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Summary 31 

The autoimmune regulator (AIRE) gene is crucial for establishing central immunological 32 

tolerance and the prevention of autoimmunity. Mutations in AIRE cause a rare autosomal 33 

recessive disease, autoimmune polyendocrine syndrome type 1 (APS-1), distinguished by 34 

multi-organ autoimmunity. We here report multiple cases and families with mono-allelic 35 

mutations in the first plant homeodomain (PHD1) zinc finger of AIRE, which follow 36 

dominant inheritance, typically characterized by later onset, milder phenotypes, and 37 

reduced penetrance compared to classical APS-1. These missense PHD1-mutations 38 

suppress gene expression driven by wild type AIRE in a dominant negative manner, unlike 39 

CARD or truncated AIRE mutants, which lack such dominant capacity.  Strikingly, exome 40 

array analysis revealed that the PHD1 dominant mutants are found with relatively high 41 

frequency (> 0.0008) in populations.  Our results provide novel insight into the molecular 42 

action of AIRE and demonstrate that disease-causing mutations in the AIRE locus are more 43 

common and variable than previously appreciated. 44 

  45 
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INTRODUCTION 46 

The autoimmune regulator (AIRE) is a key player in shaping central immunological tolerance 47 

to self. AIRE is mainly expressed in medullary thymic epithelial cells (mTECs), but to some 48 

extent also in rare hematopoietic populations of lymph nodes (Gardner et al., 2008). In 49 

mTECs, AIRE induces expression of thousands of tissue-restricted proteins, which are 50 

presented on major histocompatibility complex class I (MHC-I) and MHC-II molecules to 51 

developing T cells, ƉĞƌĐŽůĂƚŝŶŐ ƚŚƌŽƵŐŚ ƚŚĞ ƚŚǇŵŝĐ ŵĞĚƵůůĂ͘ TŚŝƐ ͞ƉƌŽũĞĐƚŝŽŶ ŽĨ ƐĞůĨ͟ by 52 

mTECs is essential for the elimination of auto-reactive T cells, either via clonal deletion 53 

(Taniguchi and Anderson, 2011) or via their conversion into Foxp3+ regulatory T cells (Cowan 54 

et al., 2013); a critical step for the induction of functional immunological tolerance to self 55 

and prevention of autoimmunity (Taniguchi and Anderson, 2011). 56 

In humans, mutations in the AIRE gene cause autoimmune polyendocrine syndrome 57 

type 1 (APS-1), also called autoimmune polyendocrinopathyʹcandidiasisʹectodermal 58 

dystrophy (APECED), a rare autosomal recessive disease characterized by autoimmune 59 

attack against peripheral (mainly endocrine) tissues, as well as by generation of various 60 

autoantibodies, including interferon-specific autoantibodies (Meager et al., 2006). The 61 

majority of APS-1 patients develop at least two (diagnostic dyad) of the three main 62 

components, including adrenocortical insufficiency, hypoparathyroidism and chronic 63 

mucocutaneous candidiasis (Ahonen et al., 1990; Husebye and Anderson, 2010). In addition, 64 

premature ovarian insufficiency, pernicious anemia, vitiligo, alopecia, enamel hypoplasia, 65 

and keratitis are common components. The disease typically manifests in childhood, but 66 

milder forms with late debut are seen, which are not always recognized as APS-1 at first.  67 
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About 100 APS-1-causing mutations have been found throughout the AIRE gene 68 

(http://www.hgmd.cf.ac.uk) (Ferguson et al., 2008). All are assumed to be inherited in an 69 

autosomal recessive manner, except for one mutation in the SAND-domain, p.G228W, which 70 

follows a dominant inheritance pattern (Cetani et al., 2001). Since AIRE is known to operate 71 

as a homo-oligomer (Kumar et al., 2001; Pitkanen et al., 2000), it is rather surprising that 72 

only one mono-allelic mutation in the AIRE locus has been linked to APS-1 and/or other 73 

forms of organ-specific autoimmune disorders so far.  74 

Based on analysis of human patients followed by biochemical and population 75 

analyses, we here report a group of novel mono-allelic AIRE mutations. These mutations 76 

cluster within the first plant homeodomain (PHD1) zinc finger domain, associate with organ-77 

specific autoimmune diseases with varying penetrance and severity, sometimes, but often 78 

not matching the diagnostic criteria of APS-1. Furthermore, we delineate the molecular 79 

mode of action by which these unique mutations interfere with the function of wild type 80 

(WT) AIRE protein. Our results provide novel insights into the molecular action of the AIRE 81 

protein and indicate that disease-causing mutations in the AIRE locus are much more 82 

common than previously thought and can cause more variable autoimmune phenotypes. 83 

 84 

RESULTS 85 

Novel p.C311Y AIRE mutant exerts a dominant negative effect  86 

The study was initiated by the discovery of  a heterozygous c.932G>A (p.C311Y) mutation in 87 

AIRE in a North-African patient (I:2, Figure 1A, Table 1 and Table S1) diagnosed with adult-88 

onset of chronic mucocutaneous candidiasis, adrenal insufficiency, enamel dysplasia, 89 

pernicious anemia, partial diabetes insipidus, and interferon omega autoantibodies (Figure 90 

http://www.hgmd.cf.ac.uk/
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1A). Importantly, no other mutations or copy number variations were detected. His family 91 

history revealed a daughter (II:1, with partner 1) who had hypoparathyroidism, enamel 92 

dysplasia, primary ovarian insufficiency, autoimmune gastritis, pernicious anemia, and the 93 

same mono-allelic p.C311Y mutation indicating dominant inheritance. With his second 94 

partner (I:3), he had four children of whom three carried the mono-allelic p.C311Y mutation 95 

and developed  various forms autoimmunity; one daughter (II:2) had alopecia areata and nail 96 

dystrophy on one of ten finger nails, another daughter (II:4) had hypoparathyroidism, and 97 

primary ovarian insufficiency, while a son (II:3) was diagnosed with autoantibodies against 98 

tyrosine hydroxylase (often associated with APS-1) (Hedstrand et al., 2000), but otherwise 99 

had no autoimmune manifestations (Figure 1A, Table 1 and Table S1). To exclude autosomal 100 

recessive inheritance at the AIRE locus, we performed microsatellite markers analysis, which 101 

validated that the affected children had indeed inherited different maternal AIRE alleles 102 

(Figure S1). 103 

We next analyzed if p.C311Y can repress the transcription-transactivation potential 104 

of WT AIRE in a dominant negative manner. To this end we utilized the human thymic 105 

epithelial 4D6 cell line, which was transfected with either WT-AIRE and/or mutated AIRE 106 

expression vectors. We then measured the mRNA expression of a panel of AIRE-dependent 107 

(KRT14, S100A8 and IGFL1) and ʹindependent genes (CCNH and PRMT3) (Giraud et al., 108 

2012). As expected, the WT-AIRE induced strong expression of all analyzed AIRE-dependent 109 

genes, whereas p.C311Y, p.G228W, p.L28P and the deleterious major Finnish mutation 110 

p.R257* did not (Figure 1B, Figure S2). No differences among the WT-AIRE or AIRE mutants 111 

were seen for AIRE-independent genes (Figure 1B, Figure S2). Strikingly, when 4D6 cells 112 

were co-transfected with different ratios of WT-AIRE and the above mutants, p.C311Y 113 
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completely abolished the ability of WT-AIRE to induce expression of AIRE-dependent genes 114 

(Figure 1B, Figure S2), as did the previously reported SAND domain mutant p.G228W 115 

(dominant negative control) (Su et al., 2008). Conversely, neither p.R257* nor the p.L28P 116 

CARD mutation showed this inhibiting effect (recessive controls). Taken together, these data 117 

validate that the p.C311Y mutant exerts a dominant negative effect on WT AIRE function, 118 

both in vitro and in human patients. 119 

 120 

Identification of dominant-negative variants of AIRE  121 

As the phenotype in family A segregated with a heterozygous mutation in AIRE with an 122 

inhibitory effect on transcription of AIRE-dependent genes, we asked if there might be more 123 

dominant AIRE mutations. To test this hypothesis we generated a panel of expression 124 

vectors with reported disease-causing mutations including several located in the PHD1, 125 

CARD, and SAND domains (Figure 2A). First we tested the dominant negative effect of AIRE-126 

mutants in co-transfection experiments with WT-AIRE in 4D6 cells. Similarly to the p.C311Y 127 

mutation, virtually all missense mutations in the PHD1 finger, including p.E298K, p.V301M, 128 

p.C302Y, p.R303P, p.G305S, p.D312N, and p.P326L revealed a dominant negative effect on 129 

AIRE-dependent genes (Figure 2B, Figure S3, Table S3). Interestingly, the dominant negative 130 

effect of p.V301M varied with the downstream gene tested (Figure 2B, Figure S3 in the 131 

Supplement), which was surprising but reproducible in several independent experiments.  In 132 

contrast, ŵŽƐƚ ŽĨ AI‘E͛Ɛ CARD mutants, as well as the truncated PHD1-mutant p.C311* 133 

revealed a clear recessive pattern, while the common p.C322del13, p.R328Q and p.C446G 134 

displayed only a partial dominant effect (Figure 2B, Figure S3, Table S3). Conversely, p.R471C 135 

(PHD2 domain) had no effect on AIRE-dependent gene transcription (Figure 2B, Figure S3, 136 
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Table S3). As expected, AIRE-independent transcriptional activity was not affected in any of 137 

these analyses (Figure 2B, Figure S3). This series of experiments demonstrated that the 138 

heterozygous mutations in AIRE can be segregated into three groups according to their 139 

potential to impact on the transcription-transactivation potential of WT AIRE in; (i) dominant 140 

negative, (ii) recessive, and (iii) partial dominant negative manners. Moreover, our data 141 

revealed that most of the mutations operating in a dominant negative manner are clustered 142 

within the PHD1 finger, while most recessive mutations were clustered within the CARD 143 

domain.  144 

 145 

Dominant negative mutants physically co-localize with WT AIRE 146 

To better understand the unique properties of the dominant mutants, we next analyzed 147 

their nuclear localization patterns. 4D6 cells were co-transfected with red fluorescent 148 

protein (RFP)-tagged WT AIRE plasmids together with expression vectors encoding individual 149 

AIRE mutants tagged with enhanced green fluorescent protein (EGFP). Importantly, all 150 

dominant mutants, including the PHD1 missense mutations, localized in nuclear speckles 151 

typical for WT-AIRE and co-localized with WT-AIRE protein (yellow overlay) (Figure 3A and 152 

Figure S4, Table S2 and S3 ). In contrast, recessive CARD mutants (p.L28P, p.LL28_29PP; 153 

p.Y90C; p.L97P) which are thought to disrupt AIRE homo-oligomerization (Kumar et al., 2001; 154 

Pitkanen et al., 2001), failed to provide the same speckles and stained diffusely throughout 155 

the nucleus when transfected alone. In co-transfections, however, all CARD mutants partly 156 

co-localized with WT-AIRE, indicating that when co-expressed some functional oligomers are 157 

able to form.  158 
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Since virtually all analyzed PHD1 mutants demonstrated a dominant negative effect, 159 

we sought to gain more insights about the impact of these mutants on molecular structure 160 

of this domain. Specifically, in silico analysis predicted that the p.C311 residue is crucial for 161 

chelating Zn
2+

, and thereby is critical for correct folding of the PHD1 finger. Indeed, a 162 

substitution of the cysteine with tyrosine is predicted to disrupt PHD1 folding (Chakravarty 163 

et al., 2009) (Figure 3B). Additional structural analyses revealed that many of the reported 164 

missense mutations changed amino acids that are conserved among different species 165 

(Bjorses et al., 2000; Org et al., 2008; Spiliotopoulos et al., 2012) (Figure S5), and can 166 

similarly affect the Zn
2+

-binding or folding of the domain. 167 

Taken together, these data suggest that most of the PHD1 mutants can, unlike their 168 

CARD mutant counterparts, physically associate with WT AIRE in nuclear speckles and form a 169 

homo-oligomer, which is however not functional due to dysfunctional PHD1 fingers.  170 

 171 

Proof of concept ʹ additional PHD1 dominant-negative AIRE mutations segregate with 172 

organ-specific autoimmunity  173 

Our in-vitro analyses predicted that in addition to the p.C311Y mutation, more dominant 174 

mutations are clustered within the PHD1 finger and may therefore similarly cause organ-175 

specific autoimmunity in human patients. To validate this hypothesis, we performed a 176 

thorough analysis of patient cohorts available to us. First, we reinvestigated a previously 177 

described case, in which p.C311Y had been reported as a compound heterozygous mutation 178 

with p.R257* in two Finnish siblings with childhood-onset of APS-1 (Bjorses et al., 2000) 179 

(Table 1, (Family B, II:3 and II:4), Figure 4A and Table S1). Re-sequencing AIRE in this family 180 

confirmed the earlier report, but also revealed that one of the affected siblings͛ son (III:1) 181 
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had inherited p.C311Y, but not p.R257*. He manifested with vitiligo and severe pernicious 182 

anemia due to autoimmune gastritis at young age. Moreover, the maternal grandmother 183 

(I:2), also a heterozygous p.C311Y carrier, was diagnosed with pernicious anemia and several 184 

autoantibodies characteristic of APS-1 (Table 1, Figure 4A and Table S1). In contrast, the 185 

third daughter (II:1), a heterozygous carrier of p.R257*, was without detectable 186 

autoantibodies.  187 

 Next, we reinvestigated a woman with APS-2 characterized by adrenal insufficiency, 188 

autoimmune thyroid disease, primary ovarian insufficiency and autoantibodies characteristic 189 

of APS-I with a mono-allelic c.901G>A (p.V301M) mutation (Table 1 (Family C), Figure 4A and 190 

Table S1) (Soderbergh et al., 2000). Her daughter also with a p.V301M mutation, had 191 

autoantibodies against IL-17F, which are often found in APS-1 patients. However, she did not 192 

present with any additional autoimmune manifestations at age 30 years. Finally, additional 193 

screening of a large cohort of 85 Russian APS-1 patients and some of their family members 194 

identified a young girl with a mono-allelic p.C302Y mutation, who developed 195 

hypoparathyroidism and autoantibodies against interferon omega, NALP-5 and 21-196 

hydroxylase (Table 1 (subject D). Like p.C311Y, p.C302Y revealed dominant negative effects 197 

on AIRE-mediated transcription (Figure 2B, Figure S3 and Table S3). A very similar case with 198 

a de novo mono-allelic p.C302Y mutation was reported by us earlier (Oftedal et al., 2008) 199 

(Table 1 (subject E)).  200 

In summary, our data illustrate that individuals with bi-allelic disease-causing AIRE 201 

mutations develop classic early onset APS-1 phenotypes, while those carrying one of three 202 

different mono-allelic mutations in the PHD1 finger (p.C311Y, p.V301M and p.C302Y) 203 

segregate with clear, but varying autoimmune phenotypes, ranging from late-onset classical 204 
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APS-1 (e.g. I:3, Figure 1A ), to APS-2 (Table 1, Figure 4B and Table S1), and isolated organ-205 

specific autoimmunity (e.g. vitiligo, PA, and APS-1-specific auto-antibodies). 206 

 207 

Increased frequency of dominant PHD1 mutations in various forms of organ-specific 208 

autoimmunity 209 

The above findings raised the question whether dominant PHD1 mutations could generally 210 

cause organ-specific autoimmunity. To answer this question, we sequenced the full exon 8 211 

(encoding the PHD1 finger) in several autoimmune patients and controls available to us from 212 

our national registry. We first analyzed the presence of PHD1 mutants in familial cases 213 

characterized by the presence of adrenal insufficiency, autoimmune thyroid disease and/or 214 

type 1 diabetes (i.e. APS-2 and /or APS-3). Indeed, among 41 such families, we identified one 215 

family with three family members bearing a mono-allelic c.977C>T (p.P326L) mutation (Table 216 

1 (Family F), Figure 4A and Table S1). The mother (II:3) was diagnosed with autoimmune 217 

thyroid disease, adrenal insufficiency, pernicious anemia and vitiligo. Her children both 218 

acquired vitiligo at 10 (III:1) and 7 (III:2) years of age, respectively.  219 

Furthermore, since pernicious anemia, vitamin B12 deficiency, and/or vitiligo seemed 220 

to be often associated with heterozygous PHD1 mutations in previous cases (Figure 4B), we 221 

next screened large cohorts of patients with these conditions. Among 177 probands and 26 222 

affected relatives with pernicious anemia, we identified several dominant negative PHD1 223 

mutants; First, a patient with a heterozygous c.913G>A (p.G305S) mutation who was 224 

intrinsic factor (IF) antibody positive and developed severe anemia and neuropathy at age 43 225 

(Table 1, (Family G), Figure 4A and Table S1). Her mother (II:2) and maternal grandmother 226 

(III:2) were reported to have pernicious anemia, the mother also suffered from 227 
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hypothyroidism and cirrhosis. p.G305S is close to the zinc binding site and predictably 228 

disrupts the zinc finger structure. Not surprisingly, the dominant negative effect on gene 229 

transcription was evident (Figure 2B, Figure S3 and Table S3). Another patient in this cohort 230 

developed intrinsic factor antibody positive pernicious anemia at age 81 years and was 231 

heterozygous for both c.946C>T (p.R316W) and the common c.967-979del13bp 232 

(p.C322del13) mutation on the same allele (Table 1 and Table S1 (subject H)). Both p.R316W 233 

and (p.C322del13) were predicted to have a partial dominant negative effect.  234 

Similarly, among 170 patients with isolated and familial (n=64) vitiligo, a female who 235 

developed acrofacial vitiligo at age 21 years, with gastric parietal cell autoantibodies, low 236 

normal serum vitamin B12 level , and a heterozygous mutation in c.983G>A (p.R328Q) (Table 237 

1 (subject I) and Table S1). Like p.P326L, a mutation in this C-terminal part of PHD1 does not 238 

disrupt the histone binding site, but still displays an incomplete inhibition of AIRE-dependent 239 

gene transcription (Figure 2B, Figure S3 and Table S3). AIRE sequencing revealed that the 240 

patient also had p.V484A; a sequence variant that has been described in a patient with 241 

alopecia and nail dystrophy (Buzi et al., 2003). We were unfortunately unable to perform an 242 

allele discrimination assay in this patient. 243 

Importantly, sequencing of 450 control blood donors did not reveal presence of any 244 

of the dominant negative PHD1 mutations, demonstrating that dominant PHD1 mutations 245 

are clearly over-represented among patients suffering from various forms of organ-specific 246 

autoimmunity.  247 

 248 

The frequency of dominant negative PHD1 AIRE mutations in populations 249 
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To better estimate the frequency of some of the dominant negative PHD1 AIRE mutations, 250 

we analyzed multiple exome chip datasets that were available, containing some of the PHD1 251 

AIRE sequence variations. Specifically, sequence analysis from existing exome chip datasets 252 

from a total of 1670 Scandinavian individuals (healthy controls (n=637), and patients with 253 

attention deficit (n= 589) or movement disorders (n=444)), we determined the minor allele 254 

frequency of p.V301M to be 0.00089 (i.e 3 out of 1667 persons), while other covered 255 

mutations p.G303S, p.R303Q, and p.R257* were not found. The relatively high frequency of 256 

the p.V301M dominant mutant was further validated by additional datasets obtained from 257 

public databases, including the recently published data from The Broad Institute (covering 258 

over 60 thousand individuals) (Exome Aggregation Consortium (ExAC), Cambridge, MA 259 

(URL: http://exac.broadinstitute.org)), 1000 Genome database 260 

(http://www.1000genomes.org) and the Washington Database (~6 thousand individuals) 261 

(Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA (URL: 262 

http://evs.gs.washington.edu/EVS/).  All above databases confirmed and broadened these 263 

findings and demonstrated that dominant-negative PHD1-mutations are present with minor 264 

allele frequency reaching 0.0009 (mainly p.V301M and p.R303Q) (Table 2). It should be 265 

stressed however, that most of the dominant negative PHD1 variants were not covered on 266 

these exom chips, suggesting that the actual frequency may be even higher. 267 

 268 

DISCUSSION 269 

Molecular aspects of dominant-negative mutations of AIRE 270 

Many proteins are active only in the form of a multimeric complex, composed of two 271 

or more copies of the same protein. It is well established that in many of these cases, mono-272 

http://exac.broadinstitute.org/
http://evs.gs.washington.edu/EVS/
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allelic mutations can completely or partially disrupt the structure and thereby the activity of 273 

the entire multimeric complex in a dominant-negative manner. Since AIRE was shown to 274 

form a homo-tetramer in vivo (Kumar et al., 2001), it is rather surprising that only one mono-275 

allelic mutation in the AIRE locus has been linked to APS-1 and/or other forms of organ-276 

specific autoimmune disorders so far. We identify several novel heterozygous missense 277 

mutations in AIRE, primarily clustered within its PHD1 zinc finger (Figure 4B), which are 278 

characterized by dominant inheritance, later debut, milder phenotypes, and reduced 279 

penetrance. Interestingly, most autosomal recessive missense mutations causing APS-1 are 280 

predominantly found within the CARD domain (Bjorses et al., 2000), suggesting that the 281 

recessive or dominant character of the given mutation is, to a large extent, determined by its 282 

position within the AIRE protein. This likely reflects the different and unique roles of the 283 

individual domains of the AIRE protein.  Specifically, while the CARD domain has been shown 284 

to be critical for AIRE homo-oligomerization and speckled nuclear localization (Bjorses et al., 285 

1999; Kumar et al., 2001), the PHD domain of AIRE functions as an epigenetic reader, 286 

specifically recognizing unmethylated lysine 4 on histone 3 (H3K4me0) (Org et al., 2008). The 287 

PHD1 domain was shown to be absolutely critical for AI‘E͛Ɛ ƚƌĂŶƐĐƌŝƉƚŝŽŶ-transctivation 288 

activity, as well as for its capacity to prevent multiorgan autoimmunity in transgenic mouse 289 

models (Bjorses et al., 2000; Koh et al., 2010; Koh et al., 2008). In silico simulations revealed 290 

that the PHD1 residues N295-C310 are important in the intermolecular interactions with 291 

histone H3 residues (Figure 2B, Figure 3B and Table S3). PHD1 is unable to interact with 292 

H3K4me0 if the zinc chelating cysteines are mutated, as is the case for C311Y (Bottomley et 293 

al., 2005). The formation of salt-bridges between the side chains of H3 residue R2 and D312 294 

was shown to be crucial for binding specificity (Koh et al., 2008), explaining why the 295 
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structure is highly conserved in AIRE among different species and also in PHD-zinc finger 296 

domain-containing proteins (Figure S5).  297 

Unlike the PHD1 mutants, mutations clustered within the CARD domain of AIRE do 298 

not exert any dominant negative effect (Figure 2B, Figure S3 and Table S3). In homozygotes 299 

these mutations impact on AIRE oligomerization and correct nuclear localization (Bjorses et 300 

al., 1999; Kumar et al., 2001; Pitkanen et al., 2001), yet may be able to form oligomers when 301 

expressed along with WT AIRE (Figure 3A, Figure S4 and Table S2). Interestingly, truncating 302 

AIRE mutations such as p.R257* and p.C311* also behave in a recessive manner, in spite of 303 

their ability to co-localize and interact with WT-AIRE (Figure 3A, Figure S4 and Table S2). This 304 

suggests that the above truncations do not disrupt the core structure of the AIRE complex, 305 

necessary for its biological activity. Such core structure likely involves formation of functional 306 

dimers within the truncated tetramer (Figure 5A).  307 

It is therefore not entirely surprising that mono-allelic and dominant negative 308 

mutations in this domain will impact on the structure and thus the activity of the entire AIRE 309 

tetramer. However, such dominant effect seems to follow incomplete inheritance, as most 310 

of the patients develop milder phenotypes with later onset compared to patients with 311 

classical, autosomal recessive APS1. This could be because the AIRE tetramers still have 312 

some residual activity, and/or that some pure WT-AIRE tetramers are still formed and are 313 

sufficient to induce some level of self-tolerance.  Moreover, the extent of the dominant 314 

effect seems to depend on which residue is mutated. Our results suggest that mutations in 315 

residues 302 and 311 resemble more classical APS-1 than other mutations, although we 316 

observed large diversity within the two families with p.C311Y studied here. 317 

 318 
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Clinical aspects of dominant-negative mutations of AIRE 319 

The genetic contribution of AIRE to other autoimmune diseases than APS-1 has been 320 

studied by us and others, but in most cases only SNPs or a few common mutations have 321 

been analyzed, thereby overlooking rare mutations or large deletions (Jin et al., 2007; Pforr 322 

et al., 2006; Thomson et al., 2007; Torok et al., 2004; Turunen et al., 2006; Vaidya et al., 323 

2000). Although some heterozygous mutations in AIRE have been associated with 324 

autoimmunity in single patients (Table S4), a dominant negative effect on AIRE function was 325 

not considered in these cases. Here, we demonstrate for the first time that the heterozygous 326 

variants observed in the families as well as other mutations analyzed within AIRE exon 8 327 

have an inhibitory effect on AIRE-mediated transcription. This contrasts to classical APS-1 328 

with recessive inheritance and early presentation (mean age 9.1 years (Wolff et al., 2007a)); 329 

90% develops all three components by age 20 years (Wolff et al., 2007a), Organ-specific 330 

autoimmunity in the heterozygous  cases presents later (mean age 24.4 years, n = 12), 331 

progresses more slowly, fewer patients develop the diagnostic dyad, and the penetrance is 332 

incomplete (Figures 4B and 5B). This is reminiscent of autoimmune lymphoproliferative 333 

syndrome, which shows 60 % penetrance among family members harboring the same 334 

heterozygous gene mutation (Price et al., 2014), or to the incomplete penetrance seen in 335 

families carrying heterozygous CTLA4 mutations (Kuehn et al., 2014). More importantly, the 336 

unusual heterozygous cases may not even be recognized as APS-1 as many patients 337 

masquerade as common types of organ-specific autoimmunity in one or several organs. 338 

Thus, the original classification of APS-1 as a strictly autosomal recessive disease (with one 339 

exception (Cetani et al., 2001)) is obsolete. Instead, we propose that APS-1 exists in two 340 

ĨŽƌŵƐ͗ ;ŝͿ ͚ĐůĂƐƐŝĐĂů͕͛ ĐŚĂƌĂĐƚĞƌŝǌĞĚ ďǇ ƌĞĐĞƐƐŝǀĞ ŝŶŚĞƌŝƚĂŶĐĞ͕ ƉƌĞƐĞŶĐĞ ŽĨ Ăƚ ůĞĂƐƚ ƚǁŽ ŽĨ ƚŚƌĞĞ 341 
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ŵĂŝŶ ĐŽŵƉŽŶĞŶƚƐ͕ ĂŶĚ ŝŶƚĞƌĨĞƌŽŶ ĂŶƚŝďŽĚŝĞƐ͖ ĂŶĚ ;ŝŝͿ ͚ŶŽŶ-ĐůĂƐƐŝĐĂů͕͛ ĐŚĂƌĂĐƚĞƌŝǌĞĚ ďǇ 342 

dominant heƚĞƌŽǌǇŐŽƵƐ ŵƵƚĂƚŝŽŶƐ ŵĂŝŶůǇ ŝŶ AI‘E͛Ɛ PHDϭ ǌŝŶĐ ĨŝŶŐĞƌ ĂŶĚ Ă ŵŝůĚĞƌ ůĞƐƐ 343 

penetrant autoimmune phenotype (Figure 5B). Families with dominant clustering of organ-344 

specific autoimmunity, especially when pernicious anemia and / or vitiligo manifests at early 345 

age, might have such mutations, although the clinical phenotype might be expanded when 346 

larger materials are investigated. Furthermore, it is reasonable to assume that mutation 347 

carriers have a significant risk for polyendocrinopathy, which should be reflected in their 348 

follow-up programs. Moreover, autoantibodies against interferons, hallmarks of classical 349 

APS-1, are much less prevalent in the non-classical form probably reflecting some residual 350 

AIRE-function at least for some of the PHD1 mutations. 351 

 Since deep DNA sequencing of thousands of different patients was beyond the scope 352 

of the current study, we cannot provide accurate estimates of the prevalence of non-353 

classical APS-1 since a population cohort with autoimmune phenotypes was not available. 354 

Based on our own data and publicly available databases representing patients with diverse 355 

conditions in different ethnic groups, a conservative estimate puts dominant AIRE mutations 356 

at a genotype frequency of 1-2 persons per thousand, not restricted to the Scandinavian 357 

population as also is underpinned by literature reports (Cervato et al., 2010; Ferrera et al., 358 

2007; Stolarski et al., 2006; Vogel et al., 2001) (Table 2 and Table S4). However, further 359 

studies are needed to establish the prevalence and risk associated with mutations in the 360 

PHD1 domain in larger populations. 361 

In conclusion, this study represents the first demonstration that AIRE mutations 362 

associate with common organ-specific autoimmunity with a variable phenotype ranging 363 

from classical APS-1 to a non-classical form that mimics common organ-specific 364 
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autoimmunity. Finally, our study provides important insights into the molecular mode of 365 

action of the AIRE protein and highlights unique structural properties that are required for 366 

AI‘E͛Ɛ ďŝŽůŽŐŝĐĂů ĂĐƚŝǀŝƚǇ͘ 367 

 368 

EXPERIMENTAL PROCEDURES 369 

Patients 370 

Norwegian, Finnish, and Russian patients were recruited from the respective national patient 371 

registries and biobanks of patients with APS-1, adrenal insufficiency and polyendocrine syndromes. 372 

Vitiligo patients were recruited by the Sheffield Teaching Hospitals NHS Trust, Sheffield, UK; 373 

pernicious anaemia patients were recruited by Manchester Centre for Genomic Medicine, Central 374 

Manchester University Hospitals NHS Trust in collaboration with the Pernicious Anaemia Society of 375 

United Kingdom. For estimation of population frequencies of AIRE mutations, exome chip data from 376 

cohorts with healthy controls (n=637), and patients groups without known susceptibility for 377 

autoimmunity were available (for details, see Supplemental Methods). All participating patients 378 

signed an informed consent. Samples from blood donors were recruited from the Haukeland 379 

University Hospital blood bank. The study was approved by the Regional Ethics committees in each 380 

institution.  381 

 382 

AIRE sequencing, copy number analysis and microsatellite typing 383 

All 14 exons of the AIRE gene (EMBL acc. Number AJ009610) were amplified by PCR and sequenced 384 

as described previously (Wolff et al., 2007b). The PHD1 zinc finger is encoded by exon 8 (see 385 

Supplemental Methods). Copy number analysis was performed by duplex TaqMan real-time PCR 386 

assay (Boe Wolff et al., 2008). Microsatellite typing of the AIRE region was performed according to 387 

Myhre et al (Myhre et al., 2004). The samples used to estimate population frequencies for AIRE 388 

mutations were genotyped on the HumanExome 12v1_B (ADHD study) and HumanCoreExome 12v1-389 
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1 (movement disorders study) Bead chips respectively (Illumina Inc, San Diego, CA). For further 390 

information and analysis of data see Supplemental Methods in the Supplement. 391 

 392 

Assay of autoantibodies 393 

Autoantibodies typical of APS-1, were assayed by radioligand binding assays as previously described 394 

(Husebye et al., 1997; Oftedal et al., 2008) (Supplemental Methods). 395 

 396 

Assay of AIRE-regulated genes 397 

The human 4D6 thymic epithelial cell line was transfected with AIRE-containing plasmid constructs 398 

using the Fugene HD transfection reagent (Promega Corporation, Madison, WI, USA) according to the 399 

ŵĂŶƵĨĂĐƚƵƌĞƌƐ͛ ƉƌŽƚŽĐŽů͘ Mutations in AIRE were engineered using site-directed mutagenesis 400 

(Supplemental Methods). Genes previously shown to be regulated by AIRE (Abramson et al., 2010) 401 

were analyzed by quantitative PCR, and the comparative Ct-method (Applied Biosystems, Carlsbad, 402 

CA, USA) (SupplementalMethods). 403 

 404 

Immunofluorescence 405 

4D6 cells were grown on sterile coverslips and transfected with EGFP-AIRE and/or RFP-AIRE fusion 406 

plasmids using Fugene HD transfection reagent, and analyzed under a Zeiss LSM 510 META Laser 407 

Scanning confocal microscope (Supplemental Methods). 408 

 409 

Structure modelling 410 

Sequence alignment was made using Clustal Omega Multiple sequence alignment tool 411 

(http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=clustalo). Modelling of PHD1 was 412 

performed using PyMOL and the coordinates of the PDB entry 1XWH (Bottomley et al., 2005).  413 

 414 

http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=clustalo
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SUPPLEMENTAL INFORMATION 415 

Supplemental information includes supplemental methods, Supplemental figures S1-S5, 416 

Supplemental table S1-S5. 417 
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Figure 1. APS-1 family with dominant inheritance. (A) Pedigree showing the North-584 

African/Norwegian family with the dominantly inherited p.C311Y mutation. The lover panel 585 

show the heterozygous mutation in exon 8 revealed by Sanger sequencing. 586 

(C)Transcriptional regulation by WT AIRE and the different mutations. The AIRE-regulated 587 

gene keratin 14 (KRT14) was tested together with the AIRE-independent gene cyclin H 588 

(CCNH) and normalized against the endogenous control beta2-microglobulin (B2M). Cells 589 

were transfected with various amounts of WT AIRE and mutants, alone or in combinations. 590 

The results are shown as fold difference (FD) compared to cells transfected only with WT 591 

AIRE (dotted line), error bars are representing SEM.   592 

 593 

Figure 2. Heterozygous mutations in AIRE and the effect on gene regulation. (A) Model of 594 

the AIRE protein with domains and common mutations classified as recessive (black) and 595 

dominant (red). (B). The AIRE-regulated gene KRT14 (red bars), and CCNH not regulated by 596 

AIRE (blue bars). Transcriptional regulation by WT-AIRE and mutants was performed as 597 

described in Figure 1B. The results are shown as fold difference (FD) compared to cells 598 

transfected only with WT AIRE (dotted line), error bars are representing SEM. 599 

 600 

Figure 3. Subcellular co-localization of the mono-allelic variants.  (A) Confocal fluorescence 601 

images displaying the subcellular localization of WT-RFP-AIRE (red) and mutant-EGFP-AIRE 602 

(green) constructs. Overlay images shows the degree of co-localization (yellow). Nuclei were 603 

visualized with DAPI counterstain (blue). (B) The solution structure of the PHD1 domain of 604 

AIRE, showing the Zn
2+

 ʹligating residues. Zn
2+

 shown as sphere, and cysteines as sticks. The 605 
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C311 mutation hotspot is shown in cyan (right). Modelling shows that the C311Y mutation 606 

would disrupt Zn
2+

 ligation. 607 

 608 

Figure 4. The AIRE PHD1-domain. (A) Pedigrees of families with p.C311Y (Family B), 609 

p.V301M (Family C) p.P326L (Family F) and p.G305S (Family G) AIRE mutations. (B) The AIRE 610 

protein with its different domains. The mutations investigated in this study are shown, now 611 

color-coded for dominant (red) and recessive (black). The AIRE PHD1 is shown, together with 612 

cake diagrams each representing one patient depicting clinical manifestations and 613 

autoantibodies. 614 

 615 

Figure 5. Dominant mutations in AIRE and organ-specific autoimmunity. (A) Schematic 616 

illustration of recessive and dominant AIRE mutations. The homozygous R257* truncated 617 

protein can form oligomers, but they lack critical domains. In the heterozygous state R257* 618 

does not interfere with WT-AIRE. PHD1 mutants can form oligomers but AIRE lack 619 

transcriptional activity due to its putative interaction with WT-AIRE. Formation of a small 620 

fraction of WT:WT oligomers may account for some induction of tolerance and a milder 621 

autoimmune phenotype. (B) Manifestations and autoantibodies in patients with recessive 622 

(from references (Meager et al., 2006; Perheentupa, 2006; Wolff et al., 2007a)) and 623 

dominant (this study) mutations. AI, adrenocortical insufficiency; CMC, chronic 624 

mucocutaneous candidiasis; HP, hypoparathyroidism; PA, pernicious anemia; V, vitiligo; n.a., 625 

data not available.626 
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Table 1. Families with heterozygous mutations in the AIRE gene, their manifestations and autoantibodies 

 
a
Family Patient YoB Mutation 

b
Manifestations 

c
Organ-specific 

autoantibodies 

d
Cytokine 

autoantibodies 

e
HLA class II genotypes stratified 

to AI risk 

A I:2 1951 p.C311Y;WT CMC, AI, PA, PDI, EH SCC IFN-ʘ͕ IFN-ɲ2  Neutral 

 II:1 1971 p.C311Y;WT HP, PA, EH, POI NALP-5 IFN-ʘ͕ IFN-ɲ2 Protective 

 II:2 1988 p.C311Y;WT AA, nail dystrophy  IFN-ʘ͕ IFN-ɲ2 Neutral 

 II:3 1990 p.C311Y;WT  TH  Protective 

 II:4 1995 p.C311Y;WT HP, POI NALP-5 IFN-ʘ͕ IFN-ɲ2 Neutral 

 II:5 1998 WT;WT    Protective 

B I:2 1928 p.C311Y;WT PA, Blind, T2D 21-OH, NALP-5, AADC, IF  Neutral 

 II:1 1959 p.R257*;WT L, oral cancer   Protective 

 II:3 1961 p.C311Y;p.R257* CMC, AI, POI, A 21-OH, SCC, 17-0H, AADC, 

TH 

IFN-ʘ͕ IFN-ɲϮ͕ IL-17F, 

IL-22 

Protective 

 II:4 1965 p.C311Y;p.R257* HP, CMC, AI, POI, A 21-OH, SCC, 17-OH, TPH-1, 

NALP-5 

IFN-ʘ͕ IFN-ɲϮ͕ IL-17F, 

IL-22 

Protective 

 III:1 1984 p.C311Y;WT PA, V GPCA, IF  Neutral 

C I:2 1955 p.V301M;WT AI, AT, POI 21-OH, AADC
f
 IL-17F Very High 
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 II:1 1977 WT;WT  n.a n.a n.a. 

 II:2 1980 p.V301M;WT   IL-17F Neutral 

D  2010 p.C302Y;WT HP 21-OH, NALP-5 IFN- ʘ n.a 

E  2001 p.C302Y;WT HP NALP-5 IFN-ʘ n.a. 

F I:1 1935 p.P326L;WT    Neutral 

 I:2 1943 p.P326L;WT    Neutral 

 I:3 1943 WT;WT    Intermediate 

 I:4 1944 p.P326L;WT Low B12 GPCA  High 

 II:1 1967 p.P326L;WT    Intermediate 

 II:3 1972 p.P326L;WT AI, PA, V, 

hypothyroidism 

21-OH  High 

 II:4 1974 p.P326L;WT  TPH-1  High 

 II:5 1984 WT;WT  GAD, TPH-1  Intermediate 

 III:1 1992 p.P326L;WT V GPCA  Intermediate 

 III:2 2005 p.P326L;WT V n.a. n.a. Intermediate 

G I:1  n.a PA n.a n.a n.a 

 I:2  n.a No autoimmunity n.a n.a n.a 
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 II:1 1934 n.a No autoimmunity n.a n.a n.a 

 II:2  n.a PA, hypothyroidism, 

cirrhosis 

n.a n.a n.a 

 II:3  n.a PA n.a n.a n.a 

 III:1 1959 WT;WT No autoimmunity n.a n.a n.a 

 III:2  p.G305S;WT PA IF  n.a 

 III:3 1972 p.G305S;WT No autoimmunity n.a n.a n.a 

H   p.R316W, 

p.C322del13;WT 

PA   Intermediate 

I
g
  1975 p.R328Q;WT V, low normal B12 GPCA, GAD n.a. High 

a
All members of families were analyzed for autoantibodies against 21-OH, 17-OH, GAD, SCC, AADC, TPH-1, TH, NALP-5, IFN-ʘ͕ IFN-ɲ2, IL-17F and IL-22, unless otherwise 

stated. 

b
A, asplenia; AA, alopecia areata; AI, adrenocortical insufficiency; AT, autoimmune thyroid disease; CMC, chronic mucocutaneous candidiasis; EH, enamel hypoplasia; HP, 

hypoparathyroidism; L, lupus erythematosus disseminates; PA, pernicious anemia; PDI, partial diabetes insipidus; POI, primary ovarian insufficiency; T2D, type 2 diabetes; V, 

vitiligo. Main components of APS-1 are indicated in bold 

c
AADC, aromatic L-amino acid decarboxylase; GAD, glutamic acid decarboxylase; GPCA, gastric parietal cell antibody; ICA, islet cell antibody; IF, intrinsic factor; 17-OH, 17-

hydroxylase; 21-OH, 21-hydroxylase; NALP-5, NACHT leucine-rich repeat protein 5; SCC, side-chain cleavage enzyme; TH, tyrosine hydroxylase; TMH, thyroid microsomal 

hemoagglutinating; TPH-1, tryptophan hydroxylase; n.a., data not available. 
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d
IFN-ɲϮ͕ ŝŶƚĞƌĨĞƌŽŶ-alpha 2; IFN-ʘ͕ ŝŶƚĞƌĨĞƌŽŶ-omega; IL-17F; interleukin-17F; IL-22, interleukin-22;  n.a., data not available. 

e
Risk assessment for HLA genotypes were defined as in Erichsen et al.,  JCEM 2009. Full HLA class II haplotypes are given in Supplemental table S5. The genotypes conferring 

͞ǀĞƌǇ ŚŝŐŚ͟ ĂŶĚ ͞ŚŝŐŚ͟ ƌŝƐŬ ŽĨ ĚĞǀĞůŽƉŝŶŐ AI ĂůƐŽ ĐŽŶĨĞƌ ŝŶĐƌĞĂƐĞĚ ƌŝƐŬ ŽĨ ĚĞǀĞůŽƉŝŶŐ PA ;LĂŚŶĞƌ Ğƚ Ăů., Dig Liver Dis 2010).       

f
Initially positive for autoantibodies against AADC, but negative in recent samples. 

g
Immunofluorescence testing for adrenal, ovarian and pituitary autoantibodies was negative, as were anti-mitochondrial, anti-smooth muscle and thyroid peroxidase (TPO) 

autoantibodies. The patient previously tested positive for autoantibodies against tyrosinase and tyrosinase-related protein 1 and 2.  
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Table 2.  Minor allele frequency (MAF) of missense mutations within AIRE exon 8 (PHD 1 protein domain) 

 
  Norwegian exome data  ExAC Browser 1000 Genomes Genome Variant Server 

Variant 
Protein 

effect 

Allele 

count 

Allele 

No 
MAF 

Allele 

Count 
Allele No MAF 

Allele 

Count 

Allele 

No 
MAF 

Allele 

Count 

Allele 

No 
MAF 

21:45710990 

G / A 
p.E298K  n.a n.a  n.a  1 121632 0.000008222     n.a n.a n.a n.a 

21:45710995 

T / G 
p.C299W  n.a n.a   n.a 1 121584 0.000008225     n.a n.a n.a n.a 

21:45710999 

G / A 

rs150634562 

p.V301M  3 3340  0.00089  111 121496 0.0009136* 2 5006 0.00039 5 13001 0.00038 

21:45711005 

C / T 
p.R303W  n.a n.a   n.a 1 121256 0.000008247     n.d 2 13002 0.00015 

21:45711006 

G / A 

rs139808903 

p.R303Q  n.d  n.d  n.d 22 121228 0.0001815**     n.a n.a n.a n.a 

21:45711014 

G / A 
p.G306R  n.a n.a   n.a 1 121096 0.000008258     n.a n.a n.a n.a 

21:45711025 

C / G 

rs74162062 

p.I309M  n.a n.a   n.a 14 120718 0.0001160^     n.d n.a n.a n.a 

21:45711044 

C / T 
p.R316W  n.a n.a   n.a 4 119274 0.00003354 2 8596 0.00023 2 13002 0.00015 
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rs139874934 

21:45711044 

C / G 

rs139874934 

p.R316G  n.a n.a   n.a 1 119274 0.000008384     n.a n.a n.a n.a 

21:45711045 

G / A 
p.R316Q  n.a n.a   n.a 4 119214 0.00003355 1 760 0.0013 n.a n.a n.a 

21:45711054 

A / C 
p.H319P  n.a n.a   n.a 3 117232 0.00002559     n.a n.a n.a n.a 

21:45711075 

C/A 

rs179363885 

p.P326Q  n.a n.a   n.a n.a n.a n.a     n.d n.a n.a n.a 

21:45711075 

C/T 

rs179363888 

p.P326L  n.a n.a   n.a n.a n.a n.a     n.d n.a n.a n.a 

21:45711080 

C / T 

rs74162063 

p.R328W  n.d  n.d  n.d 21 116188 0.0001807^^     n.d 10 12982 0.00077 

21:45711081 

G / A 
p.R328Q  n.a n.a   n.a 4 116112 0.00003445     n.d n.a n.a n.a 

21:45711092 

A / C 
p.S332R  n.a n.a   n.a 1 114898 0.000008703     n.a n.a n.a n.a 

 

n.a= not analysed in this dataset 

n.d = no frequency determined  
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*The majority mutations are found in European (minus Finnish), followed by Finnish, South Asian and African populations 

**The majority mutations are found in European (minus Finnish), followed by Latino populations 

^The majority mutations are found in European (minus Finnish), followed by South Asian population 

^^The majority mutations are found in European (minus Finnish), followed by Finnish population 
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