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Abstract 

Previous work (Bell and Jones 2013a, c; Luo and Hodges 2013) has shown that, when there are 

trends in either the period or cohort residuals of Yang and Land͛Ɛ Hierarchical Age-Period-Cohort 

(APC) model (Yang and Land 2006; Yang and Land 2013), the model can incorrectly estimate those 

trends, because of the well-known APC identification problem.  Here we consider modelling 

possibilities when the age effect is known, allowing any period or cohort trends to be estimated.  In 

particular, we suggest the application of informative priors, in a Bayesian framework, to the age 

trend, and we use a variety of simulated but realistic datasets to explicate this.  Similarly, an 

informative prior could be applied to an estimated period or cohort trend, allowing the other two 

APC trends to be estimated.  We show that a very strong informative prior is required for this 

purpose.  As such, models of this kind can be fitted but are only useful when very strong evidence of 

the age trend (for example physiological evidence regarding health).  Alternatively, a variety of 

strong priors can be tested and the most plausible solution argued for on the basis of theory. 
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1. Introduction 

Age-period-cohort modelling has recently been reinvigorated by a number of recent methodological 

innovations (Yang and Land 2013; Yang and Land 2006; Yang et al. 2008; Tu et al. 2011) which, it is 

claimed, overcome the identification problem caused by the collinearity between age, period and 

cohort.  However, it has long been argued that, for identification of such a model to occur, some 

quite strong assumptions must be made (Glenn 1976, 2005).  Indeed recent work on such models 

has shown that the recent wave of innovations are no different in making assumptions which, if 

unjustified, will lead to extremely misleading inference (Luo 2013; Luo and Hodges 2013; Bell and 

Jones 2013a, b, c, d). 

Despite this, there are circumstances where such models are of use.  Yang and Land͛s Hierarchical 

Age-Period-Cohort (HAPC) model is one of the more conceptually appealing of these models.  Whilst 

it is unable automatically to tell apart trends in age, periods or cohorts, and solve the identification 

problem as its authors have claimed, it is capable of analyzing period and cohort random fluctuation 

at the same time as modelling an age trend, so long as there are no trends in the periods and 

cohorts.  However, if we wish to analyse trends in periods and cohorts, we must make big 

assumptions about at least one the effects of of age, period and cohort ʹ effectively we 

must constrain one of the three, usually to zero. 

Here we consider the possibility of using Bayesian informative priors to implement this 

constraint.  In doing so, we are able to consider the functioning of the MCMC estimator in 

running such a model, and the reasons why the HAPC model with diffuse priors produces 

the results that it does. 

TŚĞ ƉĂƉĞƌ ƉƌŽĐĞĞĚƐ ĂƐ ĨŽůůŽǁƐ͘  WĞ ĨŝƌƐƚ ŽƵƚůŝŶĞ YĂŶŐ ĂŶĚ LĂŶĚ͛Ɛ HAPC ŵŽĚĞů ĂŶĚ ƚŚĞ 

problems with it.  We then outline the simulations that we undertake to assess the affect of 
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various informative priors on the results that are found.  Finally, the implications of these 

results, in terms of practical uses with real data, are discussed. 

2. The HAPC model 

YĂŶŐ ĂŶĚ LĂŶĚ͛Ɛ ŵĞƚŚŽĚ ƚŽ ŝĚĞŶƚŝĨǇ ĂŶ ĂŐĞ-period-cohort model is to use a cross-classified 

multilevel model, treating age as a fixed effect and period and cohort groups as random 

effects (and as such contexts in which individuals are situated).  Where the dependent 

variable is continuous, the model can be specified as: 

ሺభమሻݕ ൌ భమߚ  ሺభమሻ݁݃ܣଵߚ  ሺభమሻଶ݁݃ܣଶߚ  ݁ሺభమሻ ߚభమ ൌ ߚ  ଵభݑ  ଶమݑ  ݁ሺభమሻ̱ܰሺͲǡ ଶሻǡߪ ଵభ̱ܰሺͲǡݑ ௨ଵଶߪ ሻǡ ଶమ̱ܰሺͲǡݑ ௨ଶଶߪ ሻ 
(1) 

Where ݕሺభమሻ is the dependent variable, for individual i in period j1 and cohort j2. ߚଵ and ߚଶ 

are the coefficients for the linear and quadratic age effects respectively, ߚభమ  is the 

constant which varies across both periods and cohorts around a non-varying mean constant ߚ, and ݁ሺభమሻ is the level 1 residual error term.  Periods, cohorts and level-1 residuals are 

all assumed to be Normally distributed, and their variances are estimated. 

Yang and Land argue that modelling in this way, with age modelled differently from periods 

and cohorts and age specified as a quadratic polynomial, negates the problem of model 

identification encountered by APC analysts (Yang and Land 2006; Yang and Land 2013).  

However, a number of recent critiques have shown that this is not the case.  Where there 

are trends in periods and/or cohorts, the HAPC model will arbitrarily assign this trend 
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between age, period and cohort, leading to results that can be extremely misleading (Bell 

and Jones 2013a, c; Luo and Hodges 2013).  However, the model does function relatively 

well when there are no trends in the periods or cohorts, or when one of those trends is 

assumed to be zero by including the other as a linear effect in the fixed part of the model 

(Bell and Jones 2013a). 

3. HAPC models in a Bayesian framework 

Even leaving aside the identification problem, researchers wishing to use the HAPC model face a 

number of methodological questions.  For example it is often the case that there are not enough 

ƉĞƌŝŽĚƐ Žƌ ĐŽŚŽƌƚ ŐƌŽƵƉƐ ͞ƚŽ ƐĂƚŝƐĨǇ ƚŚĞ ůĂƌŐĞ-sample criteriĂ ƌĞƋƵŝƌĞĚ͟ ĨŽƌ ŵĂǆŝŵƵŵ ůŝŬĞůŝŚŽŽĚ ;MLͿ 

or restricted ML estimation (Yang and Land 2013, p. 263).  As a superior alternative, Yang (2006) 

suggests using Bayesian estimation with MCMC estimation, since such models are not biased to the 

same extent when higher level sample sizes are small (Browne and Draper 2006; Stegmueller 2013). 

Bayesian modelling additionally allows the possibility of using informative priors in modelling.  This 

allows you to impose, with an appropriate distribution of uncertainty, your prior beliefs about a 

parameter, and these beliefs are combined with the likelihood of the data to produce a posterior 

distribution which produces what is an overall result, given the data and the prior distribution. 

It is most common that, when using Bayesian methods, diffuse priors are used, which impose as 

little prior information as possible upon the result, with the intent that only the data influence the 

estimates.  In contrast, when the researcher is very sure about the result of a particular parameter, 

they could impose a very strong prior which has almost no uncertainty around it.  Where the 

researcher has some reason to believe a parameter takes a certain value (or wishes to combine the 

results of prior research into the model) they could use a less strong informative prior, which 
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expresses a belief but with a level of certainty that reflects the uncertainty with which they hold 

their belief. 

This could be of particular interest in the case of the HAPC model: where a number of possible APC 

combinations fit the data equally well, an informative prior could be used to draw the posterior 

distribution towards a particular solution, justified by a priori reasoning.  For example, consider the 

case of obesity, modelled by Reither et al. (2009) and later critiqued by us (Bell and Jones 2013c).  In 

that case, the model arbitrarily assigned the increasing rates of obesity to periods, when cohorts 

could just as easily have generated the same data.  However, in the case of obesity, there are 

physiological and cultural reasons to believe that we know what the lifecourse (age) patterns of 

obesity are likely to be ʹ i.e. that the probability of obesity will increase as individuals age, and then 

decline slightly in old age (Visscher et al. 2010).  If this can be quantified in parameter values for ߚଵ 

in equation 1, then informative priors could be used to ͚nudge͛ ߚଵ towards the correct 

solution.  Once the age trend is constrained in this way, any trends in periods and cohorts 

will be identified, and will be estimated to fit with the age trend being modelled.  

Meanwhile, any random fluctuations in periods and cohorts can also be reliably modelled 

and interpreted. 

Similar techniques could be used to constrain period or cohort linear trends.  Our previous 

simulation exercises (Bell and Jones 2013a) have shown that including a cohort trend in the 

fixed part of the HAPC model allows both an age and cohort trend to be identified, but also 

assumes that there is no period trend since all degrees of freedom have been consumed by 

the age and cohort trends.  Such a model is specified as follows: 

ሺభమሻݕ ൌ భమߚ  ሺభమሻ݁݃ܣଵߚ  ሺభమሻଶ݁݃ܣଶߚ  ݁ሺభమሻ ߚభమ ൌ ߚ  మݐݎ݄ܥଵߚ  ଵభݑ  ଶమݑ  

(2) 
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In this case, an informative prior could be used to constrain the cohort trend to a certain 

value; any period and age trends would then be estimated given that constraint, in the 

period level residuals and the age linear effect estimates respectively. 

Some words of warning at this point.  This is not an automatic solution to the identification problem 

in any way, shape or form.  The informative priors being imposed on the Bayesian model cannot be 

based on the data, since a multitude of possible APC solutions are equally statistically plausible given 

the data.  The priors can only be based on theory, and therefore the results of that model are only as 

reliable as that theory.  There are many situations where theory is not well established, or where the 

research question is itself aiming to find out the extent and nature of the age effect.  In such cases, 

this model will not help the researcher find what they require. 

The purpose of this article is to assess the practicalities of using such informative priors ʹ in 

particular, how informative the priors need to be to function in the way required. 

4. Simulations  

Two data generating processes (DGPs) were used to generate data for use in these simulations: 

ݕ ൌ ͳ  ሺͲǤͳ כ ሻ݁݃ܣ െ ሺͲǤͲͲͷ כ ଶሻ݁݃ܣ  ሺͲǤͳ כ ሻݐݎ݄ܥ  ݑ  ݑ  ݁ଵ 

(3) 

and ݕ ൌ ͳ  ሺͲǤͳ כ ሻ݁݃ܣ െ ሺͲǤͲͲͷ כ ଶሻ݁݃ܣ  ሺͲǤͳ כ ሻݐݎ݄ܥ െ ሺͲǤͲͲͷ כ ଶሻݐݎ݄ܥ ሺͲǤͳ כ ሻݎܻܽ݁ െ ሺͲǤͲͲͷ כ ଶሻݎܻܽ݁  ݑ  ݑ  ݁ଵ 

(4) 

Where ݑ̱ܰሺͲǡͳሻ  for cohorts, ݑ̱ܰሺͲǡͳሻ  for periods, and ݁ଵ̱ܰሺͲǡͶሻ  for individual, level 1 

ƌĞƐŝĚƵĂůƐ͕ ĨŽƌ ĚĂƚĂ ͚ĐŽůůĞĐƚĞĚ͛ ďĞƚǁĞĞŶ ϭϵϵϬ ĂŶĚ ϮϬϭϬ͕ ĨŽƌ ŝŶĚŝǀŝĚƵĂůs aged 20-60.  These data were 
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fitted to the models in equation (1) and equation (2), with MCMC estimation (Browne 2009) using a 

range of priors: a diffuse (non-informative) prior, and two informative prior distributions of mean 0.1 

(matching the DGP) with standard deviations of 0.01 and 0.001 (that is with moderate and high 

degrees of certainty respectively, described as weak and strong informative priors henceforth) on 

the age term for equation (1) and the cohort linear term for equation (2).  Models were tested using 

both grouped (by 5-year intervals) and ungrouped (1-year intervals) cohort groups.  For each 

simulation scenario, 100 datasets were generated and modelled.  The models were run in MLwiN 

version 2.28 (Rasbash et al. 2013) using the runmlwin command (Leckie and Charlton 2013) in Stata
1
.  

The true parameter values from the DGP were used as MCMC starting values.  A burn in of 500 

iterations was followed by a monitored chain of 50,000 iterations.  All models were checked for 

convergence and appropriate chain length by visual inspection of the chains for each parameter 

estimated, as well as with statistics such as the Effective Sample Size (ESS ʹ see Table 1).  None of 

our scenarios showed any signs of poor mixing or trending in the chains. 

The results are shown in Figure 1 for the ungrouped scenario with model (1) and DGP (3), whilst the 

results from a single model run under this scenario are presented in Table 1.  As can be seen, with 

diffuse priors, and in line with results found previously (Bell and Jones 2013a), the model finds an 

apparent trend in the periods that was not present in the DGP.  For similar reasons, the cohort trend 

in the DGP is not found, whilst only the quadratic trend is found for age (the linear trend is 

estimated as 0 rather than 0.1).  In short, when no informative prior is used, the HAPC model 

produces an answer that is incorrect given the known DGP. 

[Table 1 and Figure 1 about here] 

In contrast, including informative priors improves the results; however a very strong informative 

prior is required to push the posterior distribution away from the incorrect solution found by the 

model with diffuse priors, to the true value.  A prior with a standard deviation of 0.01 (that is quite a 

                                                           
1
 Do-files for replicating these simulations can be found in the online appendix. 
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bit of certainty ʹ our prior evidence means that we are 95% sure that the true parameter value lies 

between 0.08 and 0.12) produced a result approximately halfway between the truth (0.1) and the 

results with diffuse priors (zero).  It takes a much stronger prior (here with a SD of just 0.001) to 

nudge the model results to the truth (see Figure 2) although incrementally lower SDs produce 

incrementally more accurate parameter estimates (see Figure 3).   This is despite the Deviance 

information criteria - DIC (Spiegelhalter et al. 2002) ʹ suggesting that the three models presented fit 

the data approximately as well as each other (although the DIC is lower in the diffuse prior case, the 

differences would not normally be considered significant enough to choose one model over the 

other).  In other words, despite the various solutions presented in figure 1 apparently fitting the data 

equally well, the model still requires strong evidence to shift the results found towards the truth. 

[Figures 2 and 3 about here] 

That such strong priors are required is related to properties of the MCMC estimator under 

conditions of high collinearity.  Browne et al. (2001, p. 113) show that, in the presence of very high 

degrees of collinearity in the fixed or the random effects, MCMC methods will identify this, by poor 

mixing being evident in the parameter chains.  At slightly lower levels of collinearity, however, 

Wheeler and Calder (2006) show that MCMC models function in a similar way to ridge regression 

models, thus dealing well with quite high levels of collinearity.  The HAPC model, by splitting the APC 

terms between the fixed and random parts, effectively tricks the model into behaving as it would 

under inexact rather than exact collinearity, producing apparently well behaved chains which require 

strong priors to be overcome, much like the ridge estimators produce relatively well behaved 

estimates.  The difference is that there is exact collinearity between the variables in the DGP, and as 

such the apparent certainty of the parameter estimates is unwarranted. 

The other scenarios correspond to the understanding articulated here and elsewhere.  Grouping of 

the data does not affect the average effect, but does make the result more variable across the 100 

simulations (see figure 4).  This variation reduces as increasingly strong informative priors are used.  



10 

 

When modelling data where there are all of age, period and cohort linear effects in the DGP (as in 

equation 4), the model incorrectly produces only a large period trend, until informative priors are 

applied (see figure 5
2
).  Finally, including a linear cohort term into the model, and imposing an 

informative prior on this linear effect, allows us to estimate the effects of period and age effectively 

(see figure 6), assuming, as ever, that our prior knowledge of the cohort trend is correct. 

[Figures 4, 5 and 6 about here] 

5. Discussion 

The results presented here provide a possible option for those wishing to distinguish period and 

cohort effects when the age effect is known, or when any one of the APC trends are known and the 

effects of the other two are required to be estimated.  However it also presents significant cautions 

to those wishing to do so.  It is surprising how strong a prior is required to fix the APC effect 

appropriately, given that the HAPC model applies a given APC combination apparently arbitrarily.  As 

such, a vague idea about the nature of the age trend is not enough to apply this method rigorously ʹ 

the researcher must be almost certain that the age trend is as they believe and effectively constrain 

it to that trend.  Unfortunately, this is only likely to occur when the researcher already has a very 

clear understanding of the processes involved, and completely trusts that the data is unbiased.  

Similarly, a researcher could use such a process to get a particular result that they wanted, which 

would obviously not be good science. 

An alternative could be for researchers to model a number of different possible APC combinations 

(using a range of strong priors), thus presenting a range of possible outcomes which could explain 

the patterns in the data.  TŚŝƐ ŝƐ ŝŶ ůŝŶĞ ǁŝƚŚ ƚŚĞ ŝĚĞĂ ŽĨ Ă ͞ĐŽŵŵƵŶŝƚǇ ŽĨ ƉƌŝŽƌƐ͟ (Spiegelhalter 2004, 

p. 159; Lunn et al. 2013, p. 97) expressing different possible prior beliefs that the researcher might 

                                                           
2
 It seems that, when the DGP with all of APC linear trends is used, a weaker prior is required to pull the result 

towards the truth. However this is not particularly valuable for applied research where the DGP is unknown. 
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have
3
. They could then use theoretical arguments to justify which scenario they consider to be the 

most plausible.  It must be emphasized, however, that this justification cannot be based on the data 

but only on the theoretical beliefs of the researcher, and they should be presented as such.  The APC 

identification problem cannot be solved by this method or any other technical legerdemain, and any 

research that claims to do so should be treated with an appropriate degree of skepticism. 
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Figure 1: Results for age, period and cohort effects (rows 1, 2 and 3 respectively) found from HAPC 

models using a diffuse prior, a ͚weak͛ informative prior, and a ͚strong͛ informative prior, when fitted 

with the model in equation (1), to 100 simulated datasets generated by the DGP in equation (3).  

Cohorts are assumed to be ungrouped in the model.  The dashed lines represent the true trends. 
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Figure 2: Prior (dotted line) and posterior (solid line) distributions for the age parameter, where age 

is specified with (a) a diffuse prior, (b) a ͚ǁĞĂŬ͛ informative prior, and (c) a ͚ƐƚƌŽŶŐ͛ informative prior, 

for a single dataset, fit with the model in equation (1), with DGP as in equation (3). 
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Figure 3: The effect of the SD of the prior distribution on the parameter estimate, for a single 

dataset, fit with the model in equation (1), with DGP as in equation (3).  The true parameter value is 

0.1. 
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Figure 4: Results for age, period and cohort effects (rows 1, 2 and 3 respectively) found from HAPC 

ŵŽĚĞůƐ ƵƐŝŶŐ Ă ĚŝĨĨƵƐĞ ƉƌŝŽƌ͕ Ă ͚ǁĞĂŬ͛ ŝŶĨŽƌŵĂƚŝǀĞ ƉƌŝŽƌ͕ ĂŶĚ Ă ͚ƐƚƌŽŶŐ͛ ŝŶĨŽƌŵĂƚŝǀĞ ƉƌŝŽƌ͕ ǁŚĞŶ ĨŝƚƚĞĚ 

with the model in equation (1), to 100 simulated datasets generated by the DGP in equation (3).  

Cohorts are assumed to be grouped in 5-year intervals in the model.  The dashed lines represent the 

true trends. 

 

  



18 

 

Figure 5: Results for age, period and cohort effects (rows 1, 2 and 3 respectively) found from HAPC 

ŵŽĚĞůƐ ƵƐŝŶŐ Ă ĚŝĨĨƵƐĞ ƉƌŝŽƌ͕ Ă ͚ǁĞĂŬ͛ ŝŶĨŽƌŵĂƚŝǀĞ ƉƌŝŽƌ͕ ĂŶĚ Ă ͚ƐƚƌŽŶŐ͛ ŝŶĨŽƌŵĂƚŝǀĞ ƉƌŝŽƌ͕ ǁŚĞŶ ĨŝƚƚĞĚ 

with the model in equation (1), to 100 simulated datasets generated by the DGP in equation (4).  

Cohorts are assumed to be ungrouped in the model.  The dashed lines represent the true trends. 
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Figure 6: Results for age, period and cohort effects (rows 1, 2 and 3 respectively) found from HAPC 

models usiŶŐ Ă ĚŝĨĨƵƐĞ ƉƌŝŽƌ͕ Ă ͚ǁĞĂŬ͛ ŝŶĨŽƌŵĂƚŝǀĞ ƉƌŝŽƌ͕ ĂŶĚ Ă ͚ƐƚƌŽŶŐ͛ ŝŶĨŽƌŵĂƚŝǀĞ ƉƌŝŽƌ͕ ǁŚĞŶ ĨŝƚƚĞĚ 

with the model in equation (2), to 100 simulated datasets generated by the DGP in equation (4).  

Cohorts are assumed to be ungrouped in the model.  The dashed lines represent the true trends. 

 

 

 



Table 1: Parameter estimates from HAPC models using a diffuse prior, a weak informative prior, and a strong informative prior, when fitted to a single 

simulated dataset.  Deviance, effective number of parameters (pD) and DIC (which effectively combines the two) are also shown. 

 

 Diffuse priors Weak informative prior (SD=0.01) Strong informative prior (SD=0.001) 

 ɴ S.E. CIs ESS ɴ S.E. CIs ESS ɴ S.E. CIs ESS 

Fixed Part 

cons 1.326 0.343 0.635 2.044 55 1.321 0.349 0.614 2.041 57 1.322 0.397 0.511 2.121 50 

(age-gm)^1 0.001 0.007 -0.011 0.015 740 0.043 0.009 0.027 0.062 390 0.100 0.001 0.098 0.101 18258 

(age-gm)^2 -0.005 0.000 -0.005 -0.005 19247 -0.005 0.000 -0.005 -0.005 19089 -0.005 0.000 -0.005 -0.005 18957 

                

Random Part 

Cohort Level 

Cons 0.785 0.153 0.540 1.142 35207 1.388 0.378 0.824 2.291 877 3.97 0.761 2.746 5.717 39758 

Period Level 

Cons 2.075 0.741 1.090 3.896 29902 1.845 0.666 0.969 3.474 27496 1.748 0.626 0.92 3.275 29814 

Level 1                

Cons 4.014 0.040 3.935 4.094 48181 4.014 0.040 3.936 4.094 48160 4.014 0.04 3.936 4.094 48153 

                

DIC:  84631.432 84633.154 84633.7 

pD:  81.332 82.010 82.695 

Deviance 84550.10 84551.14 84551.00 

 


