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Abstract 

White etching cracks (WECs) have been identified as a main failure mechanism of wind turbine 

gearbox bearings. This study involves the destructive sectioning of a failed low speed planetary stage 

WTGB and the damage found at manganese sulphide (MnS) inclusions. Inclusions were sectioned 

through the bearing circumferential and axial directions in order to compare the damage in different 

directions. 112 damage initiating inclusions were catalogued and their properties investigated. 

White etching areas (WEAs) were found at MnS inclusions of lengths 3-45 microns at depths of up 

630 microns from the bearing raceway surface and at a wide range of angles of orientation. 29% of 

catalogued inclusions were internally cracked and 28% were separated from the surrounding steel 

matrix. Evidence has been found to support the theory that WECs are initiated subsurface, by MnS 

inclusions, and that butterfly cracks are not necessarily the same features as inclusion-initiated WEAs. 

Shorter inclusions were found to initiate longer cracks and connected WEAs, as were inclusions that 

were closer to parallel to the raceway surface in axially sectioned samples. 
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1. Introduction 

The wind industry faces tough challenges to reduce the cost of wind energy; particularly its high 

operating cost. The European Wind Energy Agency has a planned target of 230 GW of installed wind 

power capacity by 2020, representing 20% of total EU electricity consumption [1]. This expansion is 

being limited due to the expense of a number of maintenance issues, most critically concerning wind 

turbine gearboxes (WTGs) which are not reaching their anticipated lifespan of 20 years. It is 

estimated in the UK that operation and maintenance accounts for 20% of the cost of offshore wind 

energy [2]. 

The majority of WTG failures initiate in the wind turbine gearbox bearings (WTGBs) [3], and the 

exact modes of their failure have been intensively researched and widely investigated by industry. 

White etching cracks (WEC) have been found to lead to premature failure by white structure flaking 

(WSF) [4], micropitting or by axial cracking [5]. Previous work has identified material defects, 

particularly manganese sulphide (MnS) inclusions as WEC initiators [6]. This study will investigate 

damage initiation at manganese sulphide (MnS) inclusions, by destructively sectioning the inner 

raceway of a failed planetary stage WTGB. Damaged inclusions were catalogued and their properties 

recorded. The objective was to investigate the different types of damage caused at the inclusions and 

to find any links between the properties. 

1.1. MnS inclusions in bearing steel 

MnS inclusions have been classified into three types since 1938 [7]. Type I inclusions are globular in 

shape and appear in steels with practically no aluminium content. Type II are dendritic chain 

formations on grain boundaries and appear with the first traces of aluminium (0.005 wt%). Type III 

are strings of broken silicates and initially appear alongside Type II at levels of 0.01% - 0.03 wt% 

aluminium. At levels greater than 0.04 wt%, Type III is the only MnS inclusion to appear [7]. 

Typical bearing steel, such as 100cr6 or 100CrMo7, has negligible aluminium content [8], so it is 

therefore globular Type I MnS inclusions that are of interest. MnS inclusions in hot-rolled steels are 

randomly distributed and of irregular shape and are elongated and flattened in the direction of plastic 

forming [9] during the manufacturing process. Therefore their orientation may vary from bearing to 

bearing due to differences in the manufacturing process. Three dimensionally, MnS inclusions can be 

described as long, thin, globular shaped [6].  

1.2. White etching cracks 

Currently, WTGB failure via WECs is not fully understood therefore bearing life prediction models 

have yet to be developed to include this failure mode [4, 5, 10, 11] in the selection of bearings. “White 

etching” refers to the colour of the altered steel microstructure, after having been etched in 

nital/ethanol [6]. WECs may form irregular crack networks, named irregular white etching areas 



(IrWEAs) and follow pre-austenite grain boundaries [5]. These crack networks form up to the depth 

of maximum shear stress, occurring over large subsurface areas and eventually leading to failure by 

macropitting. IrWEAs have been observed to propagate radially from straight-growing cracks, which 

are parallel to the surface in the axial direction. Through-hardened bearings are prone to fail via the 

axial cracking mode, whereas carburised bearings with less than 20% retained austenite fail by 

macropitting. Sub-surface cracks occur at various depths and inclinations within the white etching 

area (WEA) [5].  If this WEA weakens the near-surface of the raceway sufficiently, WSF occurs, 

leading to failure by spalling. White etching cracking leading to WSF is a mode of damage that can 

lead to bearing failure within 1-20% of the L10 design life [12] predicted by current bearing design 

standards [13]. 

WECs have been observed to form from “butterfly cracks”, named such due to their two-dimensional 

appearance. In this case, cracks initiate and propagate between 30-50° and 130-150° from the over-

rolling direction, which may be due to the position of maximum Hertzian unidirectional shear stress 

[4]. These cracks are known as “butterfly wings”. During torque reversals caused by tranient loading 

events, symmetric cracks may form at the same angles, in the direction opposite to overrolling [4]. 

1.3. MnS inclusions as crack initiation sites  

All inclusions may act as crack initiation sites under high enough contact stress [14], however in the 

case of white structure flaking in WTGBs, MnS inclusions have been found to be the most likely to 

interact with white etching crack (WEC) damage [6]. Shorter inclusions have been found to be more 

likely to initiate damage than longer inclusions, with the ideal length for crack propagation found to 

be smaller than 20 microns (based on a sample size of 76 WEC-interacting inclusions) [6]. During 

quenching, the different thermal contraction rates of the bulk material and MnS inclusions may lead to 

the detachment of the inclusion from the surrounding bulk material, thereby creating a free surface at 

the subsurface inclusion [14]. The weak interfacial energy bonding MnS inclusions to the matrix may 

contribute to the creation of this free surface [6]. These free surfaces are potential sites for inclusion 

separation from the bulk material and for rolling contact fatigue initiated cracking [14]. Cracking has 

been found to be sensitive to direction within the raceway; with vertical WEC branches appearing to 

propagate when viewed in circumferential cross-sections and branched that are parallel to the surface 

in axial cross-sections [6]. 

Although free surfaces may be potential crack initiation sites, it is not necessary for a MnS inclusion 

to initiate a crack due to the poor bond with the bulk material. A thin, flattened MnS inclusion may 

itself act as a virtual crack [15] that may propagate into an actual crack. In rail steel, MnS inclusions 

can become significant crack initiators [16]. It was found that near to the rail surface, all MnS 

inclusions were deformed first in the strain direction, moved to the shear angle caused by over-rolling, 



and then flattened as they reached the wear surface. Wear tests on four rail steel types confirmed that 

almost all deformed MnS inclusions near to the wear surface were associated with cracks [15]. 

MnS inclusions may become elongated under load because they deform more than the surrounding 

matrix [17][18]. Cracks can be initiated along the highly strain flattened MnS inclusions [17], due to: 

micro-crack initiation at localised deformation bands in the vicinity of the inclusions; high stress 

concentration in the middle of the elongated inclusions leading to interfacial debonding and void 

formation, which are potential crack initiation sites; break up the inclusions causing cracks to form 

within the inclusion [18], which may go on to propagate into the bulk material [6].  

A three-stage process for MnS initiated WEC formation has been proposed [19] and is illustrated in 

Figure 1, by using the evidence found in this study. Firstly, the inclusion fractures along the length of 

its major axis; Figure 1(a). Separation of the inclusion from the bulk material may or may not occur. 

Secondly the crack propagates into the bulk material surrounding the inclusion; Figure 1 (b-c).  

Finally, white etching areas (WEAs) develop along the cracks; Figure 1 (d). This process is similar to 

that proposed in [19], but with more extensive cracking in images Figure 1 (c) and (d).  

 

 

Figure 1: WEA development at MnS inclusions 

For a “butterfly” to exist at a MnS inclusion, it was found that the inclusion was always cracked in the 

direction of the major axis [6] and that the inclusions themselves were initiators of cracks/butterflies 

that propagated to form WECs. Crack initiation around MnS inclusions and short crack growth can be 

explained by mode 1 loading (normal to crack growth direction). Further growth of the cracks 

governed by mode 2/3 shear loading (in-plane shear/off-plane shear) [6]. 
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While it is clear from the results presented in this study that MnS inclusions are WEC initiators, it has 

been found that it is not necessarily the case that they must be cracked along their major axis in order 

to do so. WEAs may also form at cracks or free surfaces caused by other previously discussed factors. 

This is investigated in detail in section 4. 

2. Destructive investigation 

A failed bearing from the low speed planetary stage of an onshore wind turbine that was operated in 

the EU was destructively investigated in order to examine subsurface material damage. The wind 

turbine gearbox had been operating without major incident for five years. A routine oil analysis was 

carried out 10 days prior to failure, the subsequent report concluding that wear levels were 

satisfactory and the routine sampling interval should be maintained. The turbine was taken out of 

service 10 days later when the SCADA control system received the low gear oil pressure alarm. After 

inspection, it was found that the bearing presented in this study had catastrophically failed. The 

operating conditions for this bearing are summarised in Table 1. 

Motion 

Nominally rolling contact. 

Inner ring stationary with rotational motion of outer ring and cylindrical rollers. 

Rotational speed of outer ring:  38 rpm. 

Sliding of rolling elements in unloaded zone. 

Loading 

Repeated loading of same inner raceway arc. 

Torque reversals and impact loads known to occur. 

Misalignment possible. 

Bearing radial loads in the range of 160-220 kN during normal operation [20]. 

Table 1: Operating conditions of sectioned bearing 

2.1. Observation of surface damage 

Wear was evident for approximately 55% of the inner raceway circumference, but within this region 

the coverage and type of damage changed. Outside this region there was little to no evidence of wear. 

The variation in damage has been described by three distinct phases as illustrated in Figure 2.  

- Phase 1: Damage covered most of the raceway width for approximately 20% of the 

circumference. There was severe macropitting with evidence of material removal from the 

surface. 

- Phase 2: There was a transition to decreasing area of damage coverage. Damage was mainly 

evident on one side of the raceway towards the non-flanged side of the ring. The wear damage 

was intermittent but well defined at a width of around 20 mm for approximately 35% of the 

bearing circumference. Within the main 20 mm band of damage there was severe 

macropitting. There were also smaller wear scars outside of this band around the centre of the 

raceway. 

- Phase 3: Non-damaged phase. Over the remaining 45% of the raceway circumference there 

was very little evidence of damage detectable by eye.  



   

Figure 2: Photographs of raceway damage (a) Phase 1 (b) Phase 2 (c) Phase 3 

From the initial observation of the bearing, it seems clear that the failure occurred at some point in the 

inner raceway, as the outer raceway was relatively undamaged. The inner raceway was therefore 

selected for investigation. A total of 40 specimens from the three phases were sectioned, compression 

mounted in a thermoset resin, ground, polished and etched in 0.5% nital in ethanol solution before 

observation took place.  

2.2. Observation of microstructure 

From analysing several SEM images such as Figure 3 it has been observed that the predominant 

fibrous regions are martensite, separated by the darker non-fibrous regions of retained austenite and 

interspersed with spheroidal carbides. The steel is produced by rapid quenching from above the 

eutectoid temperature, before tempering at 160 °C. This creates a microstructure containing 

martensite, about 6 % volume of retained austenite and 3 - 4 % of cementite particles [14]. There were 

many MnS inclusions throughout the microstructure and their chemical composition was confirmed 

using Energy Dispersive X-ray Analysis (EDAX) as shown in Figure 4.  

 

Figure 3: Bearing steel microstucture 

(a) (b) (c) 

20 mm wide damage band Severe macropitting 



 

Figure 4: EDAX spectrum showing chemical composition of MnS inclusion 

3. Key features of found damage 

As previously mentioned, the rolling process used during manufacture of the bearing raceways 

determines the orientation of the MnS inclusions in the steel matrix. In this bearing, inclusions were 

orientated with their major axis close to parallel with the bearing surface when viewed in an axial 

cross section as shown in Figure 5a. They were also elongated to a lesser extent when observed in 

circumferential sections and were generally angled at approximately 30 degrees from the surface 

tangent as shown in Figure 5b. MnS inclusions were consistently orientated in this manner, regardless 

of their location in the bearing raceway. As a result, it was necessary to prepare specimens sectioned 

both axially and circumferentially, in order to determine whether cracks form preferentially in either 

direction. A summary of the specimens investigated and the damage found at each location is 

provided in Table 2. 112 damage initiating inclusions were found during sectioning and their 

properties catalogued will be described in section 4. 

    

Figure 5: Inclusion orientation in inner raceway a) Typically MnS inclusion viewed axially b) Typical MnS inclusion 

viewed circumferentially c) Specimen orientation (not to scale) 
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Section details Sample 

Nos. 

Observations/Features 

Section 1a - Circumferential 

section. Phase 1 damaged region. 
1-6 

WEA interacting inclusions 

Crack initiating inclusions 

Separation of matrix from inclusions 

Butterfly cracks in near surface zone. 
Section 1b - Axial section. Phase 1 

damaged region. 
6-12 

Section 2a - Circumferential 

section. Phase 1/Phase 2 boundary. 
13-18 

WEA interacting inclusions 

Crack initiating inclusions 

Separation of matrix from inclusions 

Butterfly cracks in near surface zone. 

Significant subsurface crack parallel to the raceway. 

Substantial WEC propagated vertically down from the surface 

Surface initiated RCF cracks 

Section 2b - Circumferential 

section. Phase 1/Phase 2 boundary. 
19-24 

Section 3a - Circumferential 

section. Phase 2 damaged region. 
25-30 

WEA interacting inclusions 

Crack initiating inclusions 

Separation of matrix from inclusions 

Small butterfly initiated WEC 

Large butterfly crack with WEC propagating to surface 

Surface initiated RCF cracks 

Plastically deformed region 

Section 3b - Axial section. Phase 2 

damaged region. 
31-36 

Section 4a - Circumferential 

section. Phase 3 non-damaged 

region 

37-40 No evidence of damage 

Table 2: Summary of sectioned specimens and damage found 

 

3.1. Distinction of “butterfly” and WEC initiating inclusions 

It has become apparent that there has been some confusion over the definition of the term “butterfly” 

in the literature. The term was originally introduced in order to explain features that appeared to 

resemble a butterfly, with four “wings”, symmetrically propagating from a central  point as shown in 

detail in Figure 6, which gives an example of a series of linked butterflies and connected WECs that 

propagate to the raceway surface. Highly magnified SEM images of the largest butterfly are presented 

showing the severe elongation of carbides in the vicinity of the WEA. It is clear that there is no 

obvious inclusion initiating any of the butterfly features in Figure 6. The butterflies presented in this 

image clearly have 4 “wings”. 

Of the 112 catalogued inclusions, 89 inclusions were connected to WEAs. All 89 inclusions had either 

one or two WEAs that tended to propagate at much shallower angles than traditional “butterfly 

wings”. Most WEA initiating cracks propagated close to horizontally from the inclusion, with the 

steepest angle not exceeding 30 degrees. It is suggested that WEAs linked to inclusions are not 

“butterfly wings”. Examples of these inclusion-initiated WEAs are shown in Figure 7. The features 

are thought to be distinct from the butterfly features and should be treated as such, so they will not be 

referred to as “butterflies” in this study, but as WEA-interacting MnS inclusions. 



  
Figure 6: Series of butterflies and connected WECs 

 

 
Figure 7: Examples of WEA-interacting MnS inclusions 
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3.2. Subsurface inclusion-initiated WEC formation 

There is debate regarding the location of WEC initiation; broadly there are two arguments: 

1. WECs initiate subsurface and propagate up to the surface, leading to failure, either by WSF or 

axial cracking [4, 21, 22, 23, 14, 24, 6, 12, 25] 

2. WECs initiate on the surface and propagate downwards[19], meaning that they are a result of 

surface failure rather than its cause.  

Point 1 and 2 are not necessarily mutually exclusive, however, evidence found in this study certainly 

suggests that point 1 is correct and that WECs may initiate subsurface, most commonly at MnS 

inclusions.  

Figure 8 presents evidence that such damage is initiated at MnS inclusions. Figure 8a shows three 

nearby inclusions, which have each independently initiated cracking. They are not part of an 

extended crack network and no other cracks are visible on this plane, therefore crack initiation must 

have begun at the inclusions themselves. Figure 8b shows a typical WEA, initiated at an inclusion, 

around 150 microns below the raceway surface. Again the feature does not appear to be linked to any 

extended crack network. Since all 112 damage initiating inclusions did not appear to be part of a 

larger crack network, the evidence that the damage was initiated at the inclusions is conclusive. 

Figure 8c shows typical cracks formed at the ends of damaged inclusions. The location of crack 

initiation at the inclusion tips, and at the highest radius of curvature, coinciding with the location of 

maximum equivalent stress concentration around the inclusion [26], suggesting that it is high stress 

levels that have initiated cracking.   

 



 

Figure 8: Subsurface inclusion initiated WEAs 

It has been reported [27] that MnS inclusions may act as “virtual cracks”, which due to their low 

strength may propagate actual cracks. An example of a MnS inclusion acting as a virtual crack is 

presented in Figure 9, where the inclusion that is intersected by a large crack network, diverts a crack 

by a distance of approximately 10 microns. This finding supports the theory that cracks preferentially 

propagate along MnS inclusions, rather than the surrounding matrix and shows that they are a "weak 

spot" within the steel microstructure. 
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Figure 9: Crack "deflection" by MnS inclusion 

3.3. Damage initiation and propagation at MnS inclusions 

The observed damage at MnS inclusions found during sectioning is summarised in Figure 10. 

Inclusions are initially undamaged and well-bonded to the matrix (stage 0). The first sign of damage 

may be internal cracking of the inclusion (stage 1a) and/or separation of the inclusion from the steel 

matrix (stage 1b). Cracking may be initiated into the steel matrix (stage 2), possibly from propagation 

of the stage 1a internal crack, from stage 1b type separation, or from the inclusion tip that may act as a 

stress concentration point. WEAs then form at stage 1b separation (stage 3a) or, at stage 2 type 

propagated cracks (stage 3b). Further propagation of cracks and sometimes, of their attached WEAs, 

may then take place (stage 4), leading to the propagation of what has been termed white etching 

cracks (WECs), far away from the MnS inclusions. The likelihood of each damage type occurring and 

the possible relationships between each are investigated in section 4. 
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Figure 10: Damage initiation and propagation at MnS inclusions 

 

  



4. Analysis of inclusion properties 

112 damage initiating inclusions from circumferentially and axially sectioned samples were identified 

and catalogued. The following data was recorded, with the aim of finding trends between the different 

properties. This section discusses links between the damage found, summarised in the previous 

section. 

- Depth from surface 

- Angle of inclusion 

- Whether the inclusion is internally cracked 

- Whether the inclusion is separated from the surrounding steel matrix 

- Length of crack initiated from left and/or right end of inclusion 

- Length of WEA initiated from left and/or right end of inclusion 

4.1. Relationship between damage types at MnS inclusions  

Figure 11 shows the relationship between three types or stages of damage at MnS inclusions; internal 

cracking, separation from the bulk material and WEAs linked to the inclusions. Figure 11a shows that 

29% of damaged inclusions were both internally cracked and WEA initiating, while, 50% had 

initiated WEAs without being internally cracked. This result clearly demonstrates that an inclusion 

does not necessarily need to be internally cracked in order to initiate a WEA. Similar percentages in 

Figure 11b show that separation from the bulk material has a similar link to the probability of the 

inclusion interacting with a WEA, with 28% of separated inclusions being linked to WEAs, and 51% 

of non-separated being linked. This shows that an inclusion that does not separate from the steel 

matrix is more likely to initiate a WEA than one that does, perhaps because some stress is relieved by 

the separation. Figure 11c appears to show no strong prevalence of damage occurring at inclusions 

that are internally cracked or that are separated from the bulk material, or those that are both cracked 

and separated. 

       

Figure 11: Relationship between damage types (a) internal cracking and WEA formation (b) separation from bulk 

material and WEA formation (c) internal cracking and separation from bulk material 

(a) (b) (c) 



4.2. Variation of damage with inclusion depth 

No trends were found when comparing the angle and the size of inclusions with their depth from the 

raceway surface, thus it is clear that inclusion distribution is random in the sample bearings and that 

the effects of over-rolling have little influence on the size and orientation of the inclusions. In 

addition, WEAs were found on many of the deepest damaged inclusions, to a depth of approximately 

600 microns from the raceway surface. It was interesting, however, that no internally cracked or 

separated inclusions were found deeper than 430 microns. In fact the average depths for inclusions 

that were internally cracked and for those that had separated from the surrounded bulk material were 

just 3 microns different (219.5 microns and 216.2 microns respectively). This suggests that inclusion 

cracking and inclusion separation may be affected by similar initiation mechanisms. These results are 

outlined in Figure 12. 

 

Figure 12: Variation of inclusion damage with depth 

4.3. Variation of damage with inclusion orientation angle 

No trends were found when properties were compared to inclusion orientation in the circumferential 

sectioned samples. However Figure 13 shows that the length of cracks propagating in the axial 

direction was generally greater in “flatter” axially sectioned inclusions. That is to say that it appears 

that the closer the inclusion’s major axis is to being parallel with the bearing raceway surface, the 

longer the initiated propagated crack is likely to be. This finding suggests that an inclusion is more 

likely to act as a damage initiator in the axial direction if it is closer to being parallel with the bearing 



raceway surface. Figure 13, shows the magnitude of the angle of the inclusion from parallel, that is, 

the direction of the angle from parallel is not considered. 

 

Figure 13: Relationship between inclusion angle magnitude from horizontal and propagated crack length 

4.4. Variation of damage with inclusion size 

Damage was present on inclusions of all sizes between 3- 45 microns, but trends were found, between 

the lengths of cracks propagating into the bulk material, connected to inclusions and that of the 

inclusion interacting WEAs. As shown in Figure 14a, crack length tended to be longer at smaller 

inclusions for both axially and circumferentially sectioned samples. This is not unexpected as coarser 

inclusion sizes, in general, have a larger local stress-concentration factor [28]. Similarly, Figure 14b 

shows that interacting WEAs were generally longer at smaller inclusions for both sample types. The 

results also show that cracks and WEAs tended to be longer in axially sectioned inclusions than 

circumferentially, that is, that both forms of damage were more pronounced in the inclusions that 

were sectioned along their major axis. There was no trend found between inclusion length and the 

likelihood of internal cracking. 

    

Figure 14: Variation of inclusion damage with inclusion width (a) initiated crack length (b) attached WEA length  



Conclusions 

By investigating a failed wind turbine gearbox bearing, MnS inclusions were found to have initiated 

significant levels of damage to the subsurface of an inner raceway of a planetary bearing in a wind 

turbine gearbox. By observing and cataloging the damage, the following conclusions were drawn up: 

1. Four main forms of damage were found at MnS inclusions; internal cracking, crack propagation 

into the bulk material, separation from the surrounding material and WEA initiation. The 89 MnS 

inclusions that had connected WEAs found in this study are not the same features as “butterfly 

cracks”, with WECs that propagate at shallower angles than traditional “butterfly wings”. The 

presence of MnS inclusions is certainly one driving factor for subsurface WEC initiation. 

2. WEAs often form at MnS inclusions and are usually linked to a crack, propagating from the 

inclusion, in a direction close to parallel with the raceway surface in the axially sectioned 

samples. It was found to be more likely for a WEA to form at an inclusion that was not internally 

cracked (50% of catalogued inclusions), than one that was (29% of catalogued inclusions). It was 

found to be more likely for a WEA to form at an inclusion that was not separated from the 

surrounding material (51% of catalogued inclusions), than one that was (28% of catalogued 

inclusion). 

3. Neither internal cracking of inclusions nor separation of inclusions from the surrounding material 

occurred at inclusions deeper than around 420 microns from the raceway surface, although WEAs 

were found at inclusions as deep as around 630 microns. 

4. Cracks propagating from inclusions tended to be longest when initiated by smaller inclusions of 

around 0-20 microns in length. When viewed in an axial cross-section, longer cracks were also 

found from inclusions that were closer to being parallel with the raceway surface, than those that 

were more steeply angled. In general, cracking was more extensive in the axial direction than 

circumferentially, although damage propagated significantly in both directions. 
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