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We study the influence of complex graphs on the metastability and fixation properties of a set of

evolutionary processes. In the framework of evolutionary game theory, where the fitness and selection are

frequency dependent and vary with the population composition, we analyze the dynamics of snowdrift

games (characterized by a metastable coexistence state) on scale-free networks. Using an effective

diffusion theory in the weak selection limit, we demonstrate how the scale-free structure affects the

system’s metastable state and leads to anomalous fixation. In particular, we analytically and numerically

show that the probability and mean time of fixation are characterized by stretched-exponential behaviors

with exponents depending on the network’s degree distribution.

DOI: 10.1103/PhysRevLett.109.188701 PACS numbers: 89.75.Hc, 02.50.Le, 64.60.aq, 87.23.Kg

The evolutionary dynamics of systems where successful
traits spread at the expense of others is naturally modeled
in the framework of evolutionary game theory (EGT) [1,2].
In EGT, each species’ reproductive potential (fitness)
varies with the population’s composition and changes con-
tinuously in time. The selection is therefore ‘‘frequency
dependent’’ and the dynamics is traditionally studied in
terms of differential equations [1–3]. Evolutionary dynam-
ics is known to be affected by demographic noise and by
the population’s spatial arrangement [4,5], and is often
characterized by the central notion of fixation. This refers
to the possibility that a ‘‘mutant type’’ takes over [6], and
one is particularly interested in the fixation probability—
the probability that a given trait invades an entire
population—and in the mean fixation time (MFT)—the
mean time for this event to occur. In contrast to what
happens in spatially-homogeneous (well-mixed) popula-
tions, the spatial arrangement of individuals can give rise
to very different scenarios [1,4]. Evolutionary dynamics on
networks [7] provides a general and unifying framework to
describe the dynamics of both well-mixed and spatially
structured populations [8,9]. In spite of its importance,
fixation of evolutionary processes on networks has been
mostly studied in idealized situations, e.g., for two-state
systems under a constant weak selective bias [8–12]. In these
works, it has been shown that the update rules and the
heterogeneous network structure effectively renormalize the
population size and thereby affect the fixation properties.
Furthermore, some properties of evolutionary games have
been studied on scale-free networks by numerical simula-
tions, see e.g., Ref. [13], and on regular graphs with mean
field and perturbative treatments [14]. The models of
Refs. [9–12] are of great interest but do not provide a general
description of evolutionary dynamics on graphs. In particular,
these references consider constant fitness and selection pres-
sure, and thus cannot describe systems possessing a long-
lived metastable coexistence state prior to fixation [15,16].

In this Letter we study metastability, which may arise as
a consequence of frequency-dependent selection [3], and
fixation on a class of scale-free networks in the EGT
framework. To the best of our knowledge, such an analyti-
cal study has not been conducted before. For concreteness,
we investigate ‘‘snowdrift games’’ (SGs, see below) [1,16]
that are the paradigmatic EGT models exhibiting meta-
stability (see Ref. [17] for their experimental relevance).
Our findings are also directly relevant to various fields,
e.g., to population genetics [18] and to the dynamics of
epidemic outbreaks, for which a long-lived endemic state
is often an intrinsic characteristic [15,19,20].
For well-mixed populations (complete graphs) the fixa-

tion properties of SGs typically exhibit an exponential
dependence on the population size, see e.g., Ref. [16].
Our central result is the demonstration that evolutionary
dynamics on scale-free networks can lead to anomalous
fixation and metastability characterized by a stretched-
exponential dependence on the population size, in stark
contrast with their nonspatial counterparts. In the same
vein as in Ref. [11], the analytical description is based on
an effective diffusion theory derived from an individual-
based formulation of the dynamics.
The model.—We consider a network comprising N

nodes, each of which is either occupied by an individual
of type C (cooperator) or by a D individual (defector). The
occupancy of the node i is encoded by the random variable
�i, with �i ¼ 1 if the node i is occupied by aC and �i ¼ 0

otherwise. The state of the system is thus described by
f�g ¼ f�igN and the density of cooperators present in the
system is � � P

N
i¼1

�i=N. The network is specified by its
adjacency matrix A ¼ ½Aij�, whose elements are 1 if the

nodes ij are connected and 0 otherwise. The network is
also characterized by its degree distribution nk ¼ Nk=N,
where Nk is the number of nodes of degree k. EGT is
traditionally concerned with large and homogeneous pop-
ulations (i.e., N ! 1 and Aij ¼ 1, 8ij) whose mean field
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dynamics is described by the celebrated replicator equation
[1,2]: ðd=dtÞ�ðtÞ ¼ �ðtÞ½1� �ðtÞ�f�C½�ðtÞ� ��D½�ðtÞ�g,
where �C=D½�ðtÞ� are the cooperator or defector average
payoffs derived from the game’s payoff matrix. For a
generic two-strategy cooperation dilemma, the payoff of
C against another C is denoted a and that of D playing
against D is d. When C plays against D the former gets
payoff b and the latter gets c [1]. Here we focus on SGs, for
which c > a and b > d. SGs are characterized by a stable
interior fixed point �� ¼ ðd� bÞ=ða� b� cþ dÞ and
unstable absorbing states � ¼ 0 (all D) and � ¼ 1

(all C). For a finite population size (N <1) the role of
fluctuations is important and �� becomes a metastable state
whose decay time on complete graphs (Aij ¼ 1, 8ij)

grows exponentially with N [16].
In a spatial setting, the interactions are among nearest-

neighbor individuals and the species payoffs are defined
locally: C and D players at node i interacting with a
neighbor at node j respectively receive payoffs �C

ij ¼
a�j þ bð1� �jÞ and�D

ij ¼ c�j þ dð1� �jÞ. In the spirit
of the Moran model (in the weak selection limit) [2,5,6],
each species’ local reproductive potential, or fitness, is

given by the difference of �C=D
ij relative to the population

mean payoff ��ijðtÞ. Here, we make the mean-field-like

choice ��ijðtÞ ¼ �ðtÞ�C
ij þ ½1� �ðtÞ��D

ij to include what

arguably is the simplest mechanism ensuring the formation
of metastability. It is customary to introduce a selection
strength s > 0 in the definition of the fitness to unravel
the interplay between random fluctuations and selection
[2,5,6]. Here, the fitnesses of C=D at node i interacting
with a neighbor at node j are

fCij ¼ 1þ s½�C
ij� ��ij� and fDij ¼ 1þ s½�D

ij� ��ij�: (1)

These expressions comprise a baseline contribution (set
to 1) and a selection term proportional to the relative pay-
offs. Moreover, we consider a system evolving according
to the so-called ‘‘link dynamics’’ (LD) [10,11]: a link is
randomly selected at each time step and if it connects aCD
pair, one of the neighbors is randomly selected for repro-
duction with a rate proportional to its fitness, while the
other is replaced by the offspring. While various types of
update rules are possible [21], we here use the LD to
highlight the combined effects of the topology and
frequency-dependent selection: here, in stark contrast to
the LD in the constant selection or fitness scenario [11], we
show that the fixation properties strongly depend on the
network’s heterogeneity. Moreover, we have checked that
our conclusion is robust and holds for various other update
rules leading to metastability [22].

The evolution of the population’s composition is de-

scribed in terms of f�kg, where �k ¼
P0

i�i=Nk is the
average number of cooperators on all nodes of degree k
(the prime denotes summation over degree k nodes), i.e.,
�k is the subgraph density of C’s on nodes of degree k.

Quantities necessary for our analysis are the mth moment
of the degree distribution, �m � P

kk
mnk ¼

P

ik
m
i =N,

where ki denotes the degree of node i, and the degree-
weighted density of cooperators ! � P

kðk=�1Þnk�k.
Effective diffusion theory.—To implement the evolution-

ary dynamics, we introduce �ij ¼ ð1� �iÞ�jf
C
ji and

�ji ¼ ð1� �jÞ�if
D
ji , where �ið1� �jÞ is nonzero only

when the nodes ij are occupied by a CD pair. In the LD,
the probability to select the neighbor j of node i for an
update is Aij=ðN�1Þ and the transition �i ! 1� �i hence

occurs with probability
P

j
Aij

N�1

½�ij þ�ji� [11]. The

subgraph density �k changes by ���k ¼ �1=Nk ac-
cording to a birth-death process [23] defined by the tran-

sition rates Tþð�kÞ ¼
P0

i

P

jAij�ij=ðN�1Þ and T�ð�kÞ ¼
P0

i

P

jAij�ji=ðN�1Þ, respectively. For our analytical treat-
ment, we focused on degree-heterogeneous networks with
degree-uncorrelated nodes, as in Molloy-Reed networks
(MRN) [24], yielding Aij ¼ kikj=ðN�1Þ. Our numerical

simulations were performed using the ‘‘redirection algo-
rithm’’ that generates degree-correlated scale-free net-
works [25]. Yet, it has been shown that the dynamics on

the latter is close to that on MRN [11]. With
P0

iN
�1 ¼

nk�k, the transition rates become

Tþð�kÞ � Tþ
k ¼ ðnk=�1Þ½1þ sðb�dÞð1��Þ�kð1��kÞ!;

T�ð�kÞ � T�
k ¼ ðnk=�1Þ½1� sða� cÞ��k�kð1�!Þ: (2)

We notice that T�
k are nonzero provided that the mean

degree �1 does not diverge with N ! 1 [26]. In the limit
of weak selection intensity (s � 1), one can use the dif-
fusion theory to treat the birth-death process defined by
Eqs. (2) [16]. This yields a multivariate backward Fokker-
Planck equation (FPE) whose generator reads

Gðf�kgÞ ¼
X

k

�ðTþ
k � T�

k Þ
nk

@

@�k

þ ðTþ
k þ T�

k Þ
2Nn2k

@2

@�2
k

�

; (3)

with time increments �t ¼ N�1 [6,23]. Furthermore, in the
weak selection limit (s � 1), the analysis can be simplified
using a time scale separation [11,12] (see also Ref. [8]).
When t� s�1 the selection pressure is negligible and
� is conserved [10]. In fact, using Eqs. (2) at mean field
level gives ðd=dtÞ ��¼sða�b�cþdÞ �!ð1� �!Þð �����Þ
(the upper bar denotes the ensemble average). This
indicates that �� relaxes to its metastable value ��
on a time scale t�s�1�1, see Fig. 1. At mean
field level, Eqs. (2) also yield ðd=dtÞ ��k¼ðTþ

k ð ��kÞ�
T�
k ð ��kÞÞ=nk¼ðk=�1Þf �!� ��kþs½ðb�dÞ �!ð1� ��Þð1� ��kÞþ

ða�cÞð1� �!Þ ��k ���g. This indicates that after a time scale of
order Oð1Þ, ��k 	 �!, and also �� 	 �! since ��¼P

k ��knk.
With ��k	 �!	 ��, the rate equation for ��k becomes
ðd=dtÞ ��k’�ðk=�1Þðb�dÞsð1� ��kÞ ��kð ��k=���1Þ. Hence,
while after a time of order Oð1Þ, ��k 	 �! 	 ��, all these
quantities slowly approach �� after a time t� s�1. This is
illustrated in Fig. 1 where all trajectories rapidly coincide
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and then attain �� when t� s�1. As fixation occurs on
much longer time scales than s�1, we approximate that on
average �k 	 � 	 ! in the same vein as in Ref. [11]. With
the definition of !, yielding @�k

! ðknk=�1Þ@!, and by

replacing the variables �k and � by!, Eq. (3) becomes the
effective single-coordinate FPE generator:

Geffð!Þ ¼ !ð1�!Þ
Neff

�

��ð!� ��Þ
@

@!
þ 1

2

@2

@!2

�

: (4)

The drift term is proportional to � � 2ðb� dÞNeffseff=��,
where the effective population size and selection intensity
are Neff � Nð�1Þ3=�3 and seff � s�2=ð�1Þ2. For scale-
free networks with degree distribution nk � k�� and finite
average degree (i.e., � > 2) [26], the maximum degree is

kmax � N1=ð��1Þ [27]. We thus obtain the moments�m [11]
that yield $\sim$ the scaling of �:

�� sN
�1�2

�3

� �re ¼

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

sN; � > 4

sN= lnN; � ¼ 4

sNð2��5Þ=ð��1Þ; 3< �< 4

s
ffiffiffiffi

N
p

lnN; � ¼ 3

sNð��2Þ=ð��1Þ; 2< �< 3:

(5)

To understand this nontrivial scaling, we focus on
scale-free graphs with 2< �< 3 characterized by the di-
vergence of �2 and �3 (when N ! 1). Such networks
comprise nodes of high degree (hubs) causing the reduction

of the system’s effective size, Neff � Nð2��5Þ=ð��1Þ � N,
and of the system’s relaxation time t� s�1

eff
to ��, with

seff � sNð3��Þ=ð��1Þ � s. As a result, the fluctuations

intensity (/ N�1=2
eff

) and the drift strength (/ seff) are both

enhanced by the topology. Yet, their product Neffseff�
sNð��2Þ=ð��1Þ�Ns indicates that their combined effect

drastically reduces the MFT (see below). We have also
checked that our effective theory [Eq. (4)] is applicable
when s2

eff
� N�1

eff
, i.e., over a broader range of s than on

complete graphs when 2< �< 4 [28].
Fixation properties.—Evolutionary dynamics is charac-

terized by the fixation probability �Cð!Þ that a system
with initial degree-weighted density ! is taken over by
cooperators. In the framework of the effective diffusion
theory and using Eq. (4) the fixation probability obeys
Geffð!Þ�Cð!Þ ¼ 0 with boundary conditions (BCs)
�Cð0Þ ¼ 1��Cð1Þ ¼ 0 [5,23]. The solution reads

�Cð!Þ ¼ erfi½��
ffiffiffiffi

�
p � � erfi½ð�� �!Þ ffiffiffiffi

�
p �

erfi½��
ffiffiffiffi

�
p � þ erfi½ð1� ��Þ

ffiffiffiffi

�
p � ; (6)

where erfiðzÞ � 2
ffiffiffi

�
p

R

z
0
eu

2

du. Let us consider the (biolog-

ically relevant) case of a small initial density of coopera-
tors such that ! � 1, weak selection [5,6], and a large
population such that �2

�� � 1 and metastability is guar-

anteed. Using the asymptote erfiðxÞ � ex
2

for x � 1 in
Eq. (6), we distinguish two cases: (i) when �� < 1=2,
ln�C ’ �ð1� 2��Þ�; and (ii) when �� > 1=2 and !>
2�� � 1, lnð1��CÞ ’ �ð2�� � 1Þ�, while lnð1��CÞ ’
�!ð2�� �!Þ� if �� > 1=2 and !< 2�� � 1. In Fig. 2
(and Fig. 3), for each value of s the numerical results have
been rescaled by a constant to test the scaling [Eq. (5)]. The
linear data collapse and stretched-exponential dependence
ln�C ��sN�1�2=�3 predicted by Eqs. (5) and (6) is
indeed clearly observed in Fig. 2. Since ln�C ��sN on
complete graphs [16], this demonstrates how the scale-free
structure drastically affects the fixation probability.
Another quantity of great interest is the (unconditional)

MFT 	ð!Þ—the mean time necessary to reach an absorbing
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FIG. 1 (color online). Time scale separation in the evolution of
the densities �,!, �1, and �3 on a scale-free network with � ¼ 3

for a SG with a ¼ d ¼ 1, b ¼ 9, c ¼ 5 and N ¼ 104, see text.
Numerical results for typical single-realization trajectories for
s ¼ 0:002 (top) and s ¼ 0:2 (bottom). In both panels, initially
�k>�1

ð0Þ ¼ 1; �k
�1
ð0Þ ¼ 0. As guides to the eye, the dashed

line �� ¼ 2=3 and the times t ¼ s�1 are shown.
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FIG. 2 (color online). Probability �C versus �re for a SG with
a ¼ d ¼ 1, b ¼ 1:05, c ¼ 1:075 and s ¼ 0:025 (plus), 0.05
(rightward triangle), 0.075 (square), 0.1 (downward triangle),
0.125 (diamond), 0.15 (circle), 0.2 (times), 0.25 (leftward tri-
angle). Numerical results for � ¼ 2:5 (top), � ¼ 3 (middle),
� ¼ 3:5 (bottom) collapse along the straight dashed lines ob-
tained from Eq. (6), see text. Here N ¼ 400–4000 and initially
�k ¼ � ¼ ! ¼ 100=N. Error bars are of size of the symbols.
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boundary (consensus state). Here, using Eq. (4) the MFT
is obtained by solving Geffð!Þ	ð!Þ ¼ �1 with BCs
	ð0Þ ¼ 	ð1Þ ¼ 0 [23]. Using standard methods [6,23], we

obtain 	ð!Þ ¼ 2Neff½ð1��Cð!ÞÞR!
0
dy e��ðyÞ

yð1�yÞ
Ry
0
dze�ðzÞþ

�Cð!ÞR1
! dy e��ðyÞ

yð1�yÞ
R

1
y dze

�ðzÞ�; �ðzÞ � �zðz� 2��Þ. For

�2
�� � 1 the inner integrals can be computed by expand-

ing �ðzÞ around its extremal values (z ¼ 0 for z 2 ½0; ���
and z ¼ 1 for z 2 ½��; 1�), while the outer integral is
computed via the saddle-point approximation around
! ¼ ��. To leading order, one thus obtains a stretched-

exponential dependence on N: 	ð!Þ � ð1��Cð!ÞÞe��2
�

when !> �� and 	ð!Þ ��Cð!Þe�ð1���Þ2 otherwise.
For example, using Eq. (6), when �� < 1=2 this gives
(see Fig. 3)

ln	ð!Þ ’ ��2
� � �re: (7)

When the initial number of cooperators is not too low, the
long-lived metastable state is entered prior to fixation and
the MFT [Eq. (7)] is independent of the initial condition
[15,16]. Equation (7), confirmed by Fig. 3, implies that for
scale-free networks with 2< �< 4 fixation occurs much
more rapidly than on complete graphs, a phenomenon
called ‘‘hyperfixation’’ in genetics [18].

Discussion and conclusion.—We have studied the meta-
stability and fixation properties of evolutionary processes
on scale-free networks in the realm of EGT. For the sake
of concreteness, we have focused on ‘‘snowdrift
games’’ evolving with the LD [11] and characterized by
a long-lived (metastable) coexistence state. The evolution-
ary dynamics has been described by a birth-death process
from which we have derived an effective diffusion theory
by exploiting a time scale separation occurring at weak

selection intensity. The probability and mean fixation time
have been computed from the corresponding backward
Fokker-Planck equation. These quantities exhibit a
stretched-exponential dependence on the population
size, in stark contrast with their nonspatial counterparts.
We have checked with various update rules that the
stretched-exponential behavior is a generic feature of
metastability on scale-free graphs that also characterizes
the fixation probability of coordination games [1,22]. Here,
important consequences of the stretched-exponential be-
havior are a drastic reduction of the MFT and the possible
enhancement of the fixation probability of a few mutants
with respect to a nonspatial setting. These anomalous fixa-
tion and metastability properties reflect the strong influence
of the network’s structure on evolutionary processes.
M. Assaf and M. Mobilia contributed equally to this

work. M. Assaf gratefully acknowledges the Center for
the Physics of Living Cells at the University of Illinois for
support.
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