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Abstract 
The Sphereprint is introduced as a means to characterize hemispherical conformability, 

even when buckling occurs, in a variety of flexible materials such as papers, textiles, 

nonwovens, films, membranes and biological tissues. Conformability is defined here as 

the ability to fit a doubly curved surface without folding. Applications of conformability 

range from the fit of a wound dressing, artificial skin, or wearable electronics around a 

protuberance such as a knee or elbow to geosynthetics used as reinforcements. 

Conformability of flexible materials is quantified by two dimensionless quantities derived 

from the Sphereprint. The Sphereprint ratio summarizes how much of the specimen 

conforms to a hemisphere under symmetric radial loading. The Coefficient of Expansion 

approximates the average stretching of the specimen during deformation, accounting for 

hysteresis. Both quantities are reproducible and robust, even though a given material 

folds differently each time it conforms. 

 For demonstration purposes, an implementation of the Sphereprint test 

methodology was performed on a collection of cellulosic fibrous assemblies. For this 

example, the Sphereprint ratio ranked the fabrics according to intuition from least to most 

conformable in the sequence: paper towel, plain weave, satin weave, and single knit 

jersey. The Coefficient of Expansion distinguished the single knit jersey from the bark 

weave fabric, despite them having similar Sphereprint ratios and, as expected, the bark 

weave stretched less than the single knit jersey did during conformance. 

 This work lays the foundation for engineers to quickly and quantitatively compare 

the conformance of existing and new flexible materials, no matter their construction. 
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Introduction 
Engineering flexible materials to conform to the shapes around us is an important 
problem in materials science. High performance applications, with an emphasis on 
deformability of shape, range from tissue scaffolding and organ reinforcement to 
geosynthetics for membrane protection in landfills and for soil reinforcement. The way in 
which textiles for wound dressings, wearable electronics and garment technologies fit a 
fingertip, elbow or knee is also dictated by the flexible materials' ability to conform. 
Amongst all materials, textiles are best known for their ability to attain different shapes 
through in-plane straining and nearly reversible buckling1, familiarly known as stretching 
and folding/unfolding, respectively. Therefore, historically, research on the attainment of 
complex shapes by flexible materials has been mostly constrained to textiles and in 
particular to garment technology. In this particular field, there has been considerable 
work done on drapeability and its quantification by some form of Drapemeter2,3. 
Informally, drapeability is the ability of a textile to fall in graceful folds under gravity as 
in the hanging of curtains, the flow of a skirt over the body, or the hanging edge of a table 
cloth4. General theories on the geometry of buckling and on the elements of draping 
under gravity have been investigated5,6. However, with the introduction of flexible 
electronics7,8 and artificial skins9,10 that either mimic or explicitly incorporate a textile 
structure to ensure acceptable conformability; flexible textile composites in place of more 
traditional engineering materials; and the importance of wearable, single-use nonwoven 
products in the consumer and healthcare markets, it is increasingly necessary to quantify 
flexible material shape attainment in other contexts and at different scales. 
 While the collection of all shapes may seem intractable, two dimensional surfaces 
can be classified into a few distinct categories based on curvature. Every piece of a 
surface can be considered as flat, singly or doubly curved11. Flat pieces are like tabletops. 
Singly curved pieces are like cylinders e.g. the label of a tin can. Doubly curved pieces 
come in two types: those which resemble parts of a sphere or ball, and those which 
resemble a saddle. Balls are doubly curved in the same direction, for example both up 
like at the south pole of the Earth or both down, like at the north pole. A saddle is doubly 
curved with one curve going up, to keep the rider in the saddle, and the other curve going 
down, to accommodate the legs. Many textiles easily conform to large regions of double 
curvature. This conformability is in stark contrast to paper or other sheet materials or 
metals which cover flat or singly curved shapes easily, but crease or fracture during 
conformation to a shape which is doubly curved. From the perspective of curvature, 
quantifying how a nonwoven wound dressing conforms to a knee is similar to quantifying 
how a geosynthetic membrane conforms to the bottom of a landfill. 
 There has been much discussion and disagreement as to what the proper definition 
of conformability should be, and how it should be measured. The term conformability has 
appeared as a qualitative notion in the woven and knit communities alongside the more 
quantifiable idea of drapeability1 and to describe the opposite of anti-drape stiffness for 
the quantification of fabric handle12. It has also been called the fit of a material13, or the 
clothing of a surface14-16, when describing how a woven textile conforms to a surface in 
three dimensions. The conformability of a wound dressing has been previously defined as 
its ability to adapt to the shape and movement of the body17. However, the conformability 
test standard for wound dressings17 is not a test for double curvature. Instead it is a 
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uniaxial stretch and recovery test. Specimens are marked at two points, extended twenty 
percent using a tensile testing machine, held for sixty seconds and then relaxed for three 
hundred seconds. Thus, the test records extensibility and permanent elongation sets17, 
possibly in multiple directions. A definition of forced conformability in relation to 
nonwovens has also been proposed18. This definition matches with the understanding that 
conformability is the ability of a material to fit a doubly curved surface. However, 
descriptions of the exact testing procedure and the device itself have been limited18. 
Conformability has appeared in studies of flat tape woven structures19 and artificial skin9, 
but only minimal quantification is provided, with most of the emphasis on visual 
comparison. In the field of composites, issues related to the formability and molding of 
fibrous assemblies around spherical objects have been extensively discussed20-27. While 
many of these studies are interested in the hemispherical conformability of textiles for 
shape attainment, forming is an irreversible process in which folds are defects and so this 
flexible nature in the final material is forgotten. The Drapability test from Rozant et al.26, 
for wovens and knits to be used in composite forming, uses a hemispherical punch to 
displace a clamped, initially planar specimen, but continues only until the formation of 
the first fold. This ignores the important characteristic of textiles to deform in reversible 
buckling during shape attainment. 
 Conformability is defined in the present work as the ability of a flexible material 
to fit a doubly curved surface without folding. From the mathematical classification of 
surfaces, conformability to a sphere and conformability to a saddle are distinct. This 
study proposes a simple test method, the Sphereprint test, for quantifying the 
hemispherical conformability of flexible materials using a hemisphere. Analysis is based 
on a visualization called the Sphereprint. The Sphereprint is thought of as the footprint on 
the flexible material as it conforms to the hemisphere. Two reproducible quantities are 
introduced: the Sphereprint ratio, which summarizes hemispherical conformability in a 
single value ranging from zero (low conformability) to one (perfect conformability), and 
the Coefficient of Expansion, a measurement of the average extension in every direction 
during deformation. As a demonstration of the method a Sphereprint test is implemented 
and a collection of cellulosic fibrous assemblies including paper, nonwoven, knits and 
wovens are tested. 

Measuring principles 
The important elements of a Sphereprint test are shown in Figure 1. They are: symmetric 
radial loading of the specimen onto the hemisphere, ensuring that the center of the 
specimen is aligned with the north pole; taking measurements of the conformed region on 
the hemisphere, even when buckling may have occurred; removing the specimen from 
the hemisphere and unfolding it; taking measurements of the corresponding post-
conformed region. 
 Information from a typical Sphereprint test on four materials with varying 
conformability is given in Figure 2. The solid line encloses the conformed hemispherical 
region both on the hemisphere in the schematics and in the Sphereprints themselves. The 
dotted line encloses the corresponding post-conformed planar region. The enclosing 
circle in the Sphereprints corresponds to the hemisphere used in testing. The Sphereprint 
ratio is simply the ratio of the area of the conformed hemispherical region to the area of 
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the enclosing circle. The Coefficient of Expansion captures the average amount of 
extension in each direction. 
 A visual study of the deformation of the dotted post-conformed lines to the solid 
hemispherical lines provides some insight into the anisotropy of the sample material. It is 
simpler to understand the deformation in materials of high conformance. For example, in 
the left-most Sphereprint the dotted line is a circle and the solid line is simply a larger 
circle. This corresponds to an isotropic material, which stretches the same in each 
direction during conformance. The Coefficient of Expansion completely characterizes 
this type of behavior. The second Sphereprint from the left has a dotted line that looks 
like a rounded rectangle, while its solid line is wavy around the edges. The distance 
between the dotted line and the solid line is small along the horizontal and vertical axes, 
but much larger in the diagonal directions. This corresponds to the behavior of some 
woven materials that do not stretch much along the two x-y perpendicular directions, but 
do stretch along the bias, during conformance. It is more difficult to gain any insight into 
material anisotropy from the two right-most, less conformable, Sphereprints. 

Implementation of a Sphereprint test procedure and analysis 
The Sphereprint method is a general test procedure whose principles have been outlined 
in Section Measuring principles. The Sphereprint test procedure in the present 
implementation is ten steps, which are summarized below. The text shown in italics, 
inside parentheses, are suggestions for implementation and state what was done for the 
present implementation. More explicit implementation details follow. For demonstration 
purposes, an array of cellulosic fibrous assemblies was characterized with the present 
Sphereprint test implementation. Similar implementation, data collection, and analysis 
techniques could be used for films, membranes, flexible composites, or biological tissues. 

Step 1.  Cut circular specimens (110 mm diameter) and mark the center and an axis 
of orientation (e.g. the machine, warp, or wale direction). 

Step 2.  Flatten specimens to remove creases or wrinkles (apply 2 kg, with surface 

area covering the entire specimen, for 4 hours). 
Step 3.  Place the specimen so that the center aligns with the north pole and the 

axis of orientation is in the 0º direction.  
Step 4.  Fix the center of the specimen to the north pole and lower the ring (hose 

clamp) until the top of the ring is in line with the equator.  
Step 5.  Dot the apex of each fold proceeding in the counterclockwise direction 

from 0º. Place a circle around the first dot marked.  
Step 6.  Measure the caliper distance from the north pole to each dot, starting with 

the circled dot and progressing counterclockwise.  
Step 7.  For large lunes of conformance (dots which differ by more than 45º), 

recursively dot the equator at the angular midpoints.  
Step 8.  Remove the specimen from the hemisphere and attempt to flatten it (tap 

the specimen 5 times on each side).  
Step 9.  Measure the angle between the rays from the center to neighboring dots, 

starting and ending with the 0º axis of orientation.  
Step 10.  Measure the distance in the plane from the center to each dot, ensuring the 

material lays flat along the line of measurement.  
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Setup 
The testing device setup and nomenclature are summarized in Figure 3. A 50.8 mm 
diameter hemisphere (stainless steel) on a circular cylinder of the same diameter was set 
on the testing surface so that the axis of the cylinder was perpendicular to the testing 
surface. The hemisphere of diameter of 50.8 mm was chosen to mimic the size of the 
hemispheroidal bone segment, which protrudes during flexion of the elbow or knee. The 
point at the top of the hemisphere will be referred to as the north pole. The circle at the 
base of the hemisphere on top of the cylinder will be referred to as the equator. A 110 
mm diameter circular specimen was cut out and marked at its center and along a diameter 
to provide an axis of orientation. This axis of orientation was aligned with a meaningful 
direction, such as the machine direction for papers and nonwovens, the wale direction for 
knits and the warp direction for wovens. The specimen was coerced to conform to the 
hemisphere by lowering a ring of adjustably increasing diameter from the north pole 
down to the equator. To prevent movement, the center of the specimen was held against 
the north pole of the hemisphere as the ring was lowered. A circular hose clamp was used 
as the ring. The hose clamp is built from a flat belt, which is 12.7 mm wide and 1 mm 
thick, wrapped into a cylinder with a screw through which the belt passes to allow the 
diameter to change. Photographs of the hose clamp are shown in Figure 3. The hose 
clamp is sold as a 25 mm - 51 mm clamp, but is actually extendable to 55 mm. The extra 
allowable 4 mm of diameter is essential since this is the range used during testing. Note 
also that since the diameters of interest are near the maximum dimension of the hose 
clamp, the overlap of the belt is minimized, allowing for a more evenly applied load. The 
screw of the hose clamp was always aligned perpendicular to the axis of orientation. 
During lowering, the ring diameter was changed as required to allow materials of 
different thicknesses to be tested and to pass over folds that may form during testing. The 
clamp was lowered until the top of the clamp was in line with the equator. In practice, a 
small block was used to prevent the clamp from lowering any further. 

Measurement 
Materials that do not conform entirely to the hemisphere fold as the ring is lowered. Once 
the ring has been secured at the equator, the apex of each fold is dotted precisely where it 
lifts away from the surface of the hemisphere, see Figure 4. It is imperative that the 
specimen lies along the surface of the hemisphere from the north pole to the fold dot. 
This assertion allows the arc length between the north pole and the fold dot to be 
calculated from the measured linear caliper distance, as shown in Figure 4. 
 Observe that the fold dots section the hemisphere into a series of lunes with lune 
angles given by the angular differences between fold dots. If a specimen conforms 
completely to the hemisphere there are no fold dots to measure, so a system of marking 
along the equator is adopted for large lunes of conformance. Large lunes of conformance 
are defined by lune angles greater than 45º. Equator dots are recursively placed along the 
equator at the angular midpoints between existing dots as shown in Figure 5. This ensures 
that all lune angles are less than 45 degrees. 
 For example, if two fold dots differ by 150º, three equator dots are added. The 
first is marked at the midpoint 75º from each of the fold dots and then one equator dot is 
marked between the new midpoint equator dot and each of the two original fold dots. In 
practice, the location of the midpoint equator dots can be found using a tape measure. 
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First the location of each of the two fold dots extended to the equator is found; One can 
hold the tape measure taught from the north pole to the equator, ensuring the line of 
measurement passes through the fold dot. The tape measure can then be wrapped around 
the ring, at the equator, between the two equatorial extensions of the fold dots. As the 
tape measure is marked with distance, the midpoints are found by recursively dividing the 
length in two. This is continued until the distances between neighboring points is less 
than 20 mm, corresponding to an angle of 45º on a hemisphere of diameter 50.8 mm. If a 
specimen conforms completely, then eight equator dots are made in perfect symmetry 
about the marked axis of orientation. 
 The equator dot system also provides the experimenter with full discretion as to 
whether very small folds near the equator should be marked. A good rule of thumb seems 
to be to ignore folds whose caliper distances from the equator do not exceed 4 mm, 
roughly 4.5º from the equator. Note the caliper distances between the north pole and the 
equator dots are never measured as the equator dots by definition always lie along the 
equator. The spherical distance is thus equal to one quarter the length of the equator 
itself, 50.8π / 4  mm, since the testing hemisphere in this implementation has a diameter 
of 50.8 mm. The specimen is then removed from the hemisphere and placed on the 
testing surface. The angle between the axis of orientation and the first circled fold or 
equator dot is measured followed by the angles between each consecutive pair of dots. 
Measuring 180º at a time, instead of the angles between dots, may prevent angle error 
from accumulating, however it was observed that the post-conformed specimens may not 
lie flat on the table to allow for the entire 180º measurement to be made. The last angle 
measured is between the final dot and the 0º direction of the axis of orientation. For each 
fold or equator dot the post-conformed planar length to the center of the specimen is also 
measured, ensuring that the material lays flat against the testing surface along the line of 
measurement. 

Analysis 
The exact spherical lengths were calculated from the measured caliper distances using the 
equation shown in Figure 4. In practice, the sum of the measured angle differences does 
not add up to 360º. The error is distributed evenly amongst the angle measurements. The 
angle sum is subtracted from 360º and then divided by the number of measured angles 
and the result added to each of the measured angles. For example, if there were ten 
measured angles adding up to 358º, two degrees short of the full 360º, then two tenths of 
a degree is added to each angle. Hereafter the dot angles referred to are accumulated 
measured angles adjusted by having the error uniformly distributed via this process. For 
example the angle corresponding to fold dot five is the sum of the first five angle 
differences yielding the indicated angle, α , from the axis of orientation. Each of these 
dot angles is paired with its corresponding spherical length and post-conformed linear 
length. The data points are linearly interpolated in rectangular coordinates, wrapping 
from 360º to 0º, as shown in Figure 6 yielding the two functions sph(α)and pc(α) , 
respectively. The Sphereprint is these two functions plotted in polar coordinates inside of 
the enclosing circle. 
 The interpolated spherical lengths can be plotted as a function of dot angle in 
polar coordinates, as shown by the solid curve in Figure 6. The area of this region is an 
approximation to the conformed area of the hemisphere. The Sphereprint ratio is the 
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number obtained by dividing the area of the conformed region by the area of the 
enclosing circle. The Sphereprint ratio, area of the conformed region and area of the 
enclosing circle are given as equations (3), (2), and (1), respectively. These equations 
include the necessary constants for angles to be measured in degrees. The quantity r is 
the hemispherical distance from the north pole to the equator and equals one fourth the 
length of the equator itself (here r  = 50.8π / 4  mm). The sph(α)  and pc(α)  have units of 
length (mm). 
 

Area of the enclosing circle = πr2.  (1) 
 

Area of the conformed region = 
π

180

1

2
sph(α)2 dα

0

360

∫ .  (2) 

 

Sphereprint ratio = 
Area of the conformed region

Area of the enclosing circle
.  (3) 

 
 The area of the enclosing circle represents perfect hemispherical conformability. 
It is the value calculated from following the test procedure on a specimen that conforms 
perfectly to the hemisphere with no folds at all. In this situation all dots are equator dots, 
so the solid curve will coincide with the enclosing circle. Note that the area of the 
enclosing circle is not the surface area of the hemisphere, but rather the area of the 
hemisphere under the azimuthal equidistant projection from the north pole. 
 The Sphereprint ratio is near zero when many fold dots are close to the north pole, 
representing poor conformance, and is equal to one precisely when there are no fold dots 
at all, representing perfect conformance. Recall, however, that the dot angles are not 
spherical lune angles, but rather the planar post-conformed angles after the specimen has 
been removed from the hemisphere and flattened. The lune angle between large folds 
may be small, but when unfolded back into the plane the difference in dot angle may be 
large. While only an approximation these planar angles can be simply and reliably 
measured. They were also chosen because they satisfy the property that when large 
swaths of material are used to create a fold, the unfolded planar angle increases, resulting 
in a decrease in the Sphereprint ratio. 
 The Sphereprint ratio describes approximately how much of the hemisphere is 
covered by the specimen without folding. There is another quantity that can be calculated 
from the test data, the Coefficient of Expansion (CoE). The CoE is an estimate of the 
average strain, or extension, in every direction during deformation. Its definition is 
inspired by true strain, which is a signed quantity, with positive values representing 
expansion and negative values representing contraction. The CoE ideally might be the 
average of the true strain measured in every direction. Instead, the CoE is built upon an 
approximation of the true strain using the test measurements of post-conformed length 
and spherical length, interpolated for every direction. This takes the hysteresis of the 
individual specimens into consideration. The equation for CoE is given by equation (4). 
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Coefficient of Expansion = 
π

180
log

sph(α)

pc(α)
dα

0

360

∫ .  (4) 

 
 The summary diagram for the Sphereprint test is the Sphereprint. It is a polar plot 
of sph(α)and pc(α)  inside of the enclosing circle, with the marked axis of orientation. 
An example is shown in Figure 6. Both the Sphereprint ratio and the Coefficient of 
Expansion are intentionally defined in terms of ratios so that they are independent of 
scale. With a bit of effort all test data, up to scaling, can be recovered from any of these 
diagrams. The cusps in the Sphereprint correspond to fold dots. 

Sphereprint test results 
As a demonstration of the Sphereprint method, two experiments with the present 
implementation of Section Implementation of a Sphereprint test procedure and 

analysis were performed. The material characterization experiment tests the ability of the 
Sphereprint to characterize the conformance of a set of example flexible materials: a 
range of fibrous assemblies. The reproducibility experiment tests that the procedure and 
analytical techniques are both reproducible and robust. 

Material characterization 
Eight fibrous assemblies of varying constructions, summarized in Table 1, were tested. For each 

sample, five circular specimens of diameter 110 mm were cut. The center of each specimen was 

marked, as was the axis of orientation, here corresponding to the warp, machine or wale direction, 

for wovens, nonwovens and knits, respectively. To remove wrinkles and creases, specimens were 

pressed (2 kg) for at least four hours prior to testing. The Sphereprint test as outlined in Section 

Implementation of a Sphereprint test procedure and analysis was performed on each of the forty 

specimens, face-up so that the back-face was in contact with the surface of the hemisphere. All angles 

were measured using a protractor. The post-conformed planar lengths were measured using a 

caliper. The Sphereprints are shown in Figure 7. The Sphereprint ratios and CoEs are plotted in  
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Figure 8. The coefficient of variation of the Sphereprint ratio for each sample is also 
shown. The coefficient of variation is not shown for the CoE as it is a signed interval 
quantity, instead of a ratio. The coefficient of variation can only be used on ratios. 

Reproducibility 
To evaluate the reproducibility and assess inherent variations in both the test method and 
within a material, further testing was performed. Twenty specimens each of plain weave 
and satin weave were tested, once again face-up so that the back-face was in contact with 
the surface of the hemisphere, using the Sphereprint test implementation given in Section 
Implementation of a Sphereprint test procedure and analysis. The data are shown in 
Figure 9. The coefficient of variation of the Sphereprint ratio for each sample is also 
shown. 

Discussion 

Results 
The Sphereprint test data from the material characterization experiment are summarized in  

 
Figure 8. While the sample sizes for the characterization experiment are not large enough 
to perform two-dimensional statistical tests, the graphical presentation of the data 
strongly suggests that the Sphereprint ratio and CoE quantities are able to distinguish 
between the different fibrous assemblies. The Sphereprint ratio axis alone suggests a 
natural ordering consistent with an intuitive notion of conformability of the fabrics. Satin 
weave is less conformable than single knit jersey but more conformable than plain weave 
which is itself more conformable than paper towel. The Sphereprints shown in Figure 7 
therefore provide visual feedback to the engineer as to whether or not a material is 
hemispherically conformable. The Sphereprints and Sphereprint ratio also capture the 
visual qualitative differences among the materials observed during testing, shown in 
Figure 10. The Sphereprint ratio quantifies how well these fabrics conform, while the 
CoE quantifies differences in how the fabrics achieve conformance during the test. For 
example, while the bark weave and single knit jersey look similar on the hemisphere 



Original Article 

 

during testing, the amount of excess material below the clamp is different. This is 
reflected quantitatively by the two having similar Sphereprint ratios, but different CoEs. 
The CoE data quantify that the single knit jersey extends more in all directions during 
deformation than the bark weave does, so the amount of excess material below the clamp 
is understandably different between them. This result also matches the intuition that knits 
are in general more extensible than wovens, particularly when averaged over all 
directions. The characterization data also suggest the anticipated positive correlation 
between Sphereprint ratio and CoE. However, it appeared that the bark weave and gauze 
materials may be outliers in this correlation as they exhibit higher Sphereprint ratios than 
expected from their CoEs. Such nuances of the Sphereprint test results deserve further 
study. 
 Results of the reproducibility experiment are summarized in Figure 9. The 
Sphereprint ratio and CoE values clearly distinguish the plain weave and satin weave 
from one another, as there is no overlap in the scatter of data points. Both the plain weave 
and satin weave data are indistinguishable from binormal distributions according to 
Anderson-Darling tests, summarized in Table 2. A Hotelling T-squared test suggests that 
the plain weave and satin weave bivariate data have different means with a p-value of 
0.000014. 
 A visual comparison between the results of the reproducibility experiment with 
their counterparts from the characterization experiment suggest some differences. It 
appears that the plain weave and satin weave fabrics had larger Sphereprint ratios in the 
reproducibility experiment, despite conforming to the specifications indicated in Table 1. 
The coefficient of variation in the Sphereprint ratios were similar between the two data 
sets suggesting the differences were not due to experimental error, but rather to another 
experimental variable. As both samples were cellulosic, it is believed that this is 
attributable to a difference in the moisture content of the second set of samples, resulting 
from a change in the relative humidity of the test laboratory between the first and second 
set of measurements. 

Comparison to forced conformability 
Based on the available details of the previously published test for forced 
conformability18, the method and results for a few fabrics are briefly described, for 
purposes of comparison to the Sphereprint test. The forced conformability test uses radial 
loading around the edge of a 203.2 mm diameter circular specimen, on a 76.2 mm 
diameter sphere. For each applied load, the distance to the first fold is measured. The first 
fold is defined as that closest to the north pole. The experiment continues until an 
increase in load does not produce a change in the distance to the first fold. A circle is 
drawn on the sphere at the colatitude of the first fold. The area of the spherical cap 
enclosed by the circle is defined as the the forced conformability18. The Sphereprint test 
implementation described here uses 110 mm diameter circular specimens on a 50.8 mm 
diameter hemisphere. It also uses radial loading, but the load is applied by lowering a 
hose clamp to the equator, instead of along the edge of the specimen. The data collected 
for a Sphereprint contains the distance to the first fold as defined for forced 
conformability: it is the minimum value of the spherical lengths of the fold dots marked 
in a test. Therefore, forced conformability values for the Sphereprint characterization 
experiment can be computed. In order to compare these values with the previously 
published data by Shealy18, the Firstfold ratio is introduced. This is simply the forced 
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conformability value, i.e. the surface area of the spherical cap defined by the colatitude of 
the first fold, divided by the surface area of the hemisphere used during testing. The 
Firstfold ratio is dimensionless and scale independent and it is given by equation (5). 
Table 3 lists the materials from the paper by Shealy18 and the Sphereprint 
characterization experiment with the values sorted by Firstfold ratio. 
 

Firstfold ratio = 
Area of spherical cap at colatitude φ º

Area of testing hemisphere
 = 1− cos(φ º)  (5) 

 
 The Sphereprint ratio and Firstfold ratio are both quantifications of hemispherical 
conformability. Both quantities suggest they are able to distinguish materials from each 
other. Table 3 compares how the Sphereprint ratio and Firstfold ratio order the 
hemispherical conformability of the materials. The ordering is largely similar, however, 
plain gauze and single knit jersey are highlighted as they both are placed differently in 
the Firstfold ratio than the Sphereprint ratio. The Sphereprint ratio and Firstfold ratio 
penalize nonconformance differently. The Firstfold ratio strongly penalizes 
nonconformance when any fold is close to the north pole, even if there are very few folds 
overall. In contrast, when there are only a few large folds, the Sphereprint ratio remains 
large. Consider plain gauze, whose Sphereprints shown in Figure 7 reveal that it often 
conforms with a few very large folds. This mode of conformance gives plain gauze a low 
Firstfold ratio but a relatively high Sphereprint ratio. Similarly, single knit jersey is 
penalized by the existence of any fold at all and is therefore ordered below bark weave in 
the Firstfold ratio ordering. Common understanding would suggest that knit jersey is very 
conformable and gauze has been used for many years in applications such as bandaging 
and in areas of wound care, where conformance to doubly curved regions of the body is 
required. The Sphereprint ratio quantifies hemispherical conformability in a manner more 
consistent with this common usage, because it takes the length of folds, number of folds 
and their distribution around the hemisphere into consideration. The single measurement 
used in computing the Firstfold ratio cannot recognize multiple modes of conformance. 
 Forced conformability provides an insight into hemispherical conformability. The 
dimensionless quantity introduced here, the Firstfold ratio, is available from the data 
collected in the Sphereprint test and may be useful in its own right for some applications. 
In particular, it is related to the quantities important for composite forming applications 
as described by Rozant et al.26. 

Sphereprint test implementation 
 The Sphereprint test in its current implementation is relatively quick to perform. 
Once the specimens have been cut out and flattened, performing the test and collecting 
the experimental data takes two to four minutes per specimen. The time discrepancy 
arises from the number of fold dots that need to be marked and measured both on the 
hemisphere and in the post-conformed state. For example, collecting data for the bark 
weave or knit jersey specimens required about two minutes per specimen, while the paper 
towel and hydroentangled nonwoven specimens required about four minutes each. Thus, 
performing the test on twenty specimens of a flexible material with an average number of 
fold dots will take about one hour. Note that if the testing device is to be shared, only the 
hemispherical data must be recorded at the time of testing. The post-conformed data may 
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be collected at a later date. This should reduce testing time by more than half, since both 
the post-conformed angles and post-conformed lengths are required for analysis. 
 This Sphereprint test implementation does not include a method for measuring the 
force of the radial load, which may be considered a limitation. Measuring force 
throughout the experiment is desirable to understand the behavior of a material during 
deformation and to better analyze how conformance occurs. Many quantities measured in 
the test depend on the relationship between stress and strain, between force and 
extension. While it is shown that the Sphereprint test produces quantifiably similar results 
to the forced conformability test18, the forced conformability test provided a mechanism 
to measure the load around the edge of the specimen. 
 There are three difficulties in producing an improved test implementation that 
measures the radial force. Firstly, the mechanism must be able to apply a symmetric 
radial load, while also applying an appropriate amount of force at the north pole to 
prevent slippage of the specimen. Secondly, the ring which is lowered from the north 
pole to the equator must ideally be able to change in diameter while applying a 
consistent, known tension to the specimen during movement. The implementation must 
use a ring of increasing diameter to allow radial forces to be resolved during lowering, 
thereby preventing fold artifacts. It was observed that small perturbations applied to the 
ring, as its diameter was increased while lowering, would result in a decrease in the 
number of folds. For example, in a few instances outside of the experiments presented 
here, the single knit jersey, bark weave and even the plain gauze were able to conform 
with no folds at all. Thirdly, the conformed hemisphere must be exposed so that the 
experimenter can measure the spherical distances. This precludes using a diaphragm or 
lining. 
 The Sphereprint test implementation described here fixes the cylinder with a 
hemispherical cap and then lowers a diameter-changing hose clamp over the specimen. 
Currently, the problem is that the ring is difficult to adjust while applying a known 
amount of force. In addition, as the ring in this implementation is a hose clamp, it does 
not apply a perfectly symmetrical radial load because the screw holding the circular 
region together breaks the symmetry. An elastomeric O-ring might be an alternative to 
the hose clamp. If the O-ring were of known elastic modulus, then a known amount of 
force would be required to change its diameter. There remains the difficulty of applying a 
load to the O-ring. Since motion is relative, the roles of moving and stationary pieces of 
the apparatus could be reversed. One could imagine an implementation in which a table 
had a hole which was able to change diameter, similarly to the aperture of a camera. With 
such an apparatus, a specimen could be placed on the table covering the aperture. A 
hemispherical prod would then lower by means of a simple tensile tester and the aperture 
would change diameter while applying tension to the specimen. Forces exerted on the 
specimen could be calculated from the speed of the prod and the mechanical structure of 
the aperture. 
 The technique to mark points and measure distances and angles both on the 
sphere and in the plane could be improved to reduce potential experimental error. 
Unfortunately, it is difficult to use image analysis in this context, because during 
deformation the specimen may raise a fold which hides other folds from view. Also note 
that an image taken from a reasonable distance above the north pole cannot show the data 
points close to the equator. In practice this effectively amounts to ignoring small folds 
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close to the equator, as is done in the current implementation. Where folds do not hide 
one another, an image would work well, since spherical distances could be recovered 
from the known projection of the visible portion of the hemisphere onto the viewing 
plane. An imaging technique would also allow the spherical lune angles to be calculated 
precisely, in addition to the post-conformed planar angles. In particular, with exact lune 
angles, specifying which regions are lunes of conformance would be easier. These 
approaches would reduce variation in the Sphereprints and the resulting Sphereprint 
ratios and CoEs. 

Conclusion 
The goal was to introduce a technique for quantifying and characterizing conformance of 
flexible materials to sphere-like double curvature. The general Sphereprint test method 
was introduced, together with a particular implementation, to understand the 
hemispherical conformability of flexible materials. The Sphereprint ratio is a measure of 
the region of the hemisphere to which the material has conformed. While a particular 
material may have many ways to cover the hemisphere, the Sphereprint ratio provides a 
reproducible and robust summary of total conformance. The remarkable reproducibility 
of the Sphereprint ratio, despite the great diversity in fold patterns within a single sample 
material, is an interesting question for further investigation. 
 It has been demonstrated that the Sphereprint ratio ranks known fibrous 
assemblies of varying fabric construction according to conventional notions of 
conformability. From least to most conformable the order was: paper towel, plain weave, 
satin weave, and single knit jersey. A second quantity called the Coefficient of Expansion 
has been introduced to understand how the flexible material behaves during conformance 
in relation to its post-conformed state. The Coefficient of Expansion can be thought of as 
a generalization of the Poisson's ratio of a material to the case of radial loading and is 
also reproducible and robust. It is a signed quantity, contraction cancels expansion, and 
the net value approximates the average extension in every direction. 
 The Sphereprint ratio together with the Coefficient of Expansion, provide a 
quantitative method to distinguish the conformance behavior of flexible assemblies. The 
Sphereprint itself is a visual summary of the test that contains all of the experimental data 
in one picture. Just as a footprint characterizes how soft clay conforms to a foot, the 
Sphereprint characterizes how a flexible material conforms to a sphere. 
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Figure 1.  Schematic of a Sphereprint test. 

 

 
Figure 2.  Conformed regions on the hemisphere shown schematically and their associated Sphereprints, 
Sphereprint ratios and Coefficients of Expansion. A visual study of the deformation of the dotted post-
conformed line to the solid hemispherical line provides insight into material anisotropy. The most 
conformable material deforms isotropically and the second most conformable material deforms 
anisotropically like a woven fabric. 
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Figure 3.  Left: The Sphereprint test setup in this implementation. The ring is lowered, coercing the 
specimen to conform to the hemisphere, until the block prevents further movement. The block assures that 
the top edge of the ring is in line with the equator. The center of the specimen is aligned with the north 
pole. Right: The hose clamp used as the ring. 

 

 
Figure 4.  A satin weave specimen on the hemisphere during testing just after the ring has been aligned to 
the equator (Steps 1-4). Left: (Step 5) The fold dots have been marked at the apex where the fold begins to 
lift off from the hemisphere. The first dot to be marked is circled to ensure the same sequence is followed 
during planar angle and length measurements. Right: (Step 6) Summary of how to calculate the spherical 
arc length along the specimen, dNF , from the north pole, N , to a fold dot, F , using the measured linear 
caliper distance, NF . 



Original Article 

 

 

 
Figure 5.  Left: (Step 7) A lune of conformance of angle much greater than 90º. The fold dots are shown 
along with visual guides for construction lines to locate the midpoint equator dot #1 and the two recursively 
placed additional equator dots #2 and #3. All lune angles are now less than 45º. Right: (Steps 8 - 10) The 
specimen after it has been removed from the hemisphere and flattened. Planar angle differences and planar 
distances from the center to each fold or equator dot can now be measured. Observe that the visual guides 
do not bisect the post-conformed planar angles perfectly after unfolding. 

 

 
Figure 6.  Left: The spherical and post-conformed linear distances as a function of dot angle, α , for each 
of the dotted locations along with their linear interpolations. The solid sph(α )  and the dashed pc(α )  are 

plotted in rectangular coordinates. The Coefficient of Expansion (CoE) measures the deformation required 
to move the dashed curve to the solid curve. Right: An example Sphereprint, showing the enclosing circle 
together with the sph(α )  and pc(α )  curves now plotted in polar coordinates. The Sphereprint ratio is the 

ratio of the area enclosed by the solid curve to that of the enclosing circle. In this example, the Sphereprint 
ratio is 0.685 with a CoE of 0.083. To first approximation this means that the specimen conformed to 
68.5% of the hemisphere while extending an average of 8.3% in every direction. 
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Figure 7.  Sphereprints of eight sample fibrous assemblies, five specimens per sample. The axis of 
orientation is shown as a faint horizontal line. The columns are sorted in increasing order of mean 
Sphereprint ratio from the characterization experiment, visually evident by the increasing size of the white 
area in the Sphereprints going from left to right. A dashed line substantially distinguishable from its solid 
counterpart corresponds to a direction of strain, the average of which is given by the CoE. A cusp in a 
Sphereprint corresponds to the location of a fold dot. By counting cusps one can get a sense of how many 
folds occurred during the test. 

 

 
Figure 8.  Sphereprint test data collected for the eight sample fibrous assemblies, five specimens per 
sample. The coefficient of variation of the Sphereprint ratio is shown in parentheses next to each sample in 
the legend. 
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Figure 9.  Sphereprint test data collected for a reproducibility test with twenty plain weave specimens and 
twenty satin weave specimens. The coefficient of variation of the Sphereprint ratio is shown in parentheses 
next to each sample in the legend. Data distributions from the test are indistinguishable from binormal 
distributions. The data are visually distinct and establish a statistical difference between both the 
Sphereprint ratios and the Coefficients of Expansion for the plain weave and satin weave. 

 

 
Figure 10.  Qualitative examples of different materials on the Sphereprint testing device. Shown from left 
to right are hydro nonwoven, satin weave, bark weave, and single knit jersey. 
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Table 1.  Specification of fibrous assemblies utilized for experimental evaluation. Mean values and 
standard deviations are given for sample weight (area density), sample thickness (under 100 g of weight) 
and thread count based on five specimens per sample. 

Name 
Weight 

g m
-2

 

Thickness 

mm 
Fiber/Yarn type 

Thread count 

warp/weft per cm 

Paper towel 38 ± 2 0.31 ± 0.04 
viscose 

N/A 
N/A 

Hydro nonwoven 73 ± 1 0.40 ± 0.01 
viscose 

N/A 
N/A 

Twill weave 170 ± 1 0.42 ± 0.03 
cotton 

single ply 

42 ± 1 / 34 ± 1  

2x1 weave 

Plain weave 143 ± 1 0.43 ± 0.03 
cotton 

single ply 

24 ± 1 / 21 ± 1 

1x1 weave 

Plain gauze 48 ± 1 0.22 ± 0.03 
cotton 

single ply 

30 ± 1 / 19 ± 1 

1x1 weave  

Satin weave 236 ± 1 0.67 ± 0.03 
cotton 

single ply 

53 ± 2 / 18 ± 1  

4x1 weave 

Bark weave 202 ± 2 0.91 ± 0.07 
cotton 

single ply 

30 ± 1 / 15 ± 1 

bark weave 

Single knit jersey 164 ± 2 0.98 ± 0.03 
cotton 

single ply 

13 ± 1 / 11 ± 1  

course/wale per cm 

 

Table 2.  The best fit binormal distributions for the plain weave and satin weave reproducibility data. 
Values are shown in the format (Sphereprint ratio, CoE). 

Binormal 

distributions Means Standard 

deviations Correlation Anderson Darling 

test p-value 
Plain weave (0.561, 0.032) (0.051, 0.016) -0.452 0.957 
Satin weave (0.700, 0.063) (0.043, 0.017) -0.066 0.996 

 
Table 3.  Comparison between the data collected for the Sphereprint characterization experiment and the 
data for forced conformability18, sorted by Firstfold ratio. The data show that despite differences in testing 
methods the forced conformability test and Sphereprint test produce similar Firstfold ratios. The 
Sphereprint ratio is also shown and orders the materials similarly with the two highlighted exceptions, plain 
gauze and single knit jersey. Plain gauze conforms with a few large folds which causes the Firstfold ratio to 
be small, while its Sphereprint ratio remains large. Single knit jersey is penalized by folds in its Firstfold 
ratio despite having very large lunes of conformance, and thus a large Sphereprint ratio. 

Fabric type 

Mean  

Firstfold  

ratio 

Mean 

Sphereprint 

ratio 

High range woven* 0.495  

Bark weave 0.480 0.804 

High-mid range woven* 0.433  

Single knit jersey 0.424 0.849 

Mid range woven* 0.318  

High range spunbond* 0.269  

Satin weave 0.235 0.629 

Plain weave 0.129 0.410 

Fiber crimp B spunbond or low range woven* 0.110  

Twill weave 0.105 0.407 

Plain gauze 0.061 0.518 

Hydro nonwoven 0.060 0.360 

Fiber crimp A spunbond or starched woven* 0.057  

Paper towel 0.054 0.273 

Straight fiber spunbond* 0.015  

*Fabrics from Shealy
18

 

 

 


