UNIVERSITY OF LEEDS

This is a repository copy of Mitigating supply and production uncertainties with dynamic
scheduling using real-time transport information.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/87683/

Version: Accepted Version

Article:

Mogre, R, Wong, CY and Lalwani, CS (2014) Mitigating supply and production
uncertainties with dynamic scheduling using real-time transport information. International
Journal of Production Research, 52 (17). 5223 - 5235. ISSN 0020-7543

https://doi.org/10.1080/00207543.2014.900201

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

February 4, 2014 16:51 International Journal of Production Research "PAPER NEW”

International Journal of Production Research
Vol. 00, No. 00, 00 Month 2012, 1-19

RESEARCH ARTICLE

Mitigating supply and production uncertainties with
dynamic scheduling using real-time transport information

Riccardo Mogre® * Chee Y. Wong® and Chandra S. Lalwani®

®Hull University Business School, University of Hull, Kingston upon Hull, UK.,
®Leeds Unwversity Business School, University of Leeds, Leeds, UK.

(February 4, 2014)

Supply and production uncertainties can affect the scheduling and inventory
performance of final production systems. Facing such uncertainties, production
managers normally choose to maintain the original production schedule, or fol-
low the first-in-first-out policy. This paper develops a new, dynamic algorithm
policy that considers scheduling and inventory problems, by taking advantage
of real-time shipping information enabled by today’s advanced technology. Sim-
ulation models based on the industrial example of a chemical company and the
Taguchi’s method are used to test these three policies under 81 experiments
with varying supply and production lead times and uncertainties. Simulation
results show that the proposed dynamic algorithm outperforms the other two
policies for supply chain cost. Results from Taguchi’s method show that com-
panies should focus their long-term effort on the reduction of supply lead times,
which positively affects the mitigation of supply uncertainty.

Keywords: Simulation; supply uncertainty; production uncertainty; dynamic scheduling;
information sharing.

1. Introduction

Demand, production and supply uncertainties can importantly affect the performance
of final production systems (Sun et al., 2012). Operationally, demand is stable because
production requirements are defined by the master production schedule, with supply and
production constituting the primary sources of uncertainties (Kim and Springer, 2008
and Song et al., 2014).

Their influence could be mostly measured by delays in supply and production lead
times. Operational uncertainties in supply include transport time variability, quantity
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inaccuracies and supplies not meeting the specifications (Zsidisin, 2003 and Ghadge et
al., 2012)). The two latter uncertainties require the supplier to redeliver the items, caus-
ing further disruptions to supply lead times. Natural hazards could also disrupt supply
operations (Pawar and Rogers, 2013): because of the 2011 Thailand floods the global
magnetic-hard-drive supply was delayed by several weeks (Arthur, 2011). Operational
uncertainties in production include glitches, malfunctions, congestions and lack of con-
trol (Tomlin, 2006 and Micheli et al., 2014). The two latter uncertainties directly disrupt
production lead times. The two former uncertainties require reworks. Those in turn delay
production operations.

In particular, the effects of supply-side transport disruptions could be severe in just-
in-time settings, for example, the supply of automotive components or perishable food or
chemical raw materials. Although disruptions and delays in production could be timely
identified, it was not so for transport operations until recently, thanks to technology
developments such as GPS-based vehicle tracking (Gaukler et al., 2008). Allowing real-
time gathering of shipment status, these technologies have attracted some attention from
practitioners as they could be used to dynamically reschedule production if supply-side
transport disruptions occur (GIS Park, 2011). However, it is unclear how such applica-
tions would work and what is the entity of the benefits ensuing from their introduction.

To address this relevant practical problem we propose a GPS-based technology ap-
plication and develop a heuristic algorithm, called ‘Dynamic algorithm’ to re-schedule
production according to real-time transport information that we compare by a simulation
study against commonly used scheduling policies.

The setting, the assumptions and the data of the simulation study are based on a chem-
ical plant producing calcium carbonate.The plant is managed by a Swiss-based chemical
company with worldwide presence, specialised in the production and distribution of in-
dustrial minerals. We use the pseudonym ‘Carb.Co.” when we refer to the company to
preserve its anonymity.

This paper could be classified among those academic studies considering demand, sup-
ply or production uncertainties in final production systems. We contribute to filling the
gaps in that academic literature in the following ways. First, our study considers sup-
ply and production uncertainties, although previous literature seldom considers these
uncertainties simultaneously. Second, to mitigate delays and congestions in the produc-
tion system, our algorithm considers scheduling and inventory decisions. Again, although
these decisions are strongly inter-related, previous literature rarely consider scheduling
and inventory policies together.

A more theoretical contribution of this work is related to how to calculate inventories
between known demand and uncertain supply lead times when these are lognormally
distributed. The choice of such distribution is motivated by empirical evidence collected
from the industrial example and confirmed by its suitability to capture lead time vari-
ability (Bakshi et al., 2011).

Our study primarily contributes to that body of academic work that focus on assess-
ing the benefits of tracking technologies, including RFID and GPS. In this respect, we
show that the ‘Dynamic algorithm’ outperforms the supply chain cost, the first-in-first-
out scheduling rule, or FIFO, and the no changes policy, namely, to follow the original
production schedule. The supply chain cost includes the cost of inventory, overtime, non-
completion and changeover. A further analysis based on the Taguchi’s method shows
that companies should invest in supply lead time reduction initiatives, as the results
show that the length of lead times is the most relevant factor in decreasing the supply
chain cost.
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2. Related work

This study is related to those academic contributions trying to assess the benefits of
tracking technologies, for example, RFID and GPS. The contributions of Gaukler et al.
(2008) and Sari (2010) are among the studies in this area using the same methodology
employed in this work, simulation. These papers aim at assessing the benefits of RFID
tracking in supply chains, with Gaukler et al. (2008) focusing on the process of expediting
late orders and Sari (2010) conducting his study in a multi-echelon setting. Both studies
show that the benefits ensuing from tracking technologies are often intangible, for supply
chain visibility, and, therefore, difficult to evaluate. Ballestin et al., 2013 looked at the
role of RFID in sequencing warehouse operations. They compare, as we do, static policies
and technology-based dynamic polices.

Although the setting of the problem studied here is new, we can still relate our work
to previous papers in the scheduling and inventory management literature, especially to
those studies considering uncertainties in final production systems. These can be divided
into four categories: (1) papers calculating safety lead times, (2) papers analysing the
economic lot-scheduling problem, (3) papers modelling the restoration of a disrupted
schedule and (4) papers identifying and testing dynamic scheduling rules.

The first category of papers studies re-ordering policies for single-product assembly sys-
tems with deterministic demand and independent and identically distributed component
lead times. Cost-minimising policies are usually formulated for safety lead times, defined
as the difference between the planned and expected lead times. Tang and Grubbstrém
(2003) obtain results for the continuous time setting. Louly et al. (2008) extended the
model of Tang and Grubbstrém (2003) to a discrete time environment, by also allowing
more components. Louly et al. (2008) further allowed the values of component lead times
to be generated by various probability distributions. These papers connect to our study
because they also assume deterministic demand and try to identify inventory policies to
hedge against supply lead times uncertainty. They study a more complicated inventory
setting than us in which each product is assembled from several components. On the
other side, their study is simpler in other dimensions: they do not consider production
uncertainty and scheduling policies.

The second group of papers aims at finding cyclic schedules for manufacturing various
products with the goal of minimising holding and setup costs. These studies are similar
to the present work in their objective to consider inventory and scheduling decisions
when managing final production systems. Contrary to the present paper, these studies
analyse inventory and scheduling decisions jointly and not sequentially as we do here.
However, they do not consider production and supply uncertainties, with only few studies
considering demand variability (Leachman and Gascon, 1988 and Gallego, 1990). More
recently, Wang et al., 2012 analysed the extension of this problem to a dynamic control
setting.

The third category of papers assumes that processing times are stochastic variables and
concerns the restoration of an initial schedule disrupted by rework or machine breakdown
(Bernier and Frein, 2004 and Ding and Sun, 2004). Their studies follow the traditional
stochastic scheduling approach considering job-specific attributes of available work, for
example, job release times, processing times and due dates, to form the shortest expected
flow time of the schedule (Conway et al., 1967). These papers connect to our study as they
try to mitigate delays and congestions in production systems. Compared with our study,
they use analytical approaches. However, they impose the distributional independence
of lead times, an assumption hardly verified in practice, because some products may
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share a set of resources. Moreover, they do not consider inventory decisions and supply
uncertainties.

The final group of papers proposes and tests dynamic scheduling rules in final pro-
duction systems. All these contributions consider processing time uncertainty but not
supply lead time variability. This category of papers is related to our study because
they propose heuristic dynamic scheduling rules as we do here. Dynamic rules require
the knowledge of many events occurring in the production system leading to large state
spaces. Additionally, decisions in dynamic rules are made in discrete time. For these rea-
sons, analytical approaches are often difficult to accomplish and the studies in this last
group rely on simulation to test the rules proposed. Hausman and Scudder (1982) pro-
posed a model in which dynamic policies provided an important reduction in spare parts
inventory compared with static policies for an assembly job-shop processing various jobs
on several machines. Wein and Ou (1991) tested how the adoption of various schedul-
ing policies affects the flow time of an assembly system similar to the one described by
Hausman and Scudder (1982). More recently, Gong et al. (2011) tested the effectiveness
of a dynamic rule called ‘distributed arrival time control’ to schedule jobs in assembly
lines and assembly cells. The results indicated assembly cells outperform assembly lines
with specific reference to an indicator associated with the due-date variation of jobs.

3. Problem description and innovative application

3.1. Problem description

The supply chain studied and the assumptions of the model are based on the indus-
trial example of Carb.Co., a producer of calcium carbonate interested in synchronising
its production process with information about inbound supply shipments. Drivers could
already use smartphones to update the company about inbound shipments’ status. How-
ever, Carb.Co. was interested in automating the tracking to make updates more frequent
and regular. Based on this need, we propose the innovative application described in €3.2.

The plant under consideration entails a single multi-product production line receiv-
ing chemical raw materials from various suppliers. The production line makes various
products from raw materials according to a predetermined and fixed daily production
plan, which follows the expected raw-material arrival times. Each raw material is sent to
the production line independently by road and is transported by a third-party logistics
provider. We assume the supply shipment ready-time to be reliable but the transport
lead time can be variable. Moreover, we assume production lead times to be random as
they directly depend on the variable raw-material quality.

Inventory holding costs are charged per raw material and per time unit, also for those
goods in transit. When a raw material necessary to make the product scheduled next for
assembly has not yet arrived or is not in stock, it is necessary to decide whether to wait
for the raw material to arrive or to schedule a later production.

The decision horizon is constituted by a single working day. If everything goes smoothly,
the production is completed in the regular time. However, with delays, managers can
recur to an overtime shift at a cost to ensure that all the products are manufactured. If
some products cannot be produced even in the time slot allotted to overtime, a penalty
cost per product is charged.

A changeover cost is charged every time the sequence of production is changed. This in-
cludes all the extra costs of changing the schedule in the middle of the work. Changeovers
also have an indirect influence on the supply chain variable cost through changeover time.
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Changeover times imply delays in the production schedule that may require using over-
time at additional cost, or may even result in the non-completion of the production of
raw materials in the given horizon. Note that changeover times are only associated with
schedule changes, and are not related to setup times, included in the processing times.
We assume changeover times and costs to be independent from the sequence.

Managers define the original production schedule based on structured techniques, which
consider constraints such as the capacity of the plant and the product due dates. To
mitigate supply and production uncertainties in the short time horizon, the managers
may choose to follow the original production schedule, named ‘No changes’, or always
produce the first raw material arrived, called FIFO. ‘No changes’ and FIFO policies
do not include inventory decisions. These two policies are commonly used in practice,
primarily because of the lack of real-time information.

3.2. Innovative application and ‘Dynamic algorithm’

We propose a technological application that can be introduced in the setting described in
€3.1 to trace shipment status and to allow the manufacturer to make dynamic informed
decisions about its production schedule (Figure 1). Lorries are traced real-time by the
3PL through automated GPS/GPRS units. The route leading from each supplier to the
manufacturer is divided into road-segments, each taking the same average lead time.
Through a technique called geo-fencing, the GPS technology tracks when a lorry enters
or exits a specific road segment. This information is in turn transmitted to the 3PL’s in-
formation systems through GPRS cellular technologies. An e-commerce B2b application,
such as a traditional EDI connection or a web-EDI connection, is used to send shipment
information from the 3PL to the company’s ERP system, which makes a dynamic sched-
ule update possible. Given the updated location information of each lorry, it is possible
for the company to forecast the arrival of each raw material in real-time. Combined with
the availability information of stocks of raw materials on hand, the company may decide
to dynamically change the schedule of the products after our proposed algorithm.

Our ‘Dynamic algorithm’ uses a static policy to determine the initial inventory levels
of raw materials to safeguard the company from supply lead time variability. The static
policy assumes the lead time to cover each route leading from a supplier to the manufac-
turer can be adequately represented by K independent and identically distributed (iid)
lognormal variables, where K is the number of road segments in the route. We choose
this distribution based on empirical evidence collected from the industrial example. More-
over, the lognormal distribution seems suitable to capture lead time variability, because
it has a modal response strictly above zero and a long tail representing infrequent cases
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of long lead times (Bakshi et al., 2011). The stock allocation rule of our static policy is
encapsulated in Proposition 3.1.

Proposition 3.1: The demand of a raw material is constant and unitary. Its supply
lead time is modelled after the sequence of X1 ... X} iid lognormal variables with mean
Wy and standard deviation o, for i =1...K. Define the customer service level CSL of
the supply as the probability of a raw material arriving before a particular time threshold
t, after which the manufacturer’s operations may be disrupted. Then the condition for
assigning a stock unit can be written as follows:

exp(Fgl(CSL,,uy, oy) — fa >t (1)

The term on the left of the inequality can be interpreted as the expected delay, with u,
the mean of the compound lognormal variable X obtained through the Fenton- Wilkinson
approrimation and F;l the distribution of the normal variable Y derived from X.

The proof of Proposition 3.1 can be found in Appendix A.

The ‘Dynamic algorithm’ is described as unified modelling language activity diagram
in Figure 2. Although the shipment is updated after every route segment, the algorithm
computes the expected time of arrival of each raw material based on 1) the current
segment where the raw material is and 2) the information about the lognormal variables.
The algorithm further considers the changeover time t., namely, the time needed to set
up the assembly line in case the production sequence is changed. Time t. minutes before
the line is available for production, all the raw materials arrived or due to arrive in
the next ¢. minutes are possible candidates for production next. The next raw material
to be manufactured among those arriving or arrived is chosen because of the original
production schedule, to avoid the changeover cost. This choice may not be possible,
for instance, when the raw material originally scheduled next for production has not yet
arrived or is not expected to be arriving in ¢, minutes and at least one other raw material
has arrived or is arriving in ¢, minutes. In this latter case the production sequence is
changed and a changeover cost is charged. Once the algorithm effectively schedules a
product to be manufactured next, the line is made unavailable for the other products.
Once the raw material scheduled for production has arrived and once the line is available,
the production starts.

4. Simulation

4.1. Simulation model

We developed a discrete event simulation model using the language SIMAN and its visual
interface Arena 13.0 to compare the effectiveness of the ‘Dynamic algorithm’ against ‘no
changes’ and FIFO policies. We chose to use a simulation approach because the problem
has not been considered tractable analytically for the following reasons: 1) the large state
space necessary to the ‘Dynamic algorithm’ to make the decisions and 2) the scheduling
rules are triggered by discrete events such as the arrival of raw materials and the final
production line becoming available for manufacturing.

Semi-structured interviews with Carb.Co.’s I'T project manager and the technological
provider of its current tracking application helped determining the problem description
and the assumptions behind the simulation model. All the parameters and the data of the
model, including the production and shipping plans used in the simulation, are based on
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Figure 2.: The proposed ‘Dynamic algorithm’.

real-data from the industrial example, some of which have been scaled. A panel consisting
of one academic and one practitioner has verified and validated the simulation model.

The model incorporates ten sub-models developed for each raw material shipped to the
assembly line by the ten suppliers. Each sub-model is associated with a physical compo-
nent, replicating transport and production activities, and a decision-making component,
changing because of the algorithm used.

The initialisation phase of our model entails the creation of a production plan, a
delivery plan and a shipping plan. The predetermined production plan considers the
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Value

Parameters Low Medium High
Lead time ratio (supply / production lead time) 1 5 10
Lead time variability (% standard deviation) 10% 50% 100%
JIT extent [minutes] 0 15 30
USC: Changeover cost [£/changeover] 100 200 300
UHC: Inventory holding cost [£/(component*hour)] 5 10 15
UOT: Overtime cost [£/shift] 750 1,000 1,000
UNC: Non-completion penalty [£/product] 250 500 750

Table I.: Cost, lead times and just-in-time parameters.

required sequence of production, the average production lead times and the hours of
operation of the plant. A delivery plan is created based on the production plan depending
on the time lag between the expected raw-material arrival and the start of the production,
called just-in-time extent or JIT. The planned shipping times of all raw materials are
calculated based on the average supply lead times and planned production times. In our
simulation, the shipping times equal the arrivals of entities, the raw materials, into the
System.

The final production is modelled based on two normal shifts of six hours each. Addi-
tional overtime of six hours is available if raw materials cannot be produced, because of
delays during regular work hours. We determined C'SL being 80% and ¢ being two hours
of delays. The changeover time or t. is set to 30 minutes, and three simulation files are
used with one each for ‘No changes’, FIFO and ‘Dynamic algorithm’ policies.

Table I shows relevant parameters and costs used in the model. The lead time ratio con-
veys the magnitude of supply lead times compared with production lead times. Olhager
(2003) uses the multiplicative inverse of this ratio to position the order penetration point
in a supply chain. Higher values of this ratio mean longer supply lead times, expected to
amplify delays and congestions because of supply variability. The lead time variability is
measured as the relative standard deviation of lead times. This measure is easy to com-
pute from historical data and commonly used in operations management literature. As
described previously, the JIT extent is the scheduled slack between the expected arrival
time of raw materials in the plant and the expected start of production in which those
materials will be employed. Lower values of this indicator convey the intuitive idea that
the JIT process is tighter.

Given the short horizon considered in the simulation, inventory costs are high if com-
pared with other costs. This assumption is based on the chemical industry, where raw
materials are highly expensive and perishable, with both factors importantly increasing
the holding cost. Modelling the overtime and non-completion penalty costs explicitly
prevent us from basing our decisions on proxy parameters, such as the time when the as-
sembly line is idle, only indirectly connected to the supply chain cost. The supply chain
cost is used to assess these policies as this indicator helps us better judge the overall
performance of the system, compared with time-based operational indicators commonly
used in previous studies (Gong et al., 2011).
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Lead time ratio Lead time variability
Low (10%) Medium (50%) High (100%)
A: £145 (40)  A: £719 (1,167) A: £1,032 (1,640)
Low (1) F: £1,288 (558) F: £1,384 (1,387) F: £1,683 (2,028)
N: £2,137 (40)  N: £2,197 (40) N: £2,263 (135)
A: £954 (569)  A: £2,224 (2,083) A: £2,621 (3,393)
Medium (5) F: £1,807 (678) F: £2,534 (1,155) F: £2,798 (2,150)
N: £2,606 (40)  N: £2,956 (664) N: £3,292 (4,559)
A: £2,040 (997)  A: £3,352 (3,494) A: £3,059 (2,093)
High (10) F: £2,570 (934) F: £3.481 (2,134) F: £3,656 (1,934)
N: £2,923 (135) N: £3,994 (4,899) N: £4,396 (5,844)

Table II.: Selection of simulation results, with the number of runs in brackets (A, F and
N mean ‘Dynamic algorithm’, FIFO and ‘No changes’, respectively).

4.2. Simulation results

We tested the three policies using the medium values of the unit costs and under the low,
medium and high values of three variables: supply lead time variability, ratio between
supply and production mean lead times and just-in-time extent, leading to 81 exper-
iments. Because we found that the JIT extent has a modest influence on the cost, for
clarity we show the results with JIT extent equal to 15 minutes (Table II). The number of
replications or simulation runs for each experiment varies because it is calculated based
on 5% confidence interval with the indifference zone set to 50 cost units, according to
the Dudewicz and Dalal method (Law, 2006, Chapter 10). A unit cost of 50 is chosen
because such daily saving would not justify the introduction of the real-time technology
necessary to adopt the ‘Dynamic algorithm’. Fewer runs are required for experiments
with lower lead time variability and a higher ratio between supply and production lead
time.

The simulation results suggest that the ‘Dynamic algorithm’ is the most effective policy.
‘No changes’ is always the most expensive solution as waiting for a delayed predetermined
raw material increases holding, overtime and non-completion costs.

For higher values of the ratio between supply and production lead time the cost is
higher. Moreover, the cost increases when the supply lead time variability increases for
almost every experiment. This effect is principally relevant to high values of the ratio
between supply and production lead time. Because lead time variability is calculated as
a percentage of the supply lead times longer lead times imply higher variability.

We use Figure 3 to illustrate further results. The ‘Dynamic algorithm’ seems to work
principally well in two settings: for low levels and for high levels of lead time variability.
For low levels of lead time variability the scheduling rule based on both the components
having arrived and due to arrive is principally effective. FIFO performs worst as this
policy is too myopic and will always schedule the first raw material arriving, with high
chance of scheduling the ‘wrong product’ and ensuing high changeover costs. For high
levels of lead time variability the inventory policy allocates initial stock of those raw ma-
terials characterised by high variability. This rule reduces overtime and non-completion
costs that could have been caused by the possible delays in the shipments of these raw
materials.

Some surprising results interestingly arise. Under high supply and production lead
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Figure 3.: Hlustration of the simulation results.

time ratio, when the supply lead time variability increases from ‘medium’ to ‘high’ the
cost of ‘Dynamic algorithm’ decreases, because the ‘Dynamic algorithm’ stock alloca-
tion mechanism works principally well for high supply lead time and high variability,
as mentioned earlier. Furthermore, the ‘Dynamic algorithm’ performs less satisfactorily
compared with the FIFO policy when the ratio between lead times is high under medium
lead time variability and high JIT extent. The ‘Dynamic algorithm’ and FIFO have simi-
lar performance in experiments characterised by intermediate variability, especially when
the ratio between supply and production mean lead times is high. Nevertheless, it is nec-
essary to consider that the parameters behind stock allocation, namely, the threshold and
the customer service level, have been selected for the ‘Dynamic Algorithm’ to perform
well in various experiments, namely, with variability ranging from 0.1 to 1.0. We expect,
in the real world, companies will face a narrower range of variability. Therefore, the two
parameters associated with initial stock allocation could be refined for the ‘Dynamic
Algorithm’ to perform well also in case the standard deviation of the variability is 0.5 of
the mean supply lead times.

Further insights could be gained from the detailed results on how the policies perform
for holding, overtime, non-completion and changeover costs. For each of the 27 experi-
ments included in Table II we averaged these costs over 1,500 runs of simulation. Results
can be found in Table III. We can highlight some effects of lead time ratio and lead
time variability common to the three policies. If the lead time ratio grows, the relative
importance of holding costs increases. Because of higher lead time’s ratios, component
transit times are longer, therefore increasing holding costs. If the lead time variability
increases, the relative importance of overtime and non-completion costs grows, because
of delays in the production schedule. ‘No changes’ is penalised by high non-completion
and overtime costs. These are important because workers are forced to wait for the
arrival of a predetermined product even if its transport is delayed, with consequent dis-
ruptions to the overall production plan. Especially when non-completion costs are high,
the ‘Dynamic algorithm’ and FIFO are the only suitable policies. FIFO favours a myopic
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scheduling policy that requires many changeovers but allows completing the production
plan in the shortest time possible. Therefore, FIFO is suitable when changeover costs
are low and labour costs are high. The ‘Dynamic algorithm’ uses a preventive stock allo-
cation mechanism to decongest the system when delays are likely to happen. Although
this mechanism increases holding costs of inventory, it prevents the system from bearing
other more disruptive costs including overtime, non-completion and changeover costs.
Therefore, if compared with FIFO, the ‘Dynamic algorithm’ has higher holding costs,
which nevertheless lead in most cases to lower supply chain cost. The effects of lead time
ratio on costs allows to gain further understanding of the stock allocation mechanism
used in the ‘Dynamic algorithm’. If the lead time variability is low, delays in transport are
limited and its real-time scheduling logic avoids unnecessary changeovers by waiting for
components due to arrive soon. If the lead time variability is high, delay-critical compo-
nents are assigned in stock before the simulation starts. This preventive stock-allocation
increases holding costs, but decongests the system, allowing larger savings in changeover,
overtime and non-completion costs. Medium lead time variability systems are more con-
gested than high lead time variability systems because their variability is not so high to
trigger initial stock allocations. However, the entity of delays could still be important
especially when lead time ratios are medium or high. In these settings, changeover costs
grow, making the ‘Dynamic Algorithm’ similar to FIFO for the supply chain cost. As
stated above, companies facing medium lead time variability need to fine-tune the initial
stock allocation of the ‘Dynamic Algorithm’ to enhance its performance over FIFO. This
fine-tuning is likely to increase the customer service level C'SL and decrease the thresh-
old time ¢ making the stock allocation mechanism more sensitive to lead time variability.
This change is likely to increase holding costs but to reduce at the same time overtime,
non-completion and changeover costs, therefore decreasing the supply chain cost.

4.3. Taguchi’s method results

Although the above simulation considers three varying variables and three policies, the
unit costs are set at the medium values. To fully investigate whether the system is robust
to changes in various parameters including the four unit costs, namely, overtime cost,
non-completion cost, holding cost and changeover cost, a full factorial design should
have been employed. However, a full factorial design with eight parameters, and each of
them characterised by three levels, would require 38, namely, 6,561, experiments. The
experiments were run on a computer mounting an Intel Core i5-2400 at 3.10 GHz and 4
GB of RAM. On this machine, the estimated time saved by using the Taguchi’s method
instead of the full-factorial approach is 2,399 hours.

Taguchi’s method (Roy, 1990) is an alternative to factorial design that allows the
analysis of many parameters without many experiments. By using Taguchi’s orthogonal
arrays, only 18 experiments are necessary in this case. After conducting the experiments,
we computed for each factor j the value Aj;, which in the Taguchi’s analysis is used
to make judgements about the importance of the factors. Factors are ranked from the
highest A, having the highest contribution toward the cost to the lowest A, having the
lowest contribution toward the cost (Figure 4). The description of the design of experi-
ments and the detailed calculation of the Taguchi’s analysis can be found in Appendix
B.

Figure 4 provides the following interesting observations. First, the ratio between supply
and production lead time has the highest influence on the cost. That means that when
the supply lead time is longer, the effects of the variability of other factors on the cost
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Lead time Lead time variability
ratio Low (10%) Medium (50%) High (100%)
A: HC: 96%, OC: 4%,  A: HC: 29%, OC: 64%, A: HC: 25%, OC: 53%,
NC: 0%, CC: 0%. NC: 1%, CC: 6%. NC: 11%, CC: 12%.
Low (1) F: HC: 13%, OC: 0%, F: HC: 13%, OC: 13%, F: HC: 12%, OC: 22%,
NC: 0%, CC: 87%. NC: 0%, CC: 74%. NC: 2%, CC: 64%.
N: HIC: 6%, OC: 47%,  N: HC: 9%, OC: 46%, N: HC: 10%, OC: 44%,
NC: 47%, CC: 0%. NC: 46%, CC: 0%. NC: 46%, CC: 0%.
A: HC: 67%, OC: 22%, A: HC: 33%, OC: 34%, A: HC: 39%, OC: 26%,
NC: 0%, CC: 11%. NC: 4%, CC: 28%. NC: 8%, CC: 26%.
Medium (5) F: HC: 34%, OC: 4%, F: HC: 25%, OC: 21%, F: HC: 22%, OC: 23%,
NC: 0%, CC: 62%. NC: 2%, CC: 51%. NC: 6%, CC: 49%.
N: HC: 23%, OC: 38%, N: HC: 26%, OC: 34%, N: HC: 23%, OC: 31%,
NC: 38%, CC: 0%. NC: 40%, CC: 0%. NC: 48%, CC: 0%.
A: HC: 60%, OC: 28%, A: HC: 38%, OC: 26%, A: HC: 63%, OC: 16%,
NC: 0%, CC: 12%. NC: 9%, CC: 27%. NC: 4%, CC: 17%.
High (10) F: HC: 45%, OC: 11%, F: HC: 34%, OC: 21%, F: HC: 29%, OC: 22%,
NC: 0%, CC: 44%. NC: 6%, CC: 39%. NC: 10%, CC: 39%.
N: HC: 37%, OC: 31%, N: HC: 34%, OC: 25%, N: HC: 28%, OC: 23%,
NC: 31%, CC: 0% NC: 41%, CC: 0% NC: 49%, CC: 0%

Table III.: Simulation results: cost breakdown (HC, OC, NC and CC mean holding
cost, overtime cost, non-completion cost and changeover cost, respectively).

will be more relevant. Surprisingly lead time variability is found to have little influence
on cost. This finding should be understood with care. Because we calculate lead time
variability as a percentage of the standard deviation of the mean supply lead time, its
effects depend first on the supply lead time as longer supply lead time means higher lead
time variability. As a lesson learnt, the company should direct their efforts toward supply
lead time reduction because shorter lead time means lower lead time variability.

Figure 4 shows that the policy used has the second highest influence on the cost. Next,
unit overtime costs and unit non-completion costs seem to have had an important influ-
ence on the cost. Care is needed in extending the results obtained where unit overtime
and non-completion costs differ from those employed in these simulations. Other param-
eters such as unit holding cost, unit changeover cost and JIT extent have little influence
on the cost. That means the cost is robust to changes in these parameters. The lack of
influence of the JIT extent was also apparent from the results presented earlier.
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5. Discussion and conclusions

The analysis performed by this research yields some new observations. Previous studies
argued that the benefits of tracking technologies often do not justify their investment
expenditures (Sari, 2010). On the contrary, we show that a GPS-based application, com-
bined with the ‘Dynamic algorithm’, could be relevant to firms operating in a JIT or
perishable supply environment, for which the gains ensuing from the introduction of
tracking technologies are relevant. Simulation experiments show that the ‘Dynamic al-
gorithm’ outperforms commonly used scheduling policies. Such GPS- and RFID-based
real-time tracking technologies were useful in supply chains for generating express or-
ders (Gaukler et al., 2008) and for sharing collaborative information (Sari, 2010). This
paper shows that final assemblers can use GPS-enabled real-time transport information
for production re-scheduling to save important costs.

To our knowledge, this research study is the first to propose dynamic policies con-
sidering not only the state of order completion in the production system, but also the
progress of raw-material transport directed to the final production plant, under supply
and production uncertainties. Previous studies on dynamic policies are based exclusively
on the order progress in the production system (Hausman and Scudder, 1982; Wein and
Ou, 1991 and Gong et al., 2011). Our study is consistent with this body of literature
because they showed, as we did, that dynamic policies based on current system status
perform better than static policies. Other studies considering inventory and scheduling
problems in the same research tend to focus on demand uncertainty only (Leachman and
Gascon, 1988 and Gallego, 1990). Moreover, similar attempts to study dynamic schedul-
ing rules tend to focus on assembly processing lead time uncertainty but not on supply
lead time uncertainty. With a more realistic setting based on an industrial example, this
paper provides some new understanding about the use of dynamic scheduling rules for
final assemblers facing long and variable supply lead times.

Results from a sensitivity analysis performed with Taguchi’s method show that longer
supply lead times could exacerbate the adverse effects of supply uncertainty. This result
is consistent with the study of Gaukler et al. (2008), who investigated by simulation the
use of dynamic expediting policies when order progress information is available. They
found, as we did, that the performance of their dynamic policies deteriorated among long
supply lead times. The ‘Dynamic algorithm’ is less effective when lead time variability
is medium combined with medium and high ratio between supply and production lead
times. In any other case it performs really well (Table II). Based on different settings
without using dynamic scheduling rules, Sari (2010) found more benefits when firms in
a supply chain collaborate by sharing real-time demand information under long supply
lead times. With these results, companies operating under such supply and production
uncertainties and JIT supply environment should focus on reducing supply lead time
and its variability, and if these measures are impossible, then dynamic scheduling rules
like ours can be considered. Based on a cost-breakdown analysis, we also found that the
‘Dynamic algorithm’ works really well when changeovers are expensive and holding costs
are low (Table III).

This paper differs from previous studies in several manners. Recent contributions on
scheduling are often focused on how to re-schedule disrupted operations (Zhang et al.,
2013). Heuristic genetic algorithms are employed with this purpose because of their
computational efficiency (Rossi and Dini, 2000). However, they are used for re-scheduling
purposes when a disruption already happened, but normally do not explicitly consider
the probability of a future disruption to happen when defining the production schedule.
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Our study differs from those contributions by modelling explicitly production and supply
lead times uncertainties with the goal of altering scheduling decisions before the delays
in supply transport hit assembly plants. We investigate the effects of possible delays
based on the state of completion of the transport process to allow assembly companies
to proactively react to possible supply delays beforehand. This approach is similar to the
one used in Gaukler et al. (2008) who based express ordering decisions on the state of
completion of the order in a supply chain. In addition, this paper addresses the problem
of modelling supply and production lead time variability. Tang and Grubbstrém (2003)
and Louly et al. (2008) assume for production lead times discrete distributions and
continuous density functions, respectively. Commonly used continuous density functions
to model lead times in operations management include the normal distribution, which is
unsuitable as it could lead to negative values of lead times, and the Erlang distribution,
used by Tang and Grubbstrém (2003), which may not be realistic in this setting. This
paper applies a continuous lognormal distribution to model supply and production lead
time variability, based on verification from the industrial example.

This study provides some foundations for future research. First, a possible extension
of this paper could contribute to the more theoretical literature on heuristic scheduling
mentioned above considering the uncertainties of the supply and production processes.
This contribution could be based on the approximate-stochastic-dynamic programming
framework. Second, the application of the ‘Dynamic algorithm’ provides cost reduction
benefits but also requires much higher coordination with line supervisors and workers,
because of schedule changes in the middle of the work. To investigate what are the precise
effects of the adoption of this application on workers behaviour through in-depth case
studies would be of interest.
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Appendix A. Proof of Proposition 3.1

Let X; ... Xk be K independent and identical lognormal variables representing the travel
time to cover each road segment of a particular route. The lognormal variables are char-
acterised by a mean px, and a standard deviation oy, for each i = 1... K. Each X;
can be written as exp(Y;), with each Y; as a normal variable with mean py, and a stan-
dard deviation oy,. Therefore, the lead time for a particular route from a supplier to the
company can be represented by the compound distribution of K lognormal variables.
Unfortunately, no exact result is known for this resulting distribution. Thus we estimate
the lead time distribution for a route by using the Fenton-Wilkinson approximation (Fen-
ton, 1960, p. 60) as follows. The Fenton-Wilkinson method approximates the sum of the
K independent lognormal variables with a lognormal variable X, with mean px and a
standard deviation ox, obtained by matching the first and second central moments of
X with that of the sum of X; for ¢ =1... K, as given by:

ux = K- KX, (Ala‘)
c¥ =K- a§<i. (Alb)
The lognormal variable X can then be written as exp(Y), with Y as a normal variable

with mean py and a standard deviation oy. Knowing the parameters pux and Jg(, By
and ¢ can be determined from the formulas (Aitchison and Brown, 1957):
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py =In | —2— |, (A2a)

VHx T ok

0.2
02 =In <1 + g) . (A2b)

Hx

Because Y is normally distributed, it is easy to numerically determine its cumulative
distribution function Fy and its inverse Fy- ! when py and 032/ are given. We assign
a raw material in stock before the day of production if the delay associated with the
customer service level F'y YesL, ux, 0%) is more than the threshold ¢. The delay can be
expressed as F )zl(CSL, px,0%) — px. Finally, because of the relationship between the
normal distribution and the lognormal distribution the condition for assigning a stock
unit can be written as follows:

FyNCSL, px,0%) — px = exp(Fy (CSL, 1y, 0,) — piz > t (A3)

Appendix B. Details of Taguchi’s analysis

In our setting we use Taguchi’s orthogonal array L18 that involves 18 experiments.
The array has been defined by testing combinations of parameters instead of single
parameters and derives from a statistical technique, which selects the experiments denser
in information. However, Taguchi’s array L18 allows us to test seven parameters with
three levels and one parameter with two levels. Therefore, it is necessary to eliminate one
level from our analysis. We decided to remove the ‘No changes’ scheduling policy from the
analysis because it performed relevantly worse compared with the ‘Dynamic algorithm’
and FIFO policies as could be seen from the results of Table II. The 18 experiments
derived from Taguchi’s technique are shown in Table B1.

Taguchi’s method analyses the experiments based on the calculation of the signal-to-
noise ratio for each experiment. We respectively denote the mean and the variance of
the value of interest across the replications performed for the experiment ¢ as g; and 512.
Then the signal-to-noise ratio SN; for the experiment ¢ can be computed as follows:

SN; = 10log % (B1)

As the assessment of each experiment i is based on the measure SN;, which directly
considers the variance s% of the experiment, it is paramount that the number of runs is
the same for each experiment. We set the number of runs to 5,000 because this number, as
could be seen in the simulation results of Table II, should, usually, guarantee a confidence
interval of 5% with an indifference zone of 50. The values of SN; for each experiment ¢ are
shown in Table B2. After calculating SN; for each experiment i it is possible to compute
the average SNjj for each factor j and each level k. This is obtained by averaging all
the experiments based on the factor j and the level k. Finally, for each factor j the
value A; is computed as the difference between the highest value and the lowest value of
SN i, for all the levels k of j. Factors are ranked from the highest A, having the highest
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N  Policy Ratio JIT Variability UOT UNC UHC USC SN

T1 A 1 30 0.1 750 250 5 100  5.91
T2 A 1 15 0.5 1,000 500 10 200  1.70
T3 A 1 0 1 1,250 750 15 300 1.63
T4 A 5 30 0.1 1,000 500 15 300  9.11
T5 A 5 15 0.5 1,250 750 5 100  6.23
T6 A 5 0 1 750 250 10 200 10.99
T7 A 10 30 0.5 750 750 10 300  9.67
T8 A 10 15 1 1,000 250 15 100 14.44
T9 F 10 0 0.1 1,250 500 5 200  9.10
T10 F 1 30 1 1,250 500 10 100 4.21
T11 F 1 15 0.1 750 750 15 200  9.79
T12 F 1 0 0.5 1,000 250 5 300 7.76
T13 F 5 30 0.5 1,250 250 15 200 11.70
T14 F 5 15 1 750 500 5 300 12.85
T15 F 5 0 0.1 1,000 750 10 100 10.62
T16 F 10 30 1 1,000 750 5 200 11.44
T17 F 10 15 0.1 1,250 250 10 300 13.45
T18 F 10 0 0.5 750 500 15 100 13.96
Table B1.: Taguchi’s method experiments
Factor SN j SNy . SN3 . A;  Rank

Policy A:7.64 F: 10.64 - 3.00 2

Ratio 1: 5.17 5: 10.25 10: 12.01 6.84 1

JIT 30: 8.67 15: 9.74 0: 9.01 1.07 7

Variability  0.1: 9.66 0.5: 8.50 1: 9.26 1.16 6

UoT 750: 10.53 1,000: 9.18 1,250: 7.72 2.81 3

UNC 250: 10.71  500: 8.49 750: 8.23  2.48 4

UHC 5: 8.88 10: 8.44 15: 10.11  1.67 )

USsC 100: 9.23  200: 9.12 300: 9.08 0.15 8

Table B2.: Taguchi’s method results

contribution toward the cost to the lowest A;, having the lowest contribution toward the
cost.



