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Reciprocity is firmly established as an important mechanism that promotes cooperation. An efficient

information exchange is likewise important, especially on structured populations, where interactions between

players are limited. Motivated by these two facts, we explore the role of facilitators in social dilemmas on networks.

Facilitators are here mirrors to their neighbors—they cooperate with cooperators and defect with defectors—but

they do not participate in the exchange of strategies. As such, in addition to introducing direct reciprocity, they

also obstruct information exchange. In well-mixed populations, facilitators favor the replacement and invasion

of defection by cooperation as long as their number exceeds a critical value. In structured populations, on the

other hand, there exists a delicate balance between the benefits of reciprocity and the deterioration of information

exchange. Extensive Monte Carlo simulations of social dilemmas on various interaction networks reveal that

there exists an optimal interplay between reciprocity and information exchange, which sets in only when a small

number of facilitators occupy the main hubs of the scale-free network. The drawbacks of missing cooperative

hubs are more than compensated for by reciprocity and, at the same time, the compromised information exchange

is routed via the auxiliary hubs with only marginal losses in effectivity. These results indicate that it is not always

optimal for the main hubs to become leaders of the masses, but rather to exploit their highly connected state to

promote tit-for-tat-like behavior.

DOI: 10.1103/PhysRevE.89.042802 PACS number(s): 89.75.Fb, 87.23.Ge, 87.23.Kg

I. INTRODUCTION

Unraveling the mechanisms at the origin of cooperation

and understanding the reasons for so much biological diversity

are among the most important challenges to Darwin’s natural

selection theory. For instance, it has been found that tropical

forests and coral reefs teem with biological variation and there

are also many examples of insects that coordinate their efforts

and even give up their own reproductive potential (fitness)

to benefit that of the “queen” [1]. Other examples include

micro-organisms that can join forces to form biofilms and

humans who are able to be “supercooperators” [2,3].

If only the fittest individuals survive and reproduce [4],

why is there so much diversity in nature [5]? What are

the mechanisms that originate and maintain cooperative

behavior? Evolutionary game theory (EGT) addresses these

questions by means of simple but insightful models in which

each individual’s fitness varies and depends on the others’

reproductive potential [6–8]. Evolutionary game theory is the

natural framework to mathematically study the dynamics of

competing strategies (species) and the above fundamental

questions have motivated a large body of work. In the context

of EGT, understanding the evolution of cooperation often leads

to a social dilemma, such as in the paradigmatic prisoner’s

dilemma game [9], where each rational individual chooses to

defect (i.e., not to cooperate) while it would be in everyone’s

interest to cooperate. Cooperation dilemmas also arise in

other EGT models such as the snowdrift and stag-hunt games

[10,11].

Among the mechanisms that have been put forward to pos-

sibly explain the spread of cooperation, the influence of kin and

group selection, as well as various forms of reciprocity (direct,

indirect, and network reciprocity), have been investigated;

see, e.g., Refs. [12–17]. In particular, network reciprocity

[11,18–20], whose principle has an appealing physical inter-

pretation (cooperators are better off when they are surrounded

by cooperators), has recently attracted interest in the physics

community [21–33]. Quite interestingly, it has been found that,

in contrast to what happens in spatially homogeneous (well-

mixed) populations, the arrangement of individuals according

to certain topologies can lead to very different scenarios. For

instance, it was found that local interactions on regular lattices

enhance the survival of cooperators in prisoner’s dilemma

games but inhibit their resistance against the invasion by

defectors in snowdrift games [14,16].

Recently, the promotion of cooperation in the presence of

cooperation facilitators has been investigated [34–36]. These

are special individuals who interact with competing players

by mirroring their strategies, but they do not participate in

the strategy exchange process. More precisely, they cooperate

with cooperators and defect with defectors, but their status

never changes over time, as they never adopt the strategy

of another player. The influence of cooperation facilitators

has been studied for the prisoner’s dilemma, snowdrift, and

stag-hunt games in spatially homogeneous populations. In

such a setting, the mean field analysis and the cooperation

fixation probability reveal that the invasion and replacement

of defection by cooperation is favored when the number of

facilitators exceeds a nontrivial critical value. When players

are distributed over a structured population, however, we may

face additional, competing effects. This is not only because

each player has a limited interaction neighborhood, but also

because facilitators, who do not participate in the strategy

exchange process, can hinder the spread of information and

so decelerate or even stop the invasion of the more successful

strategy.
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To clarify the impact of these effects, we consider evolu-

tionary games where competing strategies and facilitators are

interpreted as species of a spatially structured population. The

fundamental question we aim to address is how the enhanced

reciprocity on the one hand and the limited information

exchange on the other hand interplay due to the presence

of facilitators. To this end, we investigate the influence of

facilitators (here, individuals facilitating either cooperators or

defectors; see below) on a class of two-strategy games when

individuals interact with their neighbors on a network. We

specifically consider the cases of two-dimensional lattices and

degree-homogeneous random graphs, as well as (heteroge-

neous) scale-free networks.

The organization of this paper is as follows. The models

of social dilemmas with facilitators are introduced in Sec. II

and the main properties of the nonspatial prisoner’s dilemma

game with facilitators are outlined in Sec. III. Numerical

results for the level of cooperation in evolutionary games

with facilitators on structured populations are presented and

discussed in Secs. IV and V.

II. SOCIAL DILEMMAS WITH FACILITATORS

We study pairwise evolutionary games on the square lattice,

the random regular (degree-homogeneous) graph, and the

Barabási-Albert scale-free network [37], each with an average

degree k = 4 and size N . Mutual cooperation yields the

reward R, mutual defection leads to punishment P , and

the mixed choice gives the cooperator the sucker’s payoff

S and the defector the temptation T . Within this setup we

have the prisoner’s dilemma game if T > R > P > S, the

snowdrift game if T > R > S > P , and the stag-hunt game if

R > T > P > S, thus covering all three major social dilemma

types. Without loss of generality and for the sake of clarity, we

set R = 1, P = 0, 0 � T � 2, and −1 � S � 1, as illustrated

in Fig. 1. We note that the T < 1 and S > 0 quadrant marks

the harmony game, which, however, does not constitute a

social dilemma. To further reduce the dimensionality of the

parameter space, we introduce T = 1 + r and S = −r , where

−1 � r � 1 constitutes a diagonal across the T -S plane that

splits the harmony game and the prisoner’s dilemma quadrant

in half. Note that for r < 0 we are in the harmony game

quadrant, while for r > 0 we are in the prisoner’s dilemma

quadrant. This parametrization of the prisoner’s dilemma game

is the most challenging for the evolution of cooperation and it

is sometimes referred to as the donation game [38].

Initially, in addition to the cooperators C and defectors D

who are distributed uniformly at random in equal proportion,

we designate a fraction ρF of players as facilitators F .

Facilitators behave like mirrors to their neighbors, true to

the most elementary form of reciprocity. A facilitator will

cooperate with a cooperator and defect with a defector.

However, facilitators do not accumulate payoffs and do not

participate in the exchange of strategies.1 This means that

facilitators cannot be overtaken by other players and also

cannot spread. Accordingly, the fraction ρF remains constant

1In Ref. [35], only facilitators cooperating with cooperators were

considered.
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FIG. 1. (Color online) Evolution of cooperation with and without

facilitators on the square lattice. Depicted is the rescaled stationary

fraction of cooperators ρC on the whole T -S parameter plane, as

obtained in the absence of facilitators (red dotted lines) and with

ρF = 0.05 (green solid lines). It can be observed that facilitators

do not change the qualitative properties of the solutions, but their

presence does shift the survival barrier of cooperators towards harsher

conditions, especially in the prisoner’s dilemma quadrant (see the

text). Here HG denotes the harmony game, SD denotes the snowdrift

game, SH denotes the stag-hunt game, and PD denotes the prisoner’s

dilemma game.

throughout the evolutionary process and their positions on the

network do not change. Within this setup, we seek to determine

the optimal fraction of facilitators, as well as their impact on

each particular social dilemma type.

We simulate the evolutionary process in accordance with

the standard Monte Carlo simulation procedure comprising the

following elementary steps. Among the subset of cooperators

and defectors on the network, a randomly selected player

x acquires its payoff Px by playing the game with all its

neighbors. Next, player x randomly chooses one (also a

nonfacilitator) neighbor y, who then also acquires its payoff Py

in the same way as previously player x. Finally, player x adopts

the strategy sy from player y with a probability determined by

the Fermi function

W (sy → sx) =
1

1 + exp[(Px − Py)/K]
, (1)

where K = 0.1 quantifies the uncertainty related to the

strategy adoption process [11]. Note that K can be interpreted

as being proportional to the selection intensity (see, e.g., [7]).

In agreement with previous works, the selected value ensures

that better-performing players are readily followed by their

neighbors, although adopting the strategy of a player that

performs worse is not impossible either [39,40]. This accounts

for imperfect information, errors in the evaluation of the

opponent, and similar unpredictable factors. We note, however,

that qualitatively identical behavior can be observed for other

finite values of K where the stochastic imitation dynamics

remains non-neutral. Each full Monte Carlo step gives a

chance for every player to change its strategy once on average.

All simulation results are obtained on networks with N =

104–(2 × 105) players or more (including the facilitators),

depending on the proximity to phase transition points, and

the fraction of cooperators ρC is determined in the stationary

state after a sufficiently long relaxation (up to 2 × 105 Monte
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Carlo steps). To further improve accuracy, the final results are

averaged over up to 100 independent runs where interaction

networks were generated 50 times for random and scale-free

graphs at each set of parameter values.

III. NONSPATIAL PRISONER’S DILEMMA

WITH FACILITATORS

To better appreciate the influence of topology on social

dilemmas in the presence of facilitators, it is useful to outline

the properties of the prisoner’s dilemma with facilitators in

the mean field setting and on a complete graph [34,35]. In

this section we focus on the prisoner’s dilemma whose payoff

matrix has entries T for temptation (with 1 < T � 2), R =

1 for mutual defection, P = 0 for punishment, and S (with

−1 � S < 0) as the sucker’s payoff and assume T + S � 1.

In the mean field and complete graph settings, the pop-

ulation structure is homogeneous (well mixed) and space

therefore does not matter: Any individual can interact with

all the others. In a homogeneous population of size N ,

consisting of j = NρC cooperators, k = NρD defectors, and

ℓ = NρF facilitators, the expected payoff of a cooperator

is therefore �C
j =

j+ℓ−1

N−1
+ S k

N−1
and for a defector it is

�D
j = T

j

N−1
(self-interactions have been omitted). It is useful

to introduce the payoff difference of competing strategies

��j = �D
j − �C

j , as it is then easy to see that the difference

consists of two terms ��j = α(j/N ) + β, where the first

cooperator-dependent term contains α = ( N
N−1

)(T + S − 1)

while the fixed second term β =
1−S(N−ℓ)−ℓ

N−1
depends only on

the fraction of facilitators.

A. Mean field limit

The mean field (MF) limit corresponds to a spatially

homogeneous population of infinite size N → ∞. In this

situation, the dynamics of the prisoner’s dilemma with

facilitators is described by a replicatorlike equation for the

density ρC = j/N of cooperators [7,10,41–44]. Here, since

the underlying dynamics is implemented with the Fermi rule

(1), such an equation reads [34,35]

dρC

dt
= −ρC(1 − ρC − ρF ) tanh

(
αρC + β

2K

)
, (2)

where in the MF limit α = T + S − 1 � 0 and β = (S −

1)ρF − S. The analysis of (2) readily reveals three distinct

behaviors depending on the fraction of facilitators ρF .

(i) When ρF � S/(S − 1) ≡ ρ̃F , defection is still the

dominant strategy and the population evolves towards ρC = 0

and ρD = 1 − ρF (only attractor).

(ii) On the other hand, when ρ̃F < ρF < 1 − T −1 and T +

S > 1 the only attractor of (2) is ρ∗
C = −β/α =

S+(1−S)ρF

T +S−1
.

There is a stable coexistence of cooperators and defectors.

(iii) When ρF > 1 − T −1 and T + S > 1, cooperation is

the dominant strategy and the dynamics approaches ρC = 1 −

ρF and ρD = 0.

It is worth noting that Eq. (2) has no coexistence steady

state when T + S = 1 (since α = 0). The MF dynamics

along such a special line reproduces the behaviors (i) and

(iii): ρC = 1 − ρF is stable when ρF > ρ̃F (since β > 0) and

unstable otherwise, with ρC = 0 being the only attractor when

ρF < ρ̃F .

B. Case of complete graphs (N < ∞)

When the population is well mixed and of finite size

N < ∞, its evolution is usually described in terms of a

birth-and-death Markov chain with absorbing boundaries

[7,34,35,44]. In this case, the fixation of either defection

(ρC = 0) or cooperation (ρC = 1 − ρF ) is guaranteed. On

complete graphs, the dynamics is implemented as a Markov

chain with rates

T ±

j =
j (N − ℓ − j )

N (N − 1)
[1 + e±(αj+Nβ)/NK ]−1

for the transitions j → j ± 1.

Since fluctuations prevent stable coexistence when N <

∞, it is important to understand when cooperation is favored

by selection. The following conditions have been proposed

[7,45]: (a) the invasion by cooperators is favored when ��1 <

0 and (b) selection favors the replacement of defection by

cooperation when (N − ℓ)φC > 1, where

φC =

[
1 +

N−ℓ−1∑

n=1

exp

(
n

2NK
[α(n + 1) + 2Nβ]

)]−1

is the fixation probability of a single cooperator [35].

When N ≫ ℓ, the invasion condition (1) is satisfied when

ρF > ρ̃F , while the replacement condition (2) reads

N − ℓ >

N−ℓ∑

n=1

exp

[
αn

K

(
n

2N
+

β

α

)]
(3)

and is satisfied when ρF > ρ∗
F , where ρ∗

F is a critical value

obtained by equating both sides of (3). It has been found that

ρ∗
F � ρ̃F when T + S > 1 and ρ∗

F � ρ̃F otherwise (with ρ∗
F =

ρ̃F when T + S = 1) [35].

In summary, in the MF limit cooperators and defectors

coexist when the fraction of facilitator ρF exceeds the critical

value ρ̃F = S/(S − 1) and T + S � 1, whereas cooperation is

favored on complete graphs when ρF is above a critical value

ρ∗
F � ρ̃F .

IV. RESULTS ON NETWORKS

We begin by studying the impact of facilitators on the

square lattice with periodic boundary conditions. The results

are summarized in Fig. 1. For a comprehensive insight, we

compare the outcomes of the evolutionary process on the

whole T -S parameter plane, as obtained with and without

facilitators. To allow for a better comparison of the influence

of facilitators, in Fig. 1 and in the other figures we report

the relative density of cooperators obtained by rescaling the

physical fraction of cooperators present in the population by

(1 − ρF )−1, i.e., we have rescaled ρC → ρC/(1 − ρF ) so that

in all the figures its value always ranges between 0 and 1. The

presented results indicate that the impact of facilitators can

be considered as a second-order effect. While the results do

not change qualitatively, the survival threshold of cooperators

shifts considerably towards harsher conditions. This is most

pronounced in the prisoner’s dilemma quadrant, although
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quantitative changes are observable in the snowdrift and the

stag-hunt quadrant as well. Facilitators exercise a second-order

effect because the outcome is primarily determined by the

fact that the evolutionary games are staged on a structured

population (in this case the square lattice). The spatiality

of interactions always allows cooperators and defectors to

coexist in a special parameter interval while the presence

of facilitators shifts the borders of different stable solutions.

This behavior is significantly different from the nonspatial

behavior of evolutionary games with facilitators outlined in

the previous section, where their presence can radically change

the character of solutions and the type of social dilemma. In

Fig. 1 we also notice that nothing uncharacteristic happens

along the line T + S = 1. Henceforth, we will characterize

the comprehensive properties of the evolutionary games on

networks by conveniently focusing on the parametrization

T = 1 + r,S = −r , with −1 � r � 1. This parametrization

constitutes a diagonal across the prisoner’s dilemma and

harmony game quadrants.

Next we explore how the topology of the interaction

network affects the impact of facilitators. To avoid effects

stemming from the heterogeneity of the interaction network,

we first compare the outcomes obtained on the square lattice

and the random regular (degree-homogeneous) graph. On both

these networks every player has four neighbors (k = 4). As

Fig. 2 shows, the principal impact of facilitators is to widen

the parameter range where C and D players coexist. Moreover,

increasing ρF increases the fraction of cooperators within

this interval and, as expected, contributes to a higher level

of cooperation in the population. However, if the fraction

of facilitators becomes too high, typically ρF > 0.4, then

facilitators will no longer play solely the role of mirrors to

their neighbors, but they will also serve as “walls” that prevent

efficient information spreading throughout the system. At this

point, it is worth reiterating that facilitators do not participate

actively in the evolutionary process. Consequently, too many

facilitators will separate competing strategies and there will

be segregation with the population splitting apart into smaller

fragments. Within these small and effectively isolated regions,

the parametrization of the game, and thus the type of social

dilemma, no longer plays a decisive role for the survival of

the two competing strategies. Effectively, a “dilemma hiding”

effect sets in, where the prevailing configuration is determined

by the local initial conditions and remains frozen afterwards.

This means that, after a very short initial period, the strategies

can no longer evolve according to the dynamics that would be

dictated by the payoff elements. The ultimate consequence

of the dilemma hiding effect is that, within the locally

frozen states, some cooperators may survive even at the most

demanding conditions that constitute a prisoner’s dilemma

(r = 1) and, vice versa, some defectors may survive even

at the most lenient conditions that characterize the harmony

game (r = −1). Two representative snapshots depicting such

an evolutionary outcome are presented in Fig. 3.

It is also worth comparing the results obtained on random

graphs with degree k = 4 and the predictions obtained for

complete graphs where the degree is equal to N : On the latter,

at a fixed value of ρF , we have shown that cooperation prevails

when r < ρF /(1 − ρF ). On the other hand, if the node degree

is 4 then ρC ≈ 1 when r � 0 while ρC ≈ 0 when r � 3ρF . The
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FIG. 2. (Color online) Impact of facilitators on (a) the square

lattice and (b) the random regular graph. Depicted is the stationary

fraction of cooperators ρC in dependence on r , as obtained for

different fractions of facilitators occupying the network (see figure

legend for the values of ρF ). Due to the qualitatively identical results

obtained on the two networks, it can be concluded that the topology of

the interaction network does not play a notable role. More precisely,

if the network remains degree homogeneous, then the randomness of

interactions yields the same results as lattice-type models.

comparison of the critical facilitator density with the results

of numerical simulations for the random regular graphs with

k = 4 in Fig. 4 reveals that the critical threshold on the latter

is always below the mean field prediction ρ̃F . This indicates

that fewer facilitators are needed on a random regular graph

with a finite degree than on a complete graph for cooperation

to prevail.

So far, we have considered only homogeneous interaction

networks, where the distribution of facilitators was always

uniformly random and the specific placement did not matter

because all players on the square lattice and the random

regular graph have the same degree. This changes if instead we

apply heterogeneous interaction graphs, such as the scale-free

networks, where the distribution of degree is a power law.

We use the algorithm proposed by Barabási and Albert [37]

to construct scale-free networks with the average degree

k = 4 and degree distribution Pk ∼ k−3 [Barabási-Albert (BA)

graphs] and we consider four different cases of where on the

network to place facilitators. First, to keep the analogy with
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FIG. 3. (Color online) Characteristic distributions of cooperators

[dark gray (blue)] and defectors [light gray (red)] on the L × L =

100 × 100 square lattice, as obtained for r = −1 (left) and r = 1

(right) if the fraction of facilitators (gray) is sufficiently high for them

to split the population in effectively isolated smaller fragments. The

left panel depicts the outcome of the most lenient harmony game,

yet still some defectors are able to survive. On the contrary, the right

panel depicts the outcome of the harshest prisoner’s dilemma game,

yet cooperators survive. In both panels the fraction of facilitators is

ρF = 0.5.

the previous treatment on homogeneous networks, we choose

players uniformly at random regardless of their degree. As

results presented in Fig. 5(a) illustrate, increasing ρF will not

just increase ρC , but also expand gradually the coexistence

region significantly toward stronger social dilemmas (higher

values of r).

Naturally, we could also observe the dilemma hiding effect

for sufficiently high values of ρF (now shown), which for

the considered scale-free network and randomly distributed

facilitators begins at ρF ≈ 0.5. If, on the other hand, facilitators

are placed on low- or intermediate-degree nodes, the dilemma

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

ρ
F

r

FIG. 4. (Color online) Minimal fraction of facilitators that is

necessary to avoid the tragedy of the commons (the pure D state)

as a function of r = T − 1 for the prisoner’s dilemma: Cooperation

becomes viable above this threshold. Comparison of the mean field

prediction ρ̃F = r/(1 + r) (dotted line) with the value obtained by

numerical simulations on random graphs with regular degree 4

(symbols). When the degree increases, the symbols would move

towards the mean field line (not shown here). See also the main

text for details.
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FIG. 5. (Color online) Impact of facilitators on the scale-free

network (a) if their placement is uniformly random regardless of the

degree of players or if their placement is limited to players with (b)

low or (c) intermediate degree. Depicted is the stationary fraction of

cooperators ρC in dependence on r , as obtained for different fractions

of facilitators occupying the network (see the legend for the values

of ρF ). As in Fig. 2, increasing the value of ρF will significantly

extend the region where cooperators and defectors are able to coexist,

especially if the facilitators are placed randomly (a). The results are

obtained using N = 105 system size (see the text).

hiding effect appears only at even larger values of ρF . This is

understandable since low-degree nodes have a lower number

of links to the other players and hence disabling their ability

to transfer information obviously has a lesser impact than if

one of the network hubs would lose this ability. In terms of the

impact of facilitators on the evolution of cooperation, however,
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placing facilitators on low- or intermediate-degree nodes has

qualitatively the same impact as placing them randomly across

the whole network. As evidenced by the results presented in

Figs. 5(b) and 5(c), the only difference is that the shift of the

border where both strategies can coexist is obviously smaller

if facilitators occupy low-degree nodes and slightly larger if

facilitators occupy intermediate-degree nodes. The shift is the

largest if the placement of facilitators is uniformly random

regardless of the degree of players, presumably because some

facilitators then also occupy the hubs of the network.

Studying the impact of facilitators targeted on high-degree

nodes will resolve this ambiguity, but before presenting the

results, it is worth emphasizing that the expectations are rather

conflicting for this particular case. On the one hand, we may

hope that placing the facilitators on the hubs will improve

the cooperation level even further because their special status

can enhance network reciprocity (this hope is also justified by

the preceding results presented in Fig. 5). On the other hand,

it is precisely this special position of facilitators that brings

this expectation into questioning. As demonstrated in several

previous works [11,21,46], hubs of scale-free networks play a

crucial role in ensuring highly cooperative states under adverse

conditions. Only the cooperative hubs can reap long-term

benefits from their highly connected status and thus serve

as a lucid reminder of the benefits of cooperative behavior.

However, if we place facilitators on the hubs, then this

mechanism can no longer work. Effectively, we remove the

cooperative leaders and replace them with “mirrors” instead.

We emphasize again that here facilitators cannot be followed,

i.e., they just exactly reciprocate the strategy of each of their

neighbors. Consequently, the level of cooperation may drop

back to the level we observe on homogeneous networks.

Another drawback of placing facilitators on the hubs is the

hindering of the information flow through the system, which

in this case is particularly effective and can thus easily evoke

the dilemma hiding effect demonstrated in Fig. 3.

All these arguments make the results presented in Fig. 6,

which were obtained by placing facilitators on the high-degree

nodes of the BA scale-free network, especially interesting.

These results partly fulfill our expectations outlined in the

previous paragraph, but there are also some unexpected

outcomes. More precisely, the dilemma hiding effect emerges

at rather small ρF values. If the top 5% of nodes are occupied

by facilitators, for instance, then we can observe cooperators

surviving even at the highest r value, but some defectors prevail

in the harmony game region (r < 0) as well, thus indicating an

imperfect information flow. This effect is even more evident

at higher densities of facilitators. However, if only the top

1% of nodes host facilitators, then the information exchange

remains practically flawless, but at the same time a significant

improvement in cooperation level due to active reciprocity

can be observed too. Here the region of near complete

cooperation dominance is extended toward significantly higher

r values (shifted from rc ≈ −0.15 to rc ≈ 0.2), which is

surprising because players cannot imitate the main hubs.

Still, some prominently placed facilitators (mirrors) are able

to not just compensate the impaired learning process, but

even promote cooperation more efficiently than a flawless

learning process would do. Naturally, in this case too the

spreading of cooperative behavior happens predominantly via
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FIG. 6. (Color online) Impact of facilitators on the BA scale-free

network if their placement is limited to players with high degree.

Depicted is the stationary fraction of cooperators ρC in dependence

on r , as obtained for different fractions of facilitators occupying the

targeted high-degree nodes (see the legend for the values of ρF placed

at the most connected nodes). These results reveal the existence of

the optimal interplay between information exchange and reciprocity

(see the main text for details). Compared to the results presented in

Fig. 5, only in this particular case is it possible to combine the two

effects to arrive at the best conditions for widespread cooperation.

The results are obtained using N = 105 system size.

learning, but not through the most obvious channels—via

the strongest hubs—but rather via the slightly less dominant

nodes of the scale-free networks. More precisely, indirect

connections between less preferred players around the hubs

still work, which enables the spreading of the most successful

strategy. At the same time, the advantages of cooperation are

massively amplified by facilitators, which introduce direct

reciprocity that pays more than undisturbed learning. It is

also worth mentioning that the results presented here for BA

graphs are expected to hold for scale-free networks of degree

distribution Pk ∼ k−γ with 1 < γ � 3 that are characterized

by high-degree nodes, while we expect to recover the random

degree-homogeneous scenario when γ > 3 (hubs are then

unlikely).

V. DISCUSSION

We have studied the role of facilitators on structured

populations. Facilitators are the ideal mirror to their neighbors

and as such they introduce reciprocity directly to the studied

evolutionary games. Results obtained for well-mixed popula-

tions show that facilitators favor the evolution of cooperation

as long as they are sufficiently present in the population.

Importantly, there are no negative consequences even if their

numbers become large. On structured populations this no

longer holds because in addition to reciprocity, facilitators

also obstruct information exchange. Here facilitators cooperate

with cooperators and defect with defectors, but they do not

participate in the exchange of strategies, meaning that they

cannot be overtaken by other players and they also cannot

spread. Accordingly, we have shown that if the facilitators are

too many, they no longer play solely the role of mirrors to
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their neighbors, but they also act as walls that prevent efficient

information spreading throughout the system. These walls sep-

arate competing strategies and compartmentalize the popul-

ation into effectively isolated regions. Within these regions

the type of social dilemma no longer plays a decisive role for

the survival of the two competing strategies and effectively a

dilemma hiding effect sets in. Only if the fraction of facilitators

is sufficiently small is the evolution of cooperation promoted,

in particular by extending the survival region of cooperators

towards harsher conditions. Besides homogeneous networks

such as the square lattice and the random regular graph, we

have also considered heterogeneous interaction networks—

the most representative being the Barabási-Albert scale-free

network—where the placement of facilitators plays a decisive

role. If the facilitators occupied the main hubs of the network,

we were able to observe the optimal interplay between the

benefits of reciprocity and the drawbacks of hindered informa-

tion exchange. This result is highly counterintuitive because

previous research has strongly emphasized the crucial role of

cooperative hubs for the successful evolution of cooperation

[11,21,46]. According to previously established reasoning,

hubs are able influence their large neighborhoods directly,

which yields large homogeneous domains and thus facilitates

the manifestation of long-term benefits of cooperation. Here

we have found that hubs can work even better in favor of

cooperative behavior if they are not used as leaders of the

masses, but rather as mirrors to their many neighbors. As an

avenue to explore in the future, it could be interesting to study

how the results on heterogeneous graphs might change if we

apply different degree distributions of nodes. If we decrease

the number of hubs, for example, then the results may tend

towards those we have obtained on regular graphs where there

are no distinguished players.

Summarizing, we have shown that reciprocity outperforms

imitation via learning and that the latter can still be rerouted

effectively enough through the auxiliary hubs. This delicate

balance between augmented reciprocity and information ex-

change proves to be the best combination that is able to

maintain cooperation even for the most adverse conditions

while at the same time disallowing widespread defection at

lenient conditions. Interestingly, it could be better to promote

tit-for-tat-like behavior in prominent players rather than for

them to aspire towards leader-follower relations.
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