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Abstract 

 

The paper describes Late Jurassic–Early Cretaceous seep carbonate boulders from the 

Russian Arctic island of Novaya Zemlya, collected in 1875 by A.E. Nordenskiöld during his 

expedition to Siberia. The carbonates are significantly depleted in heavy carbon isotopes 

(į13C values as low as ca. -40 ‰) and show textures typical for carbonates formed under the 

influence of hydrocarbons, such as fibrous carbonate cements and corrosion cavities. The 

rocks contain index fossils of Late Oxfordian–Early Kimmeridgian, Late Tithonian (Jurassic) 

and latest Berriasian–Early Valanginian (Cretaceous) age. The fossil fauna is species rich and 

dominated by molluscs, with subordinate brachiopods, echinoderms, foraminifera, serpulids 

and ostracods. Most of the species, including two chemosymbiotic bivalve species, likely 

belong to the ‗background‘ fauna. Only a species of a hokkaidoconchid gastropod, and a 

possible abyssochrysoid gastropod, can be interpreted as restricted to the seep environment. 

Other seep faunas with similar taxonomic structure are suggestive of rather shallow water 

settings, but in case of Novaya Zemlya seep faunas such structure might result also from high 

northern latitude.  

 

Keywords: hydrocarbon seeps, Jurassic, Cretaceous, Boreal, Molluscs, Novaya Zemlya 
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1. Introduction 

The chemosynthetic environments grouped around deep marine hydrocarbon 

emissions, known as hydrocarbon seeps (e.g. Paull et al., 1984; Campbell, 2006; Judd and 

Hovland, 2007), together with hydrothermal vents (e.g. Lonsdale, 1977; Van Dover, 2000) 

and whale falls (Smith and Baco, 2003) are characterized by distinct biota, largely different 

from that of the surrounding marine environments (Levin, 2005). The large concentrations of 

reduced compounds available at these sites, chiefly sulphides and to a lesser extent methane, 

sustain mass accumulations of chemosymbiotic fauna, such as solemyid, lucinid, thyasirid and 

vesicomyid clams, and bathymodiolin mussels (Métiver & Cosel, 1993; Sibuet and Olu, 1998; 

Fujikura et al., 1999; Glover et al., 2004; Taylor and Glover, 2010; Krylova et al., 2011), 

large abyssochrysoid gastropods (Kojima et al, 2001; Sasaki et al., 2010) and siboglinid 

tubeworms (Hilário et al., 2011). Additionally, exposed hard substrates provide attachment 

opportunities for hard-substrate dwellers, such as serpulid polychaetes, and sea anemones (e.g. 

Ten Hove and Zibrovius, 1986; Fabri et al., 2011; Vinn et al., 2013). Shallower water (~300 

m and less) chemosynthetic communities have few, or no seep and vent specialists, and their 

fauna is composed of background species (i.e., species typical for the surrounding ―normal‖ 

seabed) (Levin et al., 2000; Sahling et al., 2003; Dando, 2010).  

 Fossil hydrocarbon seep faunas are known since the Devonian (Peckmann et al., 1999) 

and possibly Silurian (Barbieri et al., 2004). The scarcity of sites older than late Mesozoic 

means that knowledge of pre-Cretaceous hydrocarbon seep faunas is poor (Gischler et al., 

2003; Campbell, 2006; Peckmann et al., 2011, 2013). It has been suggested that since at least 

the Late Devonian until the Early Cretaceous, seeps were largely dominated by dimerelloid 

rhynchonellid brachiopods (Peckmann et al., 2007; Sandy, 2010; Kiel et al., 2014), with 

molluscs also present, although often subordinate (e.g. Peckmann et al., 1999, 2001, 2011); 
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the younger seep sites are populated almost exclusively by molluscs (Kiel et al., 2008a, b; 

Kaim et al., 2009). However, the oldest known mollusc-dominated seep faunas known are 

Late Jurassic (Oxfordian) in age (Gaillard et al., 1992) and there are some other Late Jurassic 

and Early Cretaceous seep sites which are dominated both in abundance and diversity by 

molluscs (e.g. Campbell et al., 1993; Kaim and Kelly, 2009; Hammer et al., 2011). At least 

some of mollusc-dominated seep sites formed in relatively shallow water (Hryniewicz et al., 

in press). Irrespective of the bathymetrical setting and their faunal composition, the seep 

carbonates display a set of characters allowing their straightforward interpretation in the fossil 

record (Campbell, 2006), such as significant contribution of isotopically light carbon (e.g. 

Kelly et al., 1995; Campbell et al., 2002; Peckmann et al., 2003; Campbell, 2006), textures 

suggesting formation under the influence of gaseous or liquid hydrocarbons (e.g. Peckmann et 

al., 2002; Campbell et al., 2008; Krauze et al., 2009) and lipid biomarkers suggestive of 

microbial processes accompanying methane oxidation (e.g. Peckmann and Thiel, 2004; Birgel 

et al., 2008; Peckmann et al., 2009). 

 This paper presents three new Mesozoic seep deposits and associated fossils from the 

Arctic island of Novaya Zemlya, Russia. Two of the faunas are Late Jurassic in age 

(Oxfordian/Kimmeridgian and Tithonian, respectively) and one is Early Cretaceous (latest 

BerriasianޤValanginian). All three fossil assemblages are composed almost exclusively of 

molluscs, with very few brachiopods, serpulids and echinoderms, and associated microfauna. 

In this paper we establish the seep origin of the Novaya Zemlya material using stable C and O 

istope analyses and petrography. We also re-figure fauna described from these deposits by 

Tullberg (1881) with preliminary new identifications. 

 

2. Locality  
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The material used for this study is stored in the Naturhistoriska Riksmuseet in 

Stockholm (prefix NRM), Sweden and was collected on the 14th of July, by Adolf Erik 

Nordenskiöld during his 1875 expedition to the mouth of Yenisei river and to Siberia on 

board the ship Pröven (Fig. 1; Nordenskiöld, 1877). It was initially studied and described by 

Tullberg (1881) and some of the gastropods were later re-described by Kaim et al. (2004) and 

Kaim and Biesel (2005), although their seep origin was not suspected at the time. The 

material was most likely collected at the base of a cliff formed of Silurian rocks in ‗Skodde 

Bay‘ on Novaya Zemlya (Nordenskiöld, 1877; Stuxberg, 1877; Tullberg, 1881). The locality 

name does not exist on any past or recent topographic map of Novaya Zemlya; further, there 

are no Jurassic rocks marked on any geological map of the area. To track the origin of the 

material, we analysed the timeline of the Pröven expedition using unpublished materials (the 

log book and weather report) stored in the Royal Swedish Academy of Sciences in Stockholm, 

together with official published reports (Nordenskiöld, 1877; Stuxberg, 1877). There are only 

written accounts of fossils collected in ‗Skodde Bay‘ on the 14th of July, 1875, but the bay 

and the landing site are not indicated on any map. Tullberg (1881) also discusses fossil 

material collected further south in Besimennaya Bay (that literally means No-name Bay in 

Russian), but stable C isotope values between -3.7 to -1.7 į13C ) suggest this material is most 

likely not of a seep origin and will not be discussed further here. 

The Nordenskiöld expedition used the small 43-ton Norwegian yacht Pröven. The 

team of 17 men boarded ship in Tromsø, Norway, and left for the sea on the 14th of June, 

1875, entering the Barents Sea on the 17th. After crossing the Barents Sea, Pröven reached 

the Southern Island of Novaya Zemlya near the northern shores of Goose Land on 22nd of 

June, stayed there for four days (Fig. 1) and proceeded northwards towards Matochkin Shar, 

which was reached on the 6th of July (Stuxberg, 1877). The attempt to cross the strait was 
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unsuccessful and after six days, on the 13th the ship turned back into a severe SW wind. 

According to Nordenskiöld (1877), the ship proceeded only a short distance towards the SW 

and then, as the wind died down, drifted close to shore on the 14th and anchored close to a 

cape noted as ‗Säulen C.‘ in a shallow bight named as ‗Skodde Bay‘. ‗Säulen‘ (‗pillars‘) is 

written as ‗ɋɬɨɥɛɵ‘ (‗Stolbi‘) in Russian. If such direct translation is applied, then it seems 

likely that on the 14th of July Pröven anchored close to Cape Stolbovoi west of the mouth of 

Matochkin Shar. ‗Skodde Bay‘ represents an informal 19th Century name given, presumably, 

to Bakan Bay by Norwegian hunters (Nordenskiöld 1877). It is also possible that the 

expedition anchored in Pomorskaya Bay close to Cape  Matochkin (Fig. 2), misidentified in 

bad weather as ‗Säulen C.‘. 

The area west of the mouth of Matochkin Shar is known to contain Late Jurassic and 

Early Cretaceous fossils from erratic boulders spread out over a relatively large area 

(Holtedahl 1924; Salfeld and Frebold, 1924; Bodylevsky, 1936a, b, 1967; Dibner, 1962) and 

we postulate that the studied material is also erratic in origin and therefore ex-situ. The source 

for the erratic boulders is uncertain. The lithology of the Jurassic–Cretaceous rocks on 

Spitsbergen (Birkenmajer et al., 1982) and Franz Josef Land (Dibner and Shulgina, 1998) is 

different from the inferred host rocks of the seep carbonate boulders and it is unlikely that 

they come from these islands. They might have come from the Jurassic rocks cropping out in 

the Northern Siberia, which are more coarse-grained (e.g. Wierzbowski and Rogov, 2013 and 

references therein).  

 

3. Materials and methods 
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Blocks of fossil seep carbonates collected during Nordenskiöld‘s expedition at 

‗Skodde Bay‘ are up to 20 cm in diameter. All blocks are fragments of larger boulders which 

were broken up, presumably in the field, to recover the fossils. The few weathered surfaces 

available are polished, possibly due to glacial action, and pitted due to dissolution of 

carbonate. The material can be grouped into three main lithologies: calcareous sandstones, 

black limestones and sandy limestones (Tullberg, 1881, p. 6). All fossils are very well 

preserved, with some shells still retaining an original aragonitic structure. Mechanical 

preparation of most of the fossils from their matrices was necessary.  

Carbonate samples from all the lithologies were analysed for their stable isotope 

compositions (į13C and į18O) at the Department of Earth Science, University of Bergen, 

Norway. Fragments of calcareous sandstones and sandy limestones were removed from larger 

blocks using pliers; the black limestone proved to be tougher and had to be hand-drilled. The 

samples were analysed using Finnigan MAT251 and MAT253 machines coupled to 

automated Kiel devices; the data are reported to VPDB standard; the long-term analytical 

precision is 0.05 ‰ with respect to į 13C and 0.1‰ with respect to į 18O. A few blocks were 

cut on a rock saw and polished to investigate their macroscopic textures, and smaller 

fragments were used to prepare petrographic thin sections. These sections were investigated in 

plane-polarized and cross-polarized light using a Leica DMLB microscope; when necessary, 

the whole thin-sections were scanned using a Nikon LS4000 slide scanner. The definitions of 

different carbonate phases follow that of Folk (1959).  

4. Results 

4.1. Seep carbonate ages 
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 The lithological subdivision of Tullberg (1881) can be further supported by age 

differences shown by index fossils extracted from the boulders. The calcareous sandstones 

contain numerous specimens of the ammonite Amoeboceras sp., and therefore can be dated as 

Late Oxfordian–Early Kimmeridgian (Fig. 3; Sykes and Callomon, 1979; Zeiss, 2003; 

Wierzbowski and Rogov, 2013). Species-level identification of Amoeboceras found in the 

current material and thus potentially narrowing down the age of the calcareous sandstone 

blocks is currently not possible due to lack of individuals with well preserved ventral margin. 

The black limestones contain ammonites, preliminarily identified as belonging to the earliest 

Late Volgian species Craspedites okensis. The Late Volgian is roughly correlable with the 

Late Tithonian–earliest Berriasian, and the black limestones can therefore be dated as Late 

Tithonian (Fig. 3; Zakharov and Rogov, 2008; Wierzbowski et al., 2011). The sandy 

limestones do not contain any ammonites, therefore, precise dating is problematic. The blocks 

do contain abundant specimens of the bivalve Buchia, which is most similar to the 

morphology of specimens of Buchia inflata that occur in the latter part of the temporal range 

of this species, or to Buchia keyserlingi (Zakharov, 1981; Surlyk and Zakharov, 1982); this 

suggests a latest Ryazanian–Early Valanginian age for the sandy limestone blocks (Fig. 3). A 

latest Ryazanian age can be correlated with latest Berriasian in the standard stratigraphy 

(Wierzbowski et al., 2011) and the latter age is used in this paper. 

4.2. Petrography and stable isotopes 

Carbonate fabrics in all the investigated facies are fairly simple and homogenous, 

although some carbonate authigenetic phases are present.  

The Late Oxfordian–Early Kimmeridgian calcareous sandstones are dark grey, highly 

fossiliferous, homogenous and devoid of any macroscopically visible primary cavities filled 

with cements (Fig. 4A). The rock is mostly composed of fine to medium-grained quartz grains. 
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The pore space is occluded by calcitic microspar (ms) with clotted micritic aggregates (Fig. 

4B). Up to 10% of the grains are volcanic glass clasts, up to 2 mm in diameter, which in some 

cases are replaced by aggregates of phyllosilicate minerals (Fig. 4C). These grains are often 

covered and impregnated with pyrite (Fig. 4C). The bioclastic content comprises bivalve (Fig. 

4D), scaphopod (Fig. 4E) and ammonite shells, rare calcareous foraminifera (Fig. 4F), 

echinoderm skeletal fragments (Fig. 4G) and serpulid worm tubes (Fig. 4H). The only cavities 

filled with fine fibrous cements are those within some serpulid tubes (Fig. 4H). 

The Late Tithonian black limestones are rich in macroscopically visible cavities, filled 

with banded botryoidal cements (Fig. 5A). The rock is composed of several carbonate phases. 

Of these, the two most common are brown microspar with rare bioclasts (ms; Fig. 5B) and 

peloidal carbonate (pc) composed of possible fecal pellets (pc; Fig. 5C). The most common 

clasts within both microspar and peloidal carbonate are ostracods (Fig. 5D), and bivalve shells 

(Fig. 5E). Rare pyrite framboids are dispersed within the microspar and may impregnate some 

of the peloids. Both phases occur together, and gradational or rapid change can be observed 

from microspar, through microspar with rare peloids, to peloidal wackstone and peloidal 

packstone (Fig. 5E). Microspar and peloidal carbonates are truncated by corrosion surfaces, 

often associated with the impregnation of the corroded surface with pyrite (Fig. 5F). Several 

corrosion events can be seen, followed by recurring formation of microspar/peloidal 

carbonate phases (Fig. 5F). Some corrosion resulted in the formation of a brecciated fabric 

(Fig. 5G). The last corrosion event is usually not associated with pyrite but followed by 

formation of banded botryoidal carbonate (bbc), lining the cavities (Fig. 5H). Unlike many 

other fossil seep carbonates, there is no late stage blocky calcite present. The idealized 

paragenetic sequence can thus be presented as follows: ms–pcЍcorrosion(pyrite)Ѝms–pcЍ

corrosionЍbbc. 
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The latest Berriasian–Early Valanginian sandy limestones are yellowish-grey, highly 

fossiliferous and without any macroscopically visible cavities (Fig. 6A). They are 

predominantly composed of fine, poorly rounded quartz grains (Fig. 6B). The pore space is 

filled with gray to brown micrite (Fig. 6B). The most common grains are bioclasts, 

predominantly bivalve (Fig. 6C) and gastropod shell fragments, and possible fecal peloids 

(Fig. 6D), with a small admixture of wood fragments. The gastropod shells are often complete 

and have geopetal fills of fine sand and clotted grey micrite (Fig. 6E). Some of the early 

whorls are filled with fibrous cements (Fig. 6F). 

The stable C and O isotope values of all three lithologies show fairly narrow 

groupings (Table 1, Fig. 7). All the Late Oxfordian–Early Kimmeridgian į 13C  values come 

from calcitic microspar cementing the pore space and are low; between -31.0 ‰ and and -

40.1 ‰. The į18O isotope values are between 0.1‰ and -0.4‰, thus having a seawater 

signature. The Late Tithonian black limestones show a wider range of į13C values (from -

16.7 ‰ to -41.3‰), but with most being below -30‰. The į18O values plot between -3.1‰ 

and 0.0‰, which is close to a normal marine signature;  į18O values greater than -1.2‰ are 

more common. The latest Berriasian–Early Valanginian sandy limestones are the isotopically 

heaviest of all the Novaya Zemlya  seep lithologies with respect to į13C (values between -21.8‰ 

and -26.0‰). The į18O values are close to normal marine (between 0.2‰ and -1.0‰, 

respectively).  

4.3. Fossil content 

All three lithologies contain diverse macrofauna, comprising predominantly molluscs, 

with subordinate echinoderms and brachiopods. The faunal list, with original identifications 

of Tullberg (1881), and preliminary re-interpretations, is given in Table 2. We plan a detailed 
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taxonomic redescription of all of the taxa in a subsequent paper, to supplement the work by 

Kaim et al. (2004) and Kaim and Beisel (2005) on some of the gastropods from the fauna. 

The Late Oxfordian–Early Kimmeridgian calcareous sandstones contain 11 species of 

invertebrate macrofauna, nine of which are molluscs (Fig. 8; Table 2). The fossils are mostly 

uncrushed and have their original shell structure preserved, including nacre. The most 

numerous species is the ammonite Amoeboceras sp., preserved as both mature specimens (Fig. 

8A) and juveniles. Gastropods are represented by two species. One is a eucyclid (ascribed to 

two species of Turbo by Tullberg (1881)) (Fig. 8B); the other (Cerithium elatum of Tullberg 

(1881)) is a hokkaidoconchid (Fig. 8C) and is much more common. Bivalves are fewer in 

number than the gastropods. These include disarticulated specimens of the epifaunal genus 

Oxytoma (Avicula muensteri of Tullberg (1881)) (Fig. 8D) and disarticulated specimens of a 

thick-shelled astartiid bivalve, not figured in Tullberg (1881) (Fig. 8E). The only semi-

articulated bivalve specimens belong to the deep-burrowing species Goniomya elegantula of 

Tullberg (1881) (Fig. 8F). There are also numerous large (>20 mm in the longest axis) shell 

fragments of unidentified bivalves. Other fossils comprise belemnoid guards, scaphopods and 

serpulid tubes, echinoderm skeletal plates (identified in thin section), and numerous fragments 

of sunken driftwood. 

The Late Tithonian black limestones contain at least 13 macrofossil species, which are 

well preserved, retaining much original shell structure, but rather sparse (Fig. 9, Table 2). 

There is a single species of ammonite: Craspedites okensis (Fig. 9A). Gastropods are 

represented by Eulima undulata of Tullberg (1881), reindentified as the rissoid Hudlestoniella 

by Kaim et al. (2004) (Fig. 9B). The black limestones seep fauna is the only one from the 

Stockholm Novaya Zemlya collections to contain chemosymbiotic bivalves. These comprise 

Solenomya costata of Tullberg, 1881, which we interpret as a species of an as yet unidentified 
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solemyid genus (Fig. 9C), and Ptychostolis nordenskioeldi of Tullberg (1881) which is a 

species of the shallow burrowing genus Nucinella (Fig. 9D). Specimens of shallow burrowing 

nuculid protobranch bivalves belong to Nucula sp. (Fig. 9E) (Nucula borealis of Tullberg 

(1881)), and Dacromya sp. (Fig. 9F) (Leda zieteni of Tullberg (1881)). Another protobranch 

is a species of malletiid (Fig. 9G) (Leda galathea of Tullberg (1881)). Epifaunal bivalves are 

represented by three species: an arcoid (Fig. 9H) (Cucullaea novaesemlyae of Tullberg 

(1881)), a few poorly preserved specimens of Oxytoma (Avicula muensteri of Tullberg 

(1881)), and a single internal mould of Pseudolimea sp. (Fig. 9I) (Limea duplicata of Tullberg 

(1881)). The most numerous bivalve in the fauna (>10 specimens) is the epifaunal bivalve 

Buchia obliqua (Fig. 9J) (Aucella keyserlingiana f. obliqua of Tullberg (1881)). The only 

heterodont in the fauna is a single specimen of arcticid (Fig. 9K) (Cyprina polaris of Tullberg 

(1881)). There are also a few scaphopods in the black limestones, as well as fragments of 

sunken driftwood. 

The latest Berriasian–Early Valanginian sandy limestones are highly fossiliferous and 

contain well-preserved specimens, with shell material mostly preserved (Fig. 10) (Table 2). 

The gastropods comprise common specimens of the rissoid Hudlestoniella pusilla as 

identified by Kaim et al. (2004) (Fig. 10A) (Eulima pusilla of Tullberg (1881)), which occur 

as accumulations of dozens of specimens in individual blocks. The four other gastropod 

species are far less common. These are a few specimens of a eucyclid gastropod (Turbo 

capitaneus of Tullberg, 1881)), a maturifusid (Fig. 10B), a bullinid (Fig. 10C) (identified as 

Acteon by Tullberg (1881)), and two specimens of a large high-spired gastropod (Fig. 10D) 

identified by Tullberg (1881) as Turitella novaesemljae. This gastropod almost certainly does 

not belong to the turitellids, and requires more taxonomic work; for now we refer to it as a 

‗high-spired gastropod‘ though most likely it is an abyssochrysoid and might be another seep-
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restricted gastropod next to the hokkaidoconchid (AK unpublished data). There are 11 bivalve 

species in the sandy limestones material (Table 2). Four of them are protobranchs: a poorly 

preserved nuculid; a malletiid (Fig. 10E) and two unidentified species, sp. A (Fig. 10F), and 

sp. B (Fig. 10G). Other bivalves in the fauna include Buchia cf. inflata (Aucella 

keyserlingiana f. majuscula of Tullberg (1881) (Fig. 10 H), Oxytoma sp. (Fig. 10I) a single 

fragmentary preserved specimen of Pseudolimea, and a pectinid, possibly a species of 

Camptonectes (Fig. 10J). Infaunal bivalves comprise a small astartiid, identified by Tullberg 

(1881) as Astarte voltzii, and a small heterodont bivalve (Fig. 10L), as yet unidentified. 

Goniomya elegantula is another infaunal bivalve present in the material. The sandy 

limestones are the only investigated lithology to host rhynchonellate brachiopods. These are 

one rhynchonellide (Fig. 10M) and one terebratulide species (Fig. 10N). The sandy limestones 

also contain abundant sunken driftwood fragments. 

5. Discussion 

5.1. Seep origin of the Novaya Zemlya boulders 

The textures found in all the boulders are typical for authigenically precipitated 

carbonates (e.g. Peckmann and Thiel, 2004), and the 13C-depleted composition of all three 

investigated lithologies shows that the authigenic carbonates were formed under the influence 

of the anaerobic oxidation of methane (AOM; Boetius et al., 2000). The Late Oxfordian–

Early Kimmeridgian calcareous sandstones were formed mostly by cementation of quartz 

sand in authigenic seep carbonate (Fig. 4). Recent seep carbonates are mostly formed of 

fibrous aragonite (e.g. Aloisi et al., 2000, 2002; Teichert et al., 2005), which usually forms 

when marine sulphate is present (e.g. Bayon et al., 2009). Calcite is less commonly reported 

from Recent seep carbonates (Reitner et al., 2005). In contrast, fossil seep carbonates are 

predominantly calcitic, as fibrous aragonite is not stable during burial, although its former 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

14 

 

presence is often reconstructed based on ghost textures (e.g. Savard et al., 1996; Peckmann et 

al., 2007; Kiel and Peckmann, 2008). Although our XRD investigation reveals that the 

Novaya Zemlya seep carbonate is now calcite, the carbonate cementation of pore space in 

calcareous sandstones and the preservation of aragonitic mollusc shells suggest that the intial 

mineralogy of this phase was aragonite. The character of fibrous carbonate cement filling 

cavities within fossils (Fig. 4H) is typical for an aragonite precursor (Aïssaoui 1985). The 

textures suggest homogenous cementation of the quartz sand, rather than the formation of 

concretions (e.g. Peckmann and Thiel, 2004; Kaim et al., 2013; Kiel et al., 2013) or tubular 

conduit structures (e.g. Campbell et al., 2008; Krause et al., 2009), characteristic of localized 

AOM reactions. The carbon isotope values are very depleted (Table 1, Fig. 7) and this 

indicates precipitation during active seepage of methane (e.g. Campbell et al., 2002; Campbell, 

2006). The sediment was probably charged with gas, and some cavities within fossils were 

likely also partially filled with gas, as shown by asymmetrical cement fills (Fig. 4H). This is 

all suggestive of diffusive rather than advective seepage (e.g. Campbell, 1992; Peckmann et 

al., 2009; Haas et al., 2010; Natalicchio et al., 2015). 

 The Late Tithonian black limestones have more complex carbonate fabrics. They are 

very similar to those from latest Jurassic–earliest Cretaceous hydrocarbon seep carbonates 

from Spitsbergen, Svalbard (Hryniewicz et al., 2012). Microspar and peloidal carbonate most 

likely represent cemented fine grained and peloidal sediment, respectively, with the latter 

possibly additionally winnowed along fluid flow paths. Such peloidal carbonates are 

especially common in fossil seep sites (e.g. Beauchamp and Savard, 1992; Krause et al., 2009; 

Kiel et al., 2013). Nodular fabrics, seen in some carbonate blocks (Fig. 4A), suggest localized 

centers of AOM (e.g. Peckmann and Thiel, 2004). The origin of the cavities filled with 

cements was probably related to episodes of increased acidity (Himmler et al., 2011), either 
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by the aerobic oxidation of methane or by sulphide oxidation. The first process can be linked 

to exposure of the carbonate to the bottom water, for example due to an erosional episode (e.g. 

Matsumoto, 1990). Some corrosion surfaces, especially those without mineral coatings, might 

have been associated with this process. Sulphide oxidation can be associated, for example, 

with development of Beggiatoa or Thioploca bacterial mats (Himmler et al., 2011). These 

bacteria are able to oxidize large volumes of sulphide-charged sediment using free or bound 

oxygen, leading to lowered pH in the underlying sediments and corrosion of authigenic 

carbonates (Joye et al., 2004; Cai et al., 2006). The corrosion surfaces in the Novaya Zemlya 

carbonates associated with black oxyhydroxide coatings may have been the result of this 

process. Cavities resulting from either of these processes would have been filled with 

botryoidal carbonate, as AOM became locally active again. The į 13C isotope values, ranging 

from -41.3‰ to -16.7‰ (Table 1, Fig. 7) suggest precipiation under the influence of methane 

and diverse fluid circulation patterns, with the more depleted values representing phases 

formed under a constant supply of methanogenic carbon, possibly closer to active fluid 

conduits (e.g. Campbell et al., 2002; Peckmann et al., 2003; Campbell et al., 2008; Himmler 

et al., 2008). The more negative values indicate biogenic rather than thermogenic methane 

(Peckmann and Thiel, 2004). The heavier values may imply precipitation from a small pool of 

carbonate in sealed cavities, or precipitation influenced by sedimentary organic matter, 

heavier hydrocarbons or significant mixing with seawater bicarbonate (e.g. Kiel and 

Peckmann, 2008). 

The latest Berriasian–Early Valanginian sandy limestones have a fairly simple 

paragenetic sequence, roughly comparable to that of the Late Oxfordian–Early Kimmeridgian 

calcareous sandstones (Fig. 6). Fine quartz sand and related fecal peloids and fossils are 

cemented by calcitic micrite, which is likely to have initially been aragonite, diagenetically 
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recrystallized to calcite. The homogenous rock textures are suggestive of diffusive rather than 

advective flux, with no localized centres of AOM, or formation of fluid conduits. Microbial 

clotted micrite (Fig. 6E), filling some fossils, is fairly common in other fossil seep carbonates 

(e.g. Kiel and Peckmann, 2007, 2008; Kuechler et al., 2012; Kiel et al., 2013) and most likely 

represents cemented organic membranes (Flügel, 2004). The micrite is accompanied by fans 

of fibrous cements, possibly former aragonite (Fig. 6F), suggesting rapid precipitation of 

carbonate, perhaps due to active AOM within hydrocarbon-filled shells. The carbon isotopes 

are much less depleted than in the other Novaya Zemlya seep lithologies, with values roughly 

between -22 ‰ and -26‰ į13C (Table 1, Fig. 7). These values can be interpreted in three 

ways. First, they could have been associated with oxidation of heavier hydrocarbons (e.g. Kiel 

& Peckmann, 2007), as the į13C values between -15‰ and -25‰ į13C are similar to the 

values found in carbonates formed at oil seeps (e.g. Joye et al., 2004). However, the absence 

of impsonite (biodegraded oil; e.g. Peckmann et al., 2001) argues against an oil seepage origin. 

The second explanation could be the oxidation of either thermogenic or biogenic methane 

(Sackett, 1978; Schoell, 1988; Whiticar, 1999). Assuming that methane was involved in the 

formation of the latest Ryazanian–Early Valanginian sandy limestones, then the į13C 

composition of around -20‰ to -25‰ suggests significant mixing of methanogenic carbon 

with heavier source, such as seawater bicarbonate (Peckmann and Thiel, 2004).  

5.2. Ecological structure  

The Novaya Zemlya seep boulders contain a fauna which – based on the current state 

of knowledge – is mostly comparable with that of non-seep Jurassic–Early Cretaceous shelf 

environments (e.g. Zakharov, 1966, 1970; Duff, 1978; Fürsich, 1982; Kelly, 1984, 1992) and 

represents the ‗background‘ fauna, which have taken advantage of the enhanced nutrient 

availability and/or increased amount of hard substrate for attachment at seep (e.g. Dando, 
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2010; Kiel, 2010). Out of the 33 species identified in the material (Table 2), only one can be 

currently interpreted as being closely tied to the seep environment. This is the seep-restricted 

hokkaidoconchid gastropod in the Late Oxfordian–Early Kimmeridgian calcareous sandstones 

identified by Tullberg (1881) as Cerithium elatum‘ (Fig. 8C) (e.g. Kaim et al., 2008, 2009; 

Kiel et al., 2013). The only chemosymbiotic bivalves found in the Novaya Zemlya material 

are a solemyid bivalve and Nucinella from the Late Tithonian black limestones (e.g. Stewart 

and Cavanaugh, 2006; Oliver and Taylor, 2012). These taxa are, however, not restricted to 

seep environments and are found in normal marine settings with high redox potential (e.g. 

Reid, 1980; Taylor and Glover, 2010; Glover and Taylor, 2013). Similarly structured seep 

faunas, with a large number of ‗background‘ species and few seep-restricted species, are also 

found in the geographically and stratigraphically near Late Tithonian–latest Berriasian seeps 

from Svalbard (Hammer et al., 2011). As these formed in shallow water (Hryniewicz et al., in 

press) and a paucity of seep-restricted species is a general feature of shallow-water vent and 

seep faunas (Dando, 2010 and references therein), a similar palaeobathymetric setting is likely 

to have influenced the structure of Novaya Zemlya seep boulder faunas. The Svalbard seeps 

contain only four seep-restricted species, out of over 50: a lucinid and thyasirid bivalves 

(Hryniewicz et al., 2014), hokkaidoconchid gastropods, and possible ‗vestimentiferan‘ worm 

tubes (Hammer et al., 2011). Except for the hokkaidoconchids, these taxa are unknown from 

the Novaya Zemlya seep boulders, which is intriguing, considering they could have formed in 

relative proximity (Hryniewicz et al., in press, fig. 8). It could be that the paucity of seep-

restricted species in the Novaya Zemlya seep fauna was also to some extent a function of 

palaeogeography, as Recent Arctic seep (e.g. Gebruk et al., 2003) and vent faunas (e.g. 

German et al., 2012) also contain few obligate species, for reasons that are not well 

understood.  
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5.3. Relationships with other Late Mesozoic seep faunas  

There are a few other Mesozoic seeps known from the Boreal area. The 

palaeobiogeographically closest are the Late Tithonian–latest Berriasian seeps from Svalbard 

(Hammer et al., 2011; Wierzbowski et al., 2011). Cretaceous Boreal occurrences include the 

Barremian Kuhnpasset seeps from Wollaston Forland, East Greenland (Kelly et al., 2000) and 

the Albian Ellef Ringnes and Prince Patrick Islands seeps from Arctic Canada (Beauchamp 

and Savard, 1992), both younger than the latest Berriasian–Early Valanginian occurrence 

reported here. Therefore, the Novaya Zemlya seep boulders record one of four currently 

known areas of seepage from the Mesozoic high northern latitudes, with the Late Oxfordian–

Early Kimmeridgian calcareous sandstone boulders being the oldest known examples from 

this area. Jurassic seeps are in general not well known and there are currently only seven other 

sites of this age recognized. Three of these are Early Jurassic: the Sinemurian Kilve seeps, UK 

(Alisson et al., 2008), the Sinemurian seep from Seneca, Oregon, USA (Peckmann et al., 2013) 

and the Toarcian Los Molles seep in Argentina (Gómez-Pérez et al., 2003). The remaining 

four are Late Jurassic. These are the Oxfordian seeps in Beauvoisin, southern France (Gaillard 

et al., 1992; Kiel et al., 2010; Gaillard et al., 2011), the Tithonian seep in Alexander Island, 

Antarctica (Kelly et al., 1995; Kaim and Kelly, 2009), the Tithonian seeps in Paskenta and 

NW Berryessa, California, USA (e.g. Campbell et al., 2002; Kiel et al., 2008b; Jenkins et al., 

2013), and the Late Tithonian seeps of Svalbard. The Cretaceous seeps are more common 

than those of the Jurassic and a fair number of both Early and Late Cretaceous aged seeps 

have been found (e.g. Campbell, 2006; Kiel and Peckmann, 2008; Kiel, 2010; Kaim et al., 

2013; Kiel et al., 2013). 

The highly diverse fossil molluscan fauna from the Late Jurassic–Early Cretaceous 

Novaya Zemlya seep boulders is composed mostly of ‗background‘ species. Some of these 
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species had rather narrow palaeobiogeographical ranges. This is especially true for the arcticid 

bivalves, Dacromya and the gastropod Hudlestoniella (Table 2), which are shared only with 

the geographically and temporarily adjacent Svalbard seeps and Boreal ‗normal‘ marine 

sediments, and are unknown from Late Mesozoic deep water seeps (Hryniewicz et al., 2014 

and references therein). Other ‗background‘ species belong to genera showing preference 

towards seep environments. For example, the chemosymbiotic protobranch bivalve genus 

Nucinella, which occur in Late Tithonian bituminous limestones, is known from some of 

Triassic?–Cretaceous seep sites worldwide, for example in fairly deep-water Late Cretaceous 

(Campanian) seeps in Hokkaido (Amano et al., 2007) and in Early Cretaceous (Valanginian–

Albian) seeps in California (Kaim et al., 2014). The eucyclid gastropods, which are present in 

the Late Oxfordian–Early Kimmeridgian calcareous sandstones, are shared with Late 

Jurassic–Early Cretaceous (Tithonian–Valanginian) deep-water seep faunas in California 

(Kiel et al., 2008b). Those ‗background‘ taxa were likely to occur in Late Mesozoic seep 

faunas worldwide, as their respective families are rather common constituents of the deep-

water faunas and had broad palaeobiogeographic ranges (e.g. Oliver and Taylor, 2012; Ferrari 

et al., 2014). Interestingly, the Late Berriasian–Early Valanginian sandy limestones lack the 

seep-restricted dimerelloid brachiopod Peregrinella, which are very common in some Late 

Berriasian–Early Hauterivian seeps elsewhere (Kiel et al., 2014). This brachiopod is also 

absent from Late Berriasian seeps in Svalbard (Hammer et al., 2011). This argues against the 

spread of Peregrinella towards the high-northern latitudes (Biernat, 1957).  

The only seep-restricted species in the Novaya Zemlya seep boulders is the 

hokkaidoconchid gastropod. Hokkaidoconchids range from the Late Jurassic to the Eocene–

Oligocene (Gill et al., 2005; Kaim et al., 2014). The oldest known species is Hokkaidoconcha 

novacula from the Late Jurassic (Oxfordian) Beauvoisin hydrocarbon seep site (Kiel et al., 

2010), with ‗Cerithium elatum’ from Novaya Zemlya (this study) being coeval or slightly 
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younger. Other Late Jurassic species include Hokkaidoconcha occidentalis from the Paskenta 

Tithonian seep (Kiel et al., 2008b; Kaim et al., 2014) and Hokkaidoconcha hignalli from the 

Tithonian Gateway Pass Limestone of Antarctica (Kaim and Kelly, 2009). Poorly preserved 

high-spired gastropods identified as hokkaidoconchids have also been found in Late Tithonian 

seeps from Spitsbergen, Svalbard (A. Kaim, unpublished data). Thus, out of five Late Jurassic 

seep sites known, hokkaidoconchid gastropods occur in four, or possibly five of them. Broad 

palaeobiogeographic ranges are typical for fossil seep molluscs (e.g. Kiel, 2013; Jenkins et al., 

2013; Kaim et al., 2014). By their first appearance in the Late Jurassic, hokkaidoconchids are 

already widely distributed and occur in geographically disparate basins; this suggests a pre-

Late Jurassic origin and dispersal for the hokkaidoconchids (cf. Johnson et al., 2010). 

6. Conclusion 

The Novaya Zemlya seep boulders provide a new record of the ancient hydrocarbon 

seepage in the Boreal area. The boulders represent some of the few Jurassic seep rocks from 

Mesozoic high latitudes, and Late Oxfordian–Early Kimmeridgian calcareous sandstones 

record the oldest known seep environment in the Boreal realm. The boulders contain common 

fragments of sunken driftwood and a very diverse fauna of at least 32 species, the great 

majority of which are ‗background‘ species, with no special preference towards the seep 

environment. Some of those species, for example the gastropod Hudlestoniella, are high-

Boreal elements and are unknown from deep-water Late Mesozoic seeps world-wide. Others, 

such as the eucylid gastropod species, belong to deep-water group which had broad 

palaeobiographic range and occurred in other Late Mesozoic seeps, also including those from 

deep water. The only species which is currently interpreted as seep-restricted is a 

hokkaidoconchid gastropod, accompanied by a possible second seep-restricted 

abyssochrysoid gastropod. Faunas structured similarly to those of Novaya Zemlya seep 

boulders are known from palaeogeographically nearby latest Jurassic–earliest Cretaceous 
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shallow water seeps from Svalbard, which also contain few seep-restricted species, although 

these are not the same as those in the Novaya Zemlya seeps.  
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Fig. 1. The path of the 1875 Pröven expedition of A.E. Nordenskiöld to Novaya Zemlya and 
Siberia. Inset marks the approximate position of map from Figure 2. Modified from 
Nordenskiöld (1877) and Stuxberg (1877). 

Fig. 2. The map of western mouth of Matochkin Shar. The white circle marks a possible 
anchorage of  Pröven on 14th of July, 1875. Based on Holtedahl (1922). 

Fig. 3.Stratigraphic position of the seep carbonate boulders from Novaya Zemlya. Length of 
bars indicates dating uncertainties, not the duration of seepage. Dates after Ogg et al. (2012). 

Fig. 4. Late Oxfordian–Early Kimmeridgian calcareous sandstone petrography. A) Polished 
hand specimen with gastropod. NRM Mo1322a. B) Fine to medium quartz sand grains 
cemented by micritic carbonate. C) Well-preserved bivalve shell bioclast. D) Unidentified 
green fractured clasts of possible volcanogenic origin (right) and (left) grain of the same 
material, here totally replaced by phyllosilicates. E) Oblique cross-section of a possible 
scaphopod tube. F) Calcareous foraminiferan, enclosed in carbonate matrix. G) Echinoderm 
skeletal fragment, partially replaced by blocky calcite. H) Serpulid worm tube, filled by 
acicular cement (right) and blocky calcite (left). B–H NRM Mo2593x. All images in plane 
polarized light. 

Fig. 5. Late Tithonian black limestone petrography. A) Polished hand specimen showing 
nodules and cavities filled with banded botryoidal cements. Mo167763. B) Calcareous 
microspar with rare dispersed fecal peloids. NRM PZ X 5312. C) Peloidal carbonate 
composed of an accumulation of fecal pellets. NRM PZ X 5312. D) Ostracod between 
peloids. NRM PZ X 5313. E) Gradual change from microspar with fecal peloids to more 
condensed peloidal carbonate. NRM PZ X 5314. F) Corrosion surface covered with iron 
oxyhydroxides, followed by microspar formation. NRM PZ X 5312. G) Corroded carbonate 
fragments, coated with iron oxyhydroxides and encased in microspar-peloidal carbonate 
association. NRM PZ X 5315. H) Fans of banded botryoidal cements nucleating on corroded 
carbonate surface. NRM PZ X 5312. A–G plane polarized light, H cross polarized light. 
 

Fig. 6. Latest Berriasian–Early Valanginian sandy limestones petrography. A) Weathered 
block with abundant fossils and yellow-gray coloration. NRM Mo167817. B) Fine grained 
quartz sand grains cemented by micritic carbonate. C) Well-preserved protobranch bivalve 
shell, showing taxodont dentition.  D) Well-preserved carbonate fecal peloids enclosed by 
fine sand matrix. E) Gastropod shell infilled by fine gray micrite and clotted micrite. F) 
Gastropod shell with last whorl geopetally filled with clastic-carbonate mixture, and earlier 
whorls filled with acicular carbonate cement, which nucleates on the inner walls of the shell. 
B–F NRM Mo167817x. All images in plane polarized light. 

Fig. 7. Cross plot of į13C and į18O composition of all of the three Novaya Zemlya seep 
carbonates. Open circle indicates Late Oxfordian–Early Kimmeridgian calcareous sandstones, 
cross indicates Late Tithonian bituminous limestones, X indicates latest Berriasian–Early 
Valanginian sandy limestones. 
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Fig. 8. Fossils from the Late Oxfordian–Early Kimmeridgian calcareous sandstones. A) 
Amoeboceras sp., NRM Mo 2593a. B) Two specimens of a eucyclid gastropod, B1) NRM 
Mo2593b; B2) NRM Mo167816a. C) Hokkaidoconchid gastropod ‗Cerithium elatum‘ of 
Tullberg (1881). C1) NRM Mo 2593d; C2) NRM Mo2593e. D) Small accumulation of 
disarticulated shells of Oxytoma sp., NRM Mo1185a. E) Astartiid bivalve shells. E1) an inner 
shell surface of a large specimen showing deeply impressed anterior adductor muscle scar, 
NRM Mo1185b; E2) internal mould of a small specimen showing crenulated ventral shell 
margin, NRM Mo167816b. F) Semi-articulated specimen of Goniomya sp. NRM Mo167817c.  

Fig. 9. Fossils from the Late Tithonian black limestones. A) Craspedites okensis, A1) lateral 
view, A2) ventral view; Mo1226. B) Hudlestoniella undulata, NRM Mo1182. C) Solemyid 
sp., NRM Mo1319. D) Nucinella sp., D1) left-lateral view, D2) dorsal view. NRM Mo 152372. 
E) Nuculid sp., E1) right-lateral view, NRM Mo152374; E2) internal view of the dorsal margin 
showing taxodont dentition, NRM Mo1194a. F) Dacromya sp., F1) left-lateral view showing 
the external ornament, F2) right-lateral view of an internal mould. NRM Mo 1301a. G) 
Malletiid sp., NRM Mo167815a. H) Arcoid sp., NRM Mo1309a. I) Pseudolimea sp., internal 
mould. NRM Mo 1215b. J) Buchia obliqua, NRM Mo1205. K) Arcticid sp., NRM Mo1313. 

Fig. 10. Fossils from the latest Berriasian–Early Valanginian sandy limestones. A) 
Hudlestoniella pusilla, NRM Mo 139480a-1. B) Maturifusid sp., NRM Mo 149371c-1. C) 
Bullinid sp., NRM Mo 1189, C1) apertural view, C2) apical view. D) high-spired gastropod sp., 
NRM Mo 167817a. D1) whole specimen, D2) younger teleoconch view. E) Malletiid sp., 
NRM Mo 14929a. F) Protobranch sp. A, NRM Mo 1198. G) Protobranch sp. B, NRM Mo 
1199a, G1) left lateral view, G2) dorsal view. H) Buchia cf. inflata, NRM Mo 1206, H1) left-
lateral view, H2) dorsal view, H3) right-lateral view, H4) anterior view. I) Oxytoma sp., NRM 
Mo 14929b., J) Camptonectes sp., plasticine cast, NRM Mo 1218. K) Astartiid sp., NRM Mo 
167817b. L) Heterodont bivalve sp, L1) right-lateral view of a delaminated valve, NRM Mo 
167817c; L2) left lateral view of an internal mould, NRM Mo 149497. M) Rhynchonellide 
brachiopod sp., NRM Mo 149572. N) Terebratulide brachiopod, NRM Mo 102390.  

Table 1. Stable isotopes values from Late Jurassic–Early Cretaceous seep carbonate boulders 
from Novaya Zemlya.  

Table 2. List of the macrofossils from Late Jurassic–Early Cretaceous seep boulders from 
Novaya Zemlya, with identifications of Tullberg (1881) and our preliminary re-interpretation 
of their systematic position. The x indicates species in Tullberg (1881); a number in brackets 
is number of specimens discovered during the study;  ‗?‘ marks species in Tullberg (1881) not 
confirmed by us in this study.  
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Table 1 
 

Sample name Lithology ɷ 13
C 

ɷ 
18

O  Age 

Mo 1185a Calcareous sandstone -35,2 -0,3 Late Oxfordian-Early Kimmeridgian 

Mo 1185b Calcareous sandstone -34,4 -0,4 Late Oxfordian-Early Kimmeridgian 

Mo 1185c Calcareous sandstone -37,4 -0,4 Late Oxfordian-Early Kimmeridgian 

Mo 1185d Calcareous sandstone -31,0 -0,2 Late Oxfordian-Early Kimmeridgian 

Mo 1329a Calcareous sandstone -39,1 0,1 Late Oxfordian-Early Kimmeridgian 

Mo 167816a Calcareous sandstone -36,6 0,1 Late Oxfordian-Early Kimmeridgian 

Mo 167816b Calcareous sandstone -40,1 0,1 Late Oxfordian-Early Kimmeridgian 

SB 2 Black limestone -40,5 -0,7 Late Tithonian 

SB 3 Black limestone -30,3 -0,6 Late Tithonian 

SB 4 Black limestone -41,3 -0,2 Late Tithonian 

SB 5 Black limestone -32,0 -0,8 Late Tithonian 

SB 6 Black limestone -32,6 -0,5 Late Tithonian 

SB 7 Black limestone -32,0 -0,5 Late Tithonian 

SB 8 Black limestone -38,6 -0,3 Late Tithonian 

SB 9 Black limestone -36,0 -0,4 Late Tithonian 

SB 10 Black limestone -38,3 0,0 Late Tithonian 

SB 11 Black limestone -16,7 -3,1 Late Tithonian 

SB 12 Black limestone -32,0 -1,0 Late Tithonian 

SB 13 Black limestone -31,8 -0,6 Late Tithonian 

SB 14 Black limestone -27,1 -1,3 Late Tithonian 

SB 15 Black limestone -37,9 0,0 Late Tithonian 

SB 16 Black limestone -34,2 -0,7 Late Tithonian 

SB 17 Black limestone -30,2 -0,8 Late Tithonian 

SB 18 Black limestone -28,1 -1,2 Late Tithonian 

SB 19 Black limestone -36,1 -0,1 Late Tithonian 

Mo 167187 Sandy limestone -22,8 -0,9 latest Berriasian-Early Valanginian 

Mo 167817Z Sandy limestone -25,3 -0,6 latest Berriasian-Early Valanginian 

Mo 167817Y Sandy limestone -26,0 -0,2 latest Berriasian-Early Valanginian 

Mo 167817X Sandy limestone -22,7 -1,0 latest Berriasian-Early Valanginian 

Mo 167817V Sandy limestone -21,8 -1,0 latest Berriasian-Early Valanginian 

Mo 167817Q Sandy limestone -24,2 -0,6 latest Berriasian-Early Valanginian 

Mo 149380X Sandy limestone -25,0 -0,5 latest Berriasian-Early Valanginian 
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Table 2 
 

 
calcareous sandstones 

bituminous 

limestone sandy limestones 

 

Age proposed herein 

Late Oxfordian-Early 

Kimmeridgian Late Volgian 

latest Berriasian-Early 

Valanginian 

 Age based on Amoeboceras sp. Craspedites okensis Buchia cf. inflata 

 

Faunal list of Tullberg (1881) 

   

Identification proposed 

herein 

Ammonites alternans x (many) 

  
Amoeboceras sp. 

Ammonites okensis 

 

x (2) 

 

Craspedites okensis 

Belemnites magnificus x (few) 

  
Belemnoid guard 

Dentalium subanceps x (few) x  (2) 

 

Scaphopod sp. 

Turbo unicostatus n. sp. x (?) 

  
Eucyclid sp. 

Turbo micans n. sp. x (3) 

 

x (3) Eucyclid sp. 

Turbo capitaneus 

  
x (4) Eucyclid sp. 

Cerithium elatum n. sp. x (many) 

  
Hokkaidoconchid sp. 

Turitella novaesemljae n. sp. 

  
x (2) High-spired gastropod sp.  

Eulima pusilla n. sp. x (?) 

 

x (many) Huddlestoniella pusilla 

Eulima undulata n. sp. 

 

x (1) 

 

Huddlestoniella undulata 

Acteon exsculptus n. sp. 

  
x (1) Bullinid sp. 

Acteon Frearsianus n. sp. 

  
x (1) Bullinid sp. 

- 

  
x (1) Maturifusid sp. 

Ptychostolis nordenskioeldi gen. et sp. nov. 

 

x (7) 

 

Nucinella sp. 

Solenomya costata n. sp. 

 

x (2) 

 

Solemyid sp. 

Nucula borealis n. sp. 

 

x (5) 

 

Nuculid sp. 

Nucula sp.  

  
x (1) Nuculid sp. 

Leda zieteni 

 

x (5) 

 

Dacromya sp. 

Leda angulata 

  
x (1) Protobranch sp. A 

Leda galathea 

 

x (1) x (2) Malletiid sp. 
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Leda subovalis 

  
x (1) Protobranch sp. B 

Cucullaea novaesemljae n. sp. 

 

x (1) 

 

Arcoid sp. 

Aucella Keyserligniana Trautsch. f. obliqua  

 

x (many) 

 

Buchia obliqua 

Aucella Keyserligniana Trautsch. f. majuscula  

 

x (many) Buchia cf. inflata 

Inoceramus revelatus Keyserling 

 

x (?) x (?) - 

Pecten lindstroemi n. sp. 

 

x (?) x (1) Camptonectes sp. 

Avicula muensteri  x (2) x (1) x (1) Oxytoma sp. 

Limea duplicata 

 

x (1) x (1) Pseudolimea sp. 

Ostrea sp. 

  
x (?) - 

Astarte voltzii 

  
x (3) Astartiid sp.  

- x (4) 

  
Astartiid sp.  

Crastasella? sp. 

 

x (?) 

 

- 

Cardium concinnum 

 

x (?) 

 

- 

Cardium sp. 

 

x (?) 

 

- 

Tellina subalpina 

  
x (3) Heterodont bivalve sp. 

Cyprina polaris 

 

x (1) 

 

Arcticid sp. 

Goniomya elegantula x (3) 

 

x (1) Goniomya sp. 

- x (many) 

  
Bivalve sp.  

- 

  
x (1) Rhynchonellide sp. 

- 

  
x (5) Terebratulide sp. 

- x (many) 

  
Echinoderm sp. 

- x (many) 

  
Serpulid sp. 

- x (common) x (common) x (common) Sunken driftwood 
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Highlights 
 
- We identify Jurassic-Cretaceous seep carbonate erratics from Novaya Zemlya, Russia 

- The boulders contain three new fossil seep faunas from the high northern latitudes 

- The faunas are diverse and contain mostly background species  

- The only seep specialist is a species of widespread hokkaidoconchid gastropods 


