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Abstract

The energy dispersion relation of two dimensional hexagonal lattice of GaAs quantum wires em-
bedded in Al,Ga;_,,As matrix, called artificial graphene, was calculated by the finite difference
method with periodic boundary conditions. The validity of the finite difference based code was
checked by comparing the bound state energies of various two dimensional systems with appro-
priate boundary conditions with analytic solutions or the results obtained by COMSOL software,
which uses the finite element method, and a very good agreement was found. The energy dispersion
rclation calculated for artificial graphene structurc shows massless Dirac particles, characteristic
for real graphene. Therefore, artificial graphene-like structures have properties similar to those of
real graphene, and are tailorable by appropriate structure engineering.

Keywords: Artificial graphene, Massless Dirac particle, 2-dimensional energy dispersion relation,
band structure engineering
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1. Introduction

Graphene, a two-dimensional (2D) hexagonal crystalline allotrope with a regular sp2-bonding
of carbon, has been attracting the research attention due to a variety of its unique properties,
being a strong, light, nearly transparent material, and an excellent conductor of heat and electric-
ity [1, 2]. In particular, it shows an unusual feature in its 2D band structure, with massless Dirac
fermions (Dirac cones), showing intrinsically ultrahigh carrier mobilities, since the quasiparticles
in it behave like relativistic elementary particles with zero rest mass [3, 4]. Due to these outstand-
ing characteristics, graphene shows extraordinary potential for device applications, like graphene

transistors for high-frequency electronics, flexible touch-screen devices, smart windows, batteries,
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fuel cells, photovoltaic cells and supercapacitors based on graphene, and also has a prospect of
replacing metals in the manufacture of aircraft and cars by graphene-plastic composites.
Artificial graphene (a common name for honeycomb lattice materials or structures) provides
a tunable platform for investigating massless Dirac quasiparticles, such as their behavior under
electric field, magnetic field and band engineering methods [5, 6, 7, 8, 9]. These structures can
be fabricated by advanced nanoscale fabrication technology processes, which enable high qual-
ity low-dimensional nanoscale patterns that can be precisely controlled. Examples of artificial
graphene structures, which were designed and fabricated, are synthetic nanopatterned GaAs het-
erostructures with ultrahigh-mobility 2D electron gas [10, 11, 12, 13, 14, 15, 16]. These were
successfully fabricated by, firstly, using an electron beam nanolithography to produce an array
of Nickel disks with the honeycomb geometry, and then by etching away the material outside the
disks by inductive-coupled reactive ion etching. Scanning tunneling microscope (STM) was used to
pattern the Oxygen and Carbon atoms of CO molecules in a honeycomb pattern. Another example
of artificial graphene is basced on atoms or molccule manipulated by crystalline-like laser trapping
of ultracold atoms. The honeycomb photonic crystal induced by laser irradiation is based on the
change of refractive index. In this work, we calculate the bandstructures and energy dispersion
relation of an artificial graphene of 2D confined electrons in the Al,Ga; _,,As/GaAs/Al,Ga; _,As

system.

2. Computational method

In this work the artificial graphene based on quantum wire nanostructure, i.e. the honeycomb
structure of Al,,Gay_,,As/GaAs/Al,Ga;_,As is considered, with the Al content (1) equal to 0.20.
The effective mass method is ecmployed to solve the envelope function Schrodinger cquation. The
conduction band discontinuity between Al,,Ga;_,,As and GaAs is taken as 0.79w [eV] for w < 0.41
[17, 18, 19]. Interdiffusion leads to smoothing of the initially abrupt Al content profile around the
interface. In case of cylindrical symmetry the exact analytical solution for the interdiffusion profile
exists [20], but is somewhat involved, and the Al profile in the layer plane, wy,(2,y), was here

approximated by a simpler expression:

—w
66( (I—ﬂfo)2+(y—yo)2—RM> +1

Way(z,y) = +w.

Therefore, the two dimensional potential profile in the xy plane, V(z,y), is described by

0.79w
Szt Bu)

where g is the reciprocal diffusion length paramecter, (29, yo) is the center of the GaAs wire,

Viz,y) =— (1)

and Rys the wire radius, as shown in Fig. 1 (a).
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Figure 1: The potential profile of (a) two dimensional hexagonal lattice Alg.2Gap.gAs/ GaAs/ Alg.2Gag.gAs, and

(b) within a rhomboidal unit cell.
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According to the periodicity of this structure, we choose a 2D unit cell as a rhomboid with

basis vectors a; = %52 + %3 and ay = %52 — %} The lattice constant is L = v/3dy, where d;
is the distance between two neighbouring GaAs wires, as shown in Fig. 1(b). Within the effective

mass method, the 2D electron energies and envelope wavefunctions are found from

h? 1 A
{? (V~m*mev>+V}w—ﬂ// (2)

where m, is the free electron mass, m* is the position-dependent effective mass, according to

the Al content (m* = 0.063 + 0.083w for w <0.41) [17, 18, 19], and has the similar smooth profile

as the potential:

m*(z,y) = 0.063+ 0.083w

0.083w
T e ) (3)
e "0 Y ~Yo M _|_1

According to the chosen unit cell, new coordinates (u,v) were introduced to simplify the imple-
mentation of periodic boundary conditions: u and v are the coordinates along a; and ay directions,
where @, and a5y are the 2D lattice basis vectors, ad; = @ + %} and dy = @ — %} Therefore,

u and v take values between 0 and L, and are related to rectangular coordinates = and y as:

ul _ % x @)
v ‘/75 1 |y
while (u,v) can be transformed back to (x,y) as
Bl (5)
1 1
y 2 2] v

The Schrodinger equation can now be written in the new coordinate system, e.g. in the constant

cffeetive mass case the kinctic cnergy part is

8% 0%y
— 2 { = _——
vy dx?2 Oy
4 (8% 8%y 0%y

- §{d_+a_dd}

In order to solve it, the finite difference method has been employed. The terms 32715, ‘?j—jﬁ, and

2' / . . . .
% are written in finite difference form as
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(@) Yit1j — 205 + Y1y
1,7

du? (Au)?
<ﬂ) _ iy =2 Vi
ov? i (Av)?
0% - 1 Vi1 j+1 — Yig1j-1
<8“8U) g Adudu —ti1j+1 + Yic1j-1

Therefore, the finite-difference form of the 2D Schrédinger equation in the (u, v) coordinates is:

72 Vi1, 2% j it + wi,j71*2¢)i,];+1/)i,j71
0 (Au)? (Av)? + Vi, = ey
2m _"4{7i+1,j+1‘wi+‘l,j—1‘wi—‘l,j+1+'¢’i—1,j—l b3 7
4Audv
(—huifio1j + 20yt 5 — hutbiga )
+ (=hothij-1 4 2Ryt 5 — oty jy1) ‘ ‘
TVigig = iy
Fhuotizt j41 — huwWiz -1
—hau i1 41+ Pzt -1
—huthi j—1 — huio
+ (20 + 2hy + Vi j) i
—huthiyr; — hati i = €Yy

Fhuwit1 j+1 — PuoWiv1 -1

—huvwi—l,j-l‘l + huvwi—l,j—l

_ h? _ h? _ h? _
where h,, = (AT h, = (AT hyw = SATED and V, ; = V(u,v).

2.1. Validity of the method

In order to check the validity of this method, and of the code developed for it, we have first
calculated the bound state energies of three systems: 1) single quantum wire, 2) double quantum
wire with rectangular box boundary conditions, and 3) double quantum wire with rhomboidal box

boundary conditions.

2.1.1. Single quantum wire

The bound state energies of a 2D infinitely deep square wire with L, = L, = 8 nm, and of
a finite-barrier circular wire with radius of 4 nm and depth of —0.79w eV in a square box, were
calculated, assuming a constant effective mass m* = 0.063 + @, by using the finite difference
method, and were compared against the values obtained by the finite element method or from the
analytic solution. The results are shown in Table 1 and indicate the validity of the developed code

and the finite difference method.
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state energy (eV)
structure States FDM | FEM | analytic solution

1 0.1646 | 0.1646 0.1646

R 2 [ 0.4113 | 0.4115 0.4115
HIIHIE squiate wire 3 | 04113 | 0.4115 0.4115

4 0.6580 | 0.6585 0.6585

finite circular wire (Ry; = 4 nm) 1 -0.0731 | -0.0743 -0.0758
1 -0.0947 | -0.0949 -0.0907

finite circular wire (Rp = 5 nm) 2 -0.0129 | -0.0132 -0.0336
3 -0.0129 | -0.0132 -0.0336

Table 1: The state energies of infinitely deep square wire and of a finite-barrier circular wire, calculated by finite
difference method (FDM), finite element method (FEM) with COMSOL package [21], and from the analytic solution
[22].

2.1.2. Double quantum wires

0.083w
2

Using a constant effective mass m* = 0.063 + , we have also calculated the bound state

energies of GaAs double cylindrical quantum wires (with a radius of 4, 5, and 6 nm) which were
separated by do = %‘3’ nm, embedded in Aly _,,Ga, As matrix of rectangular shape (box) of the
size L, = 30v/3 nm and L, = 30 nm, as shown in Fig. 2(a), and of rhomboidal shape with L = 30
nm, and with the interdiffusion parameter § = 3, as shown in Fig. 2(b).

In the case of rhomboidal box, the envelope wave functions were gridded along the u and
v directions. The Dirichlet boundary conditions are ¥, o = ¢,y = 0 (i = 0,1,2,3,..,N), and
Yo, =%n,; =0(j=0,1,2.3,..,N). Therefore, the wavefunction ¢, ;, i,5 =1,2,3,..., N — 1, can
be calculated from Hy» = ey when H is a symmetric matrix of size (N — 1)2 x (N — 1)2, and the

content of upper triangle of this matrix is:

AL B 0 0 -+ 0 0 0
BT 4 B 0 -~ 0 0 0
0 B" A3 B -~ 0 0 0
H= (6)
0 0 0 0 BT Ay B 0
0 0 0 0 0 BT Ay, B
0 0 0 0 0 0 BT Ay,
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Figure 2: The potential profile of (a) single and double cylindrical Alp.2Gag.gAs/ GaAs/ Alp.2Gag.gAs quantum
wires, with (b) rectangular boundary conditions, and (c) with rhomboidal boundary conditions.
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80 where the matrix A; and B are

and

where the sizes of matrices A; and B are (N — 1) x (N - 1), and ¢; ; = 2hy, + 2h, +V; ;. The
eigenvalues and eigenvectors of H are the state energies and the envelope wave functions, the latter
given in the (u,v) coordinate system, i.e. ¥, ; = { ¥11, 1.2, U1 3,

B Yo N1, -y YN 1.1, YN-1,2, YN _-1,3, -
In case of rectangular box, the envelope wave functions were grided along = and y directions, and

the parameters were transformed as h, = hy, = ﬁ, hy = hy = %, hyo = hy =0, and
Vi; = V(z,y). The results were compared against the state energies and wavefunctions obtained
from the COMSOL software [21], which uses the finite element method, Fig. 3 (a), (b) and Table

o 2. The two methods are in good agreement, particularly for low-energy states, and the described

finitc difference method was further cmployed for this structurc.

3. Results

3.1. 2D energy band structure

The periodic potential V' (r) with period of L in both u and v directions, shown in Fig. 1 (b),

os has the property:

where R is any translation vector for this unit cell. The wave functions then must satisfy the

—hy

SUN_IN-T )

CN-3.,j

—hy

*h‘mr

0

ViIr)=V(r+R)

hy

0 0

0 0

0 0

—hy, 0
cN-25; —hy

7}1,} CNfl,j_

0 0]
0 0
0 0
houw 0
hy  hyw
—hyw  hy ]

sy 11’1,1\7717 ﬂ’z,ly 11’2,27 23, ..
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Figure 3: The envelope wave functions of double GaAs cylindrical quantum wires embedded in Alp 2Gag.g As matrix,
with (a) rectangular boundary conditions, and (b) rhomboidal boundary conditions. calculated by the finite difference

method.
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state energy (eV)
Ry (nm) | states rhomboid rectangular
FDM | FEM | FDM | FEM

1 -0.0648 | -0.0713 | -0.0721 | -0.0720
4 2 -0.0545 | -0.0705 | -0.0714 | -0.0713
3 -0.0095 | 0.0139 | -0.0088 | 0.0088
4 0.0053 | 0.0236 | 0.0113 | 0.0114
5 0.0331 | 0.0302 | 0.0153 | 0.0154
6 0.0520 | 0.0302 | 0.0167 | 0.0167
1 -0.0856 | -0.0924 | -0.0932 | -0.0931
5 2 -0.0751 | -0.0916 | -0.0925 | -0.0924
3 -0.0388 | -0.0121 | -0.0154 | -0.0153
4 -0.0267 | -0.0055 | -0.0128 | -0.0127
5 0.0131 | -0.0031 | -0.0110 | -0.0108
6 0.0327 | -0.0031 | -0.0079 | -0.0077
1 -0.1015 | -0.1070 | -0.1081 | -0.1083
6 2 -0.0895 | -0.1059 | -0.1071 | -0.1072
3 -0.0622 | -0.0394 | -0.0422 | -0.0420
4 -0.0505 | -0.0333 | -0.0395 | -0.0390
5 -0.0150 | -0.0317 | -0.0382 | -0.0380
6 -0.0001 | -0.0317 | -0.0351 | -0.0350

Table 2: The state energies of double cylindrical quantum wire with rhomboidal and rectangular box boundary
conditions, calculated by finite difference method (FDM) and finite element method (FEM) with COMSOL package.

—

Bloch conditions, i.e. the wave functions can be written as the product of a periodic function u(r)

and ¢F7

()R, (10)

S
En
=)
\‘}
I
=
&y
—~
=

and where the periodicity of u;(7) is the same as that of the potential. Therefore, the particle

wR e,

wave functions in each period differ only by the phase factor e

() = e+ Re (11)

where k is the wave vector (crystal momentum). The Hamiltonian matrix H is a hermitian

matrix of size of N2 x N2, where N is the number of grid points along « and v directions, and its

10
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matrix elements are

where the matrices A; and B are

C1,5
—hy,

0

_—hvf{)k

105 and

hy

*h‘uv

0
0

B £

where C = f, B, [, = e« f, =e*»L and the sizes of matrices B and C are N x N.

A1 B
Bt A,
0 Bf
0 0
0 0
ctoo

—hy,

€25

—hy

.

ha,

— Ny

0 0
B 0
As B

0 0 O
0O 0 O
0 0
—h, 0
C3.j *hv
0 0 —hy
0 0 0
0 0 0
0 0
huw O
I Py
0 0 —hyy
0 0 0
0 0 0

CN-2

*hv

he,
—huu

0

A N |

—hy
CN 1

—hy,

h u

hy

- hu v

0
—hy,

CNj ]

0

hyw

he,

(14)

The eigenvalues and eigenvectors of the Hamiltonian matrix are the state energies and wave-

functions of band n and wave vector k = (ky, ky) = <{ oo zZ } {-

2, F }) as shown in Fig.

4 and 5. In order to check the validity of this method for the perlodlc boundary conditions, the

uo  results were compared with those obtained with the, more conventional for periodic structures,

plane wave basis functions expansion (formally a linear variational method) as was employed in

[9]. In the plane wave method the wavefunction is written as

1 Aﬁl
Vo (1) = ZCGT e,

11

(15)
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where ¢ are the plane wave amplitude coefficients. The Hamiltonian matrix, H 5 5, will be

B2 =~ =
5= (k+G) g5 +V(G -G, (16)

2m

H

0

kN

where G are the reciprocal lattice vectors and V(é - é’) is the Fourier transform of the potential
V(7), calculated as the 2D Fourier transform of the honeycomb potential (shown in Fig. 1, and
with Eq. (1)), with the rhomboidal unit cell defining the structure periodicity. The eigenvalues of
the Hamiltonian matrix for any particular wave vector k are the band energies.

Examples of results obtained by the finite difference method and the plane wave method are
shown in Fig. 5. The agreement between the two is generally very good. In case of sharp
boundaries (almost no interdiffusion, g = 100), the number of space grid points in the finite
difference method, and the number of waves in the plane wave method, required for well converged
results, arc both larger than the what is nceded in casc of large interdiffusion. The convergence
of the finite difference method improves (requiring a smaller number of grid points) for sharp
boundaries, while the convergence of the plane wave method improves for large interdiffusion.
Howcver, the overall computation time is still smaller with the finite difference than with the planc
wave method for any realistic case we have tested (having 8, 16, 32 and 64 grid points per direction,

or a total of 82, 162, 322 and 642 plane waves), regardless of the level of interdiffusion.

3.2. Effect of position-dependent effective mass

In the previous subsection the two-dimensional band structure of artificial graphene was cal-
culated, but the effective mass was assumed constant. In order to include the effect position-
dependent effective mass, we have simplified the problem by changing the unit cell from rhomboidal
to rectangular, with basis vectors d; = L.i =3dyi and @, = Ly§ = v/3dyj, as shown in Fig. 6.

The 2D Schrodinger equation

(0 1 3] J 1 3]
— g — | —— —_— | — Vix 1 = ey
2 {3:}; (m*(a;,y) O 1/)> + Ay (m*(w,y) Dy W)} Vv =,

was written in finite difference form as [23]

iy Wi, j Yij  Witl,j
the ( M-t + M-l + Mirls  Mivdy
+ Vi = el 4,

+hy <— dﬂ:’]..ill + mz./}iJ + i Fnin

m m. . m,
I 5 1~J*% 1,1+% 1~J+%

or

byt
"o
P

haothi 1,5 h h h h hetlign g
Sl g (g e oy b g M e g Seies b ey
p ; ; p JJ i, i.9>
m; 1 m; -y mi+%,j m; -3 mid+% "L'H%,j
BN ZNES!
i+ s
12
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Figure 4: The energy dispersion for a rhomboidal unit cell artificial graphene Alp.2Gag.gAs/ GaAs/ Alp.2Gag.gAs

structure.
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Figure 5: The band structure of rhomboidal unit cell artificial graphene Alg.oGag.gAs/ GaAs/ Alg.2Gag.gAs along
special high-symmetry directions in the two-dimensional hexagonal Brillouin zone (G=(0,0), M=(1/+/3,0)27/a,
K=(0,2/3)27n/a), calculated by finite difference (solid lines) and plane wave method (dashed lines) in the case of (a)
large interdiffusion, # = 3 and (b) small interdiffusion, 5 = 100. The blue, black, red and green lines correspond to
the number of grid points of 8, 16, 32 and 64, respectively, in each direction, or to the number of plane waves of
82,162, 322 and 642. The energy is measured from the conduction band edge of the matrix material, because the
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potential, Eq. (1), was defined in this manner.
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Figure 6: The smoothed potential profile in a rectangular unit cell of artificial graphene Alg.2Gag.gAs/ GaAs/
Alp.2Gag.gAs.

and h, = while N, and

: Dk (e ) — _ n? R?
where the effective mass m™*(z,y) = m(z, y)me, hy = T (BT CTTRUIER
N, are the number of grid points in 2 and y directions, respectively. The Hamiltonian matrix, H,

is a square Hermitian matrix of size N; N, x N;N,,, and the upper triangle matrix elements are

A B0 0 - 0 0 C
Ay B» 0 0 0 0
Ay By 0 0 0

H= (17)
An,—s Bn,3 0 0

Ay,—2 By, o 0
An,-1 Bn,-1
AN

y

15
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where
_Cl,j rl,j 0 0 0 0 ll,jfm |
C25 T2 0 0 0 0
€35 T34 0 0 0
A = (18)
CN, -3, TN,-3; 0 0
CN,—27 TN,—23 0
CN,—1,j TN,—1,
L C]\fzmj i
A, 00 0 0 0 0 |
d2y 0 0 0 0 0
dgj 0 0 0 0
B, = (19)
dn, 3.5 0 0 0
dn,—2. 0 0
dyv, 1; 0
L de,j_
i, 00 -0 0 0 0 ]
U2 5 0 0 0 0 0
ug,; O 0 0 0
¢ = (20)
UN, 3,5 0 0 0
UNI,QJ' 0 0
un,-15 0
i UNg.j ]
with

hy I ! h
™.

Mij-%  Mhij+l

. ha o ha i1 . hy
y - ? ] 3 %]

P 1 . 1 . ?. "L, 1 . 2. e, .1
-5 1=5,7 it+5,7 it

Ujj = —

and f, = e'®vlv f, = e'%aLs  The sizes of matrices Bj, B;[, C, and Ct are N, x N,. The
eigenvalues and eigenvectors of the Hamiltonian matrix are the state energies and wavefunction of
band n for wave vector & = (ky, ky) = ({*ﬁv B O Ly}).

140 An example calculation of this type, shown in Fig. 7(a), shows the influence of the position-

dependent effective mass on the band structure of rectangular unit cell artificial graphene Aly _,,Ga,,As/

16
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Al _.Ga,As/ Al _,Ga, As. There are only quantitative differences, compared to the constant ef-
fective mass case (and these will depend on this constant mass value taken), but the band structure
does show Dirac points in the position-dependent mass as well.

To illustrate the band engineering possibilities in artificial graphene, Fig. 8(b,c) shows the band
structures obtained for different values of wire radii Ry; and cell sizes dy (distance between two
ncighbouring GaAs wires). Yet another way of band structure tuning, offered by artificial graphenc,
is by band gap opening at the Dirac points. This is achievable by breaking the symmetry, i.e. the
equivalence of sites A and B in the hexagonal lattice, via changing the Al content only in the wires

at site A sublattice of the honeycomb lattice structure, as illustrated in Fig. 8(d).

4. Conclusions

The cnergy dispersion relation for artificial graphene, the two dimensional hexagonal lattice
of Al,,Gaj_,,As/ GaAs/ Al,Gaj_,As, was calculated by finite difference method. The effect of
aluminium interdiffusion between GaAs quantum wires and the Al,Ga;_,As matrix was taken
into account by smoothing the potential and cffective mass profiles between the two layers. The
validity of the finite difference method and the developed code was checked by comparing the
bound state energies with analytic solutions in the case of single quantum wire or, in cases of
double quantum wires with constant or discontinuous effective mass, with the results obtained
from the finite element based COMSOL software. The energy dispersion relation of the artificial

graphene shows massless Dirac particles and offers band structure engineering possibilities.
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