, hS(t)i ∝ ln(t). This behavior is 
qualitatively similar to that found in the MBL phase in 
systems with time-independent Hamiltonians [11–14], 
which gives further support for the existence of the MBL 
phase in driven systems with strong disorder. 

Local integrals of motion and effective descrip-
tion of the driven MBL phase. In order to under-  
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stand the spectral and dynamical properties of the MBL 
phase observed in the numerical simulations, we propose 
that this phase is characterized by an extensive number of 
local integrals of motion [13, 14]. First, we note that the 
area-law entanglement of the Floquet eigenstates sug-
gests that they can be obtained from the product states (in 
the σz

i = ±1 basis) by a quasi-local unitary transformation U 
which brings the Floquet operator into a diagonal form in 
that basis: U F

ˆ
U† = ˆ

Fdiag. Since L of the operators σz i 

commute with ˆFdiag, we can introduce a set of L 
“pseudospin” operators τz

i = U†σz
i U. These operators 

commute with the Floquet operator [Fˆ, τz
i ] = 0, as well as 

with each other [τz
i , τz j ] = 0. Operators τz

i have eigen-
values ±1 and therefore satisfy the relation (τzi )2 = 1; they 
can be viewed as z-components of some “effective” spins. 
We emphasize that the operators τz

i can be introduced for 
any driven system, but the special property of the MBL 
phase is that their support is localized near site i, and they 
affect remote physical degrees of freedom exponentially 
weakly. In terms of τ-operators, the operator F takes a 
simple form, as it can only depend on τz

i operators and 
their products (but not on the τx

i , τy i operators). It is 
convenient to represent Fˆ as 

Fˆ = e−iHeff({τz
 i }), (5) 

where Heff({τz
i }) is a real function of operators τz

i . (Such 
a representation takes into account the fact that eigen-
values of Fˆ have absolute value one). Further, since (τzi 

)2 = 1, Heff can generally be written as 

Jijkτz
 i τz j τz k +. . . 

(6) It is natural to assume that in the MBL 
phase the couplings J between remote effective spins 
decay exponentially with distance, similar to the static 
case [13, 14]; we note that long-range interactions, in 
particular, would be inconsistent with Lieb-Robinson 
bounds on information propagation [43] satisfied by the 
operator Fˆ. 

The effective model introduced above naturally explains 
the spectral and dynamical properties of the MBL phase 
established numerically, e.g., the absence of decay of the 
on-site magnetization at long times and the logarithmic 
growth of entanglement, which directly follows from 
Eqs.(5,6) and exponential decay of interactions between 
remote effective spins [12–14]. To provide further 
justification for the effective description (5,6), we have 
also numerically constructed [37] the local integrals of 
motion following Ref. [21]. These form an extensive set, 
although they are not identical to τz

i operators. 
Discussion. We have demonstrated the existence of 

two dynamical regimes in periodically driven systems de-
scribed by local interacting Hamiltonians with quenched 
disorder. In particular, we have identified a many-body 
localized phase, in which ergodicity is broken. We argued 

 
Heff ({τz

i }) = V 
i 

˜
hiτz

i +E 
ij 

J i j τ z
i  E 

ijk  
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that the MBL phase is characterized by extensively many 
emergent, quasi-local conservation laws. This implies that 
the dynamics of Floquet MBL systems is described by an 
effective quasi-local time-independent Hamiltonian Heff, 
which is itself many-body-localized. This is in sharp 
contrast to the ergodic phase, where the Floquet Hamil-
tonian does not have a quasi-local representation [25–27]. 
An interesting open question is whether the Magnus ex-
pansion [44] converges in the MBL phase. 

Another implication of our results is that MBL does not 
rely on global conservation laws. Further, MBL phase is 
robust under sufficiently weak periodic driving, and there 
exists a finite driving threshold above which transport is 
restored, and the system ultimately delocalizes. This 
may serve as an experimental signature of the many-
body localization. An interesting subject for future 
research, relevant for experiments in disordered solid-
state systems, is to study periodically driven MBL 
system weakly coupled to a thermal bath (we note that 
spectral properties of a static MBL system coupled to a 
bath were recently considered in Refs. [45, 46]). 
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Note added. During the completion of this manuscript, 
we became aware of a related recent work [47]. 
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Here we provide direct numerical tests of the eigen-
state thermalization hypothesis (ETH) in driven MBL 
and delocalized phases. We also explicitly construct lo-
cal integrals of motion in the MBL phase for the Floquet 
problem using the method of Ref. [21]. 

TESTING THE ETH 

According to the ETH, in the delocalized phase 
the expectation value of a local operator O in all 
Floquet eigenstates should converge, in the 
thermodynamic limit, to the prediction of the 
canonical ensemble with infinite temperature 

1 
O∞ = D 

where D is the Hilbert space dimension. We test ETH 
and its violation in the MBL phase by examining the de-
viation of the expectation value of O in individual eigen-
states, hOiα from O∞: 

ΔO = h|hOiα − O∞|i, 

where averaging is performed over all Floquet 
eigenstates for each disorder realization, and then over 
different disorder realization. We expect this quantity to 
approach zero in the delocalized phase, as L → ∞. On 
the other hand, in the MBL phase this quantity should 
remain finite as we extrapolate the chain size L to infinity. 

In Fig. 5 we show numerical results for local 
operators O that act on the two neighbouring sites in 
the middle of the chain and conserve Sz. We studied 
the following four operators: 

O1 = 0zL/2, 

O2 = 0zL/20zL/2+1, 

O3 = (0+L/20−L/2+1 + 0−L/20+L/2+1), 

O4 = i(0+L/20−L/2+1 − 0−L/20+L/2+1). 

As expected, in the MBL phase (T1 = 0.4), hΔOi 
changes weakly with system size suggesting that it 
remains finite in the thermodynamic limit. In the 
delocalized phase (T1 = 3.0), ΔO approaches zero with 
increasing system size suggesting that each Floquet 
eigenstate behaves as an infinite temperature thermal 
state for local observables in the thermodynamic limit. 
We note that all four operators show nearly identical 
behaviour. Thus the direct test of the ETH is consistent 
with the presence of two phases with markedly different 
properties of their eigenstates. 

FIG. 5. Deviation of expectation values of local operators from 
their infinite-temperature values given by the canonical 
ensemble. Different plots correspond to various choices of Sz-
preserving local operators 0 acting on the sites in the middle 
of the chain, and Ti = 0.4, 3.0 correspond to MBL and 
delocalized phases, respectively. 
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To further support the effective model of the 
MBL phase introduced in the main text, we 
now explicitly construct an extensive set of 
quasi-local integrals of motion. Following Ref. 
[21], we consider infinite-time average of the 
operator 0z1, denoted by ¯ 0z1, which is 
always an integral of motion. We now 
demonstrate that in the MBL phase this 
operator is a quasi-local integral of motion. 

First, we note that operator ¯ 0z1 describes 
the spreading of magnetization, initially 
prepared on site 1. To illustrate this, consider 
the infinite-temperature ensemble, in which 
spin 1 was initially prepared in the up-state, 
described by the density matrix 

this initial magnetization will spread over the chain with 
time. Upon time averaging, the density matrix can be 



 

FIG. 6. Local integrals of motion in the MBL and delocalized phase. (Left) Median magnetization M1j as a function of 
distance − j|. (Right) Median difference between the total norm N, and partial norm δN(j), divided by N. The exponential 
decay of this quantity with distance | j − 1| demonstrates that in the MBL phase (T1 = 0.4) operator ¯ σz

1 is a quasi-local 
integral of motion. In the delocalized phase (T1 = 3), this operator becomes non-local. 

expressed in terms of the operator ̄ σz
1 as follows: 

ρ¯  = 2−L(1 + ̄ σz
1), 

where ¯ σz
1 = f0

T
σ1(z)(t)dt. Thus the spread- 

ing of the initial magnetization over the chain at long 
times can be related to the properties of operator ¯ σz

1 

The long-time magnetization on site j is given by: 

1 

M1j = Tr(¯ ρσz
j) = 2L Tr (¯ σz

1σz
j) 

Fig. 6 illustrates that M11 is on the order of unity, but M1j 

decays over several orders of magnitude as a function of |j 
—1| in the MBL phase (T1 = 0.4). This is consistent with 
¯ σz

1 being a quasi-local operator. Conversely, in the 
delocalized regime (T1 = 3), the magnetization is nearly 
uniformly spread over all sites j and has a stronger de-
pendence on the chain size L, thus, operator ¯ σz

1 
becomes non-local. 

To further test the quasi-locality of operator ¯ σz
1 in the  

MBL phase, we examined the partial norm 

1 
 AT(j) =  _ .Tr(¯ σA¯ σA), 

23 

where 

 ̄ σA ≡ _ 
1 Tr a_z

 
2 L − j  A  1 ,  

N −N(j)  
N vs j, where AT = 2L1 Tr¯ σz

1¯ σz
1 is the total 

norm of the operator ¯ σz
1. This quantity 

describes how well the operator ¯ σz
1 can be 

approximated by operators with a finite support, and 
therefore tests whether this operator is quasi-local. It is 
evident from Fig. 6 that δNN(j)  approaches zero 
exponentially in distance |j — 1| in the MBL phase, 
indicating that the operator ¯ σz

1 is indeed a quasi-local 
integral of motion. We note that similar quasi-local 
integrals of motion, ¯ σz

i , can be constructed for other 
sites, i = 2, .., L, and they form an extensive set of 
LIOMs. 
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and A is the region containing sites 1 to j and A its com- 
plement. In Fig. 6 we illustrate the normalized difference  
δN (j)  

N  =


