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Abstract 

A high percentage of serious accidents occur on sharp horizontal curves, especially on two-lane rural roads. A growing 

body of literature has examined driving behaviour on horizontal curves, with most research relating the effect of curve 

radius on driver’s speed and steering behaviour. There is an agreement that increasing degrees of road curvature result in 

less safe curve negotiation performance and consequently more accidents. Few studies, however, have further explored 

the effect of limited visibility on curve negotiation. This paper reports the results of a driving simulator study aimed at 

examining drivers’ behaviour on horizontal curves, in terms of speed and lateral position, in relation to varying levels of 

visibility of the curve’s arc. A two-lane rural road was designed and implemented in a desktop driving simulator and ten 

curve scenarios were examined with five different levels of visibility (20%, 40%, 60%, 80% and 100%), and of two curve 

radii (150m and 250m). Thirty drivers participated in the experiment; statistical analysis showed there to be a clear effect 

of radius on driver speed, as would be expected. However, when visibility decreased, reductions in driver speed were 

only found at the lowest level (20% preview). This speed reduction, however, was not sufficient enough for drivers to be 

able to negotiate the curve without detriment to their lateral positioning. Drivers tended to decelerate later and more 

sharply in the poor visibility curve and then have to compensate by moving towards the centre-line in order to flatten out 

the curve.   It is concluded that whilst drivers can adapt sufficiently on curves that have moderate pre-view, when 

visibility deteriorates below a threshold (in this case 20% preview) drivers are unable (or willing) to reduce their speed 

appropriately and thus risk lane excursion. 
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1. Problem background and review 

Horizontal curves, and particularly those on two-lane rural roads, are associated with a higher accident risk 

than curves on urban roads or straight sections of rural roads [39]. This is a universal problem: 

� On New Zealand’s rural state highways, loss of control on curves is the largest cause of road accidents. 

In 2009, they comprised 49% of all reported injury crashes on rural state highways and 36% of all reported 

injury crashes regardless the type of road [8]. 

� On rural roads in Victoria, Australia, from 1997 to 2001, accidents on horizontal curves constituted 

21% of the total number of road accidents, and were more severe than crashes on straight sections of road [34]. 

Overall in Australia, it has been estimated that 48% of all fatal crashes on rural roads are associated with curves, 

with 70% of those crashes occurring on curves where the curve radius is less than 300 m [9]. 

� In the United States, negotiating a curve was the second most common vehicle manoeuver for reported 

fatality crashes, comprising 22% of all the reported fatal crashes [28]. 

� In the UK, accidents on rural single-carriageway roads account for 1.1 deaths per 100 million vehicle 

kilometres compared to 0.24 on motorways and 0.75 on urban roads. Around 18% of accidents on rural single 

carriageway roads occurred on curves [12]. 

Overall, it has been estimated that accident risk on curves is 2 to 4.5 times higher than on the tangents of the 

same road [9]. A wide range of interventions have been proposed to improve the safety of curves; interventions 

related to the driver, the environment and the vehicle. However, it is essential first to identify the possible factors 

contributing to crash frequency and severity on such road curves. When the causative factors are acknowledged 

then the accident frequency or severity can be dealt with more successfully, by identifying more suitable road 

designs, Intelligent Transport Systems or other interventions.  

Road factors associated with curve accidents include the following [10]: 

i. Degree of curvature or the radius of the curve - sharp curves are more difficult to negotiate, therefore 

they have higher potential accident rate. 

ii. Lane width - a narrow road can force the driver to cross the roadway leading to head-on collisions.  

Vehicles negotiating curves tend to occupy more road area than on straight sections. 

iii. Surface and side friction on the curve - low levels of friction impacts negotiation and the braking 

distance required for the vehicle to stop is greater  

iv. Length of the curve - accident statistics have shown that shorter curve lengths have higher crash rates 

compared to longer ones.  
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v. Sight distance -an obstruction located near the roadside may block the driver’s view reducing the line of 

sight and therefore can lead to slow brake reaction time which increases injury severity in the case of an 

accident. 

vi. Super-elevation - inadequate super-elevation may cause vehicles to skid while driving on a horizontal 

curve [14]. Sharper curves require greater super-elevation for safe negotiation at higher speeds. 

In order to minimize the detrimental effects of these factors, most countries adhere to road design principles 

which provide guidance on, for example, sight distance. Where an object at the side of the road such as a 

building or natural growth restricts sight distance, the minimum radius of curvature is determined by the 

stopping sight distance. The goal is to determine the required clear distance from the centre line of the inside 

lane to the obstruction for a given design speed, using the radius of curvature and minimum sight distance for 

that design speed. 

Charlton and de Pont [9] suggested that driver errors associated with horizontal curves are the result of the 

three interconnected issues. First, negotiating a curve requires more attentional resources than driving on a 

straight section of the road. Consequently, the driver’s attention can more easily be diverted or the driver may 

fail to notice a curve ahead due to distraction, psychological fatigue or some other factor. Sight distance through 

the curve (curvature) was also found to be one of the most important contributory factors associated with 

decreased attention. Secondly, curve approach and entry speed are often underestimated by drivers, particularly 

when they drive at higher speeds on the tangents before the curve. Curves which require the driver to 

considerably reduce his speed have been proven to be less safe and over-represented in the accident statistics. 

Finally, poor lane positioning can lead to loss of control of the vehicle, head-on collisions or other types of 

accidents. Analysis of accident data on curves has shown that in most cases the driver’s first manoeuvre is 

towards the outside of the curve rather than in the direction of it, which causes excess of the lateral traction limits 

and increased friction demands. 

1.1 Curve design and crash rates 

McLean [27] concluded that curve negotiation speed is influenced by both curve radius and sight distance. 

Empirical findings show a positive association between horizontal curvature and accident rate especially in two-

lane rural roads where the prevalence of curves is quite high (e.g. Charlton and de Pont [9]); in addition 

increasing degrees of road curvature results in more accidents particularly when the radius is less than 400m 

[30]. In order to explain the strong effect of curve radius on accident rates, a growing body of literature has 

investigated driving behaviour on horizontal curves of different radii, using diverse safety indicators such as 

speed, lateral placement errors, and acceleration. Gawron and Ranney [16] conducted a driving simulator study 

in order to investigate driver’s performance on horizontal curves of radii ranging from 57.3m to 94.2m. Curve-

entry speed increased as radius of curvature increased and total lateral position error was highest in the curve 

with the smallest radius, due to the curve-cutting strategies frequently observed on small radius curves. 

Fitzpatrick et al. [15] investigated acceleration patterns of rural horizontal curves and found that the only sites 

where acceleration and deceleration rates approached the value of 0.85 m/s2 (a common value proposed in 

previous studies) were those with curve radii less than 250m, and that operating speeds on horizontal curves 

dropped sharply when the radius was below 250m. 

McFadden and Elefteriadou [26] investigated which geometric variables predicted outcome variables such as 

85th percentile speed difference into and out of the horizontal curve. They reported a significant association 

between curve radius and the 85th percentile speed difference into and out of the horizontal curve. In other 

words, the smaller the curve radius, the higher is the expected reduction in speed for a vehicle entering the curve. 

This indicator of speed differential between approach tangent and curve is commonly seen in the literature for 

the evaluation of the design consistency, as there is a direct correlation between safety and variability in speed 

[26]. 

Turner and Tate [38] examined the relationship between curve negotiation speed and curve radius. After 

collecting data from 488 curves and analysing the speed profiles for a sample of young, predominately male 

drivers, they concluded that the speed which the sample drivers chose to negotiate the curves was influenced by 

the curve radius rather than the curve design speed (which can be dependent on sight distance and road friction). 

In sharp curves below 300m radius, drivers tend to negotiate the curve with lower speeds than on large-radius 

curves. 

Shinar [32] investigated the misperception of curvature phenomenon, where he suggested that the accident 

risk is higher on curves which are perceived as nearer, less sharp and more visible than they actually are, and 

horizontal curve geometry (radius, length and total angle) may be irrelevant. Chen [10] states that roadside 

objects such as poles or trees can affect sight distance and judgement which increases injury severity. Taragin 

and Leisch [35] reported a relationship between curve speed and minimum sight distance whereby the operating 

speeds were considerably lower at locations where the minimum sight distances were below 250 feet (76.2m) 

than at locations where the lowest sight distances were greater than 500 feet (152.4m). It was observed that 
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drivers did not change their speeds considerably after entering a horizontal curve, but the speed adjustment was 

mainly made during the approach tangent; thus the sight distance should be at least 400 feet (121.9m).  

Thus, Shinar et al. [33] proposed that the geometric design of horizontal curves should not be based only on 

the classical engineering approach, but should be related more to the driver’s behaviour and their perception of 

the curve. The engineering approach assumes that the vehicles follow the roadway path with geometrical 

exactness, which is unrealistic, particularly for rural roads where the design speed is frequently exceeded. 

Moreover, the driver doesn’t normally have a full view of the curve as the road designers assume. The driver 

may have a limited view due to visual obstacles on the roadside, such as trees or buildings. Therefore, the driver 

prior to an unfamiliar curve may select a speed according to the limited view the driver has, and then change it 

according to the information received while curve perception is improving. Curve negotiation is a dynamic 

process; drivers when approaching a curve continuously modify their speed according to the demands [33]. 

Shinar et al. examined this issue comprehensively, with several laboratory and field studies and one of those 

studies was particularly focused on curves which were obscured by hills.  The authors concluded that the driver 

approaching a curve on an open road may not appreciate their high speed due to the lack of peripheral visual 

stimulation. On the other hand, drivers who approaching the same type of curve on a road lined with trees drove 

at significantly lower speeds. Therefore, they concluded that the driver’s performance can be changed by 

affecting the driver’s perception of the roadway without actually changing the physical features of the road.  

To summarise, there is previous literature indicating a relationship between curve radius and sight distance 

and drivers’ performance on horizontal curves. The sharper the curve (below 300m radius) the lower is the speed 

the drivers tend to negotiate it. Regarding the speed differential, the smaller the curve radius, the higher is the 

expected reduction in speed for a vehicle entering the curve. Similarly, deceleration rates on the approach to the 

curve and acceleration rates on the departure tangent are higher when the curve radius drops below 250m. Some 

argue that the effect of limited sight distance on speed is not as strong as that of curve radius, but a correlation 

does exist; others report that the perception of the curve is the key factor affecting driver’s behaviour, with 

geometry being of little importance.  

Thus this study focussed on the external feature of sight distance and to a lesser extent on curve radius or, as 

frequently encountered, the degree of curvature (defined as the angle formed by an arc of 100 feet length) and  

examines the effects of sight distance on steering regulation and subsequently on speed and driver position in the 

lane. Specifically, we investigate how sight distance restrictions can potentially block a driver’s view of the 

upcoming road segment and affect negotiation speed and further performance, as they are unable to see more 

than “X” percentage of the curve’s arc.  

2 Methodology 

2.1 Driving simulator 

A driving simulator was chosen as the most appropriate tool since they allow experiments to be carried out in 

controlled conditions, the scenario development is very flexible and the scenarios can easily be repeatable under 

the exact same conditions. In addition, driving simulators allow a high degree of realism, low costs in conducting 

experiments, easy data collection and the highest degree of safety for the test drivers [1]. The methodology 

allows us to look for relative (not absolute) changes in behaviour, between different conditions. All of these 

practical advantages would have been impossible to achieve in a real-life driving environment. LabSim is a low-

cost alternative to the full-scale 2nd generation driving simulator of the University of Leeds, running the same 

software, but with less immersive driver controls and image generation. The driver sits at a desk accommodating 

a Logitech Momo force-feedBAck steering wheel and pedals. A real-time, fully textured and anti-aliased, 3-D 

graphical scene of the virtual world is displayed on a Samsung 40” flatpanel display in front of the driver. The 

display is a single 920x1080 channel with a horizontal field of view of 85° and a vertical field of view of 48°, 

Figure 1. The visual display update and data collection rates were 60Hz.  
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2.3 Participants 

Participants were recruited at the University, based on the following criteria: 

i. Ownership of a current driving license for more than four years; 

ii. More than 3,000 miles driving experience per year on average); 

iii. Additional driving experience on rural roads (more than 1,000 miles the last year) 

iv. Not prone to motion sickness; and 

v. No influence of drugs or alcohol that could alter perception, cognition, and attention. 

 

The drivers had no prior experience with the driving simulator. Each participant drove 10 minutes on a 

familiarisation route which comprised of straights and curves but with no visual obstruction. They then drove the 

experimental route lasting around 20 minutes. Thirty participants, 11 women and 19 men with age ranging 

between 23 and 56 years (mean = 28.2 years; s.d. = 6.4 years) completed the experiment. Their average number 

of years of driving experience was approximately 9.5 (s.d. = 6.9 years), and the average annual driven distance 

was about 7900 miles (s. d. = 6300 miles). Upon arrival, each driver was briefed on the requirements of the 

experiment and signed an informed consent form.  

2.4 Data processing and analysis 

All data were collected at 60Hz. Values of speed were collected from 200 metres before curve entry and 

200m after curve exit, which exceed the recommended sight distance stated by Taragin and Leisch [35]. The 

examination of speed profiles are essential in road design and in the examination of drivers’ behaviour in order 

to track speed differences between tangents and curves; the deceleration and acceleration rates are also required 

in order to establish the speed reduction profile in the curves and preceeding tangents [31]. Driver’s deceleration 

and acceleration profiles can help a lot in evaluating the safety of the design consistency of the road. Sharp 

curves lead to high deceleration rates when the drivers approach a horizontal curve and high acceleration rates 

when they depart the horizontal curve [23]. Finally, lateral position was also measured, as drivers’ errors on 

horizontal curves are often due to their failure to maintain a proper lateral position [19]. Lateral positon is 

defined as the location of the vehicle’s longitudinal axis relative to a longitudinal road reference system [29].  

Cluster analysis was carried out in order to test if the driver’s speed and lateral position behaviour when 

negotiating the different curve scenarios was substantially different. Cluster analysis is a statistical technique 

used for classifying data into data groups for the aid of the analysis. Hierarchical cluster analysis using Ward’s 

method was first performed on separate segments.  For the 150 m length curves the data were divided into four 

segments as follows: (a) from -200m to -100m, (b) from -100m to 0m, (c) from 0m to 150m and (d) from 150m 

to 350m. For the 250m curves, the segments were: (a) from -200m to -100m, (b) from -100m to 0m, (c) from 0m 

to 250m and (d) from 250m to 450m.  The position “0” denotes curve entry. Then, having inspected the 

agglomeration schedule and calculating the changes in the coefficients, the optimum number of clusters was 

determined (which in all cases was 2). This was also confirmed via the dendograms. Then, the hierarchical 

cluster analysis was re-performed using two clusters and cluster membership was calculated. This method was 

repeated for each of the road sections and separately for the two curve radii.  

Following cluster analysis, which agglomerated all date across a road section, repeated measures ANOVAs 

were performed on the spot speed and lateral positions, using visibility as the independent factor.  

3 Results 

3.1 Cluster analysis 

The results for speed on the 150m radius curves are shown in Table 1, indicating the percentage of speed 

observations among the 30 participants and for each road segment that were assigned to the first or the second 

cluster respectively.  Overall, the cluster analysis did not show a difference in speed observations among these 

curves. That is to say the drivers’ speed behaviour was not substantially different negotiating the 150m curves 

under different visibility levels. 

 
Tab. 1: Speed clustering results for 150m radius curves 

Preview 
[-200,-100] [-100,0] [0,150]  [150,350] 

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 

20% 79.1% 20.9% 68.9% 31.1% 58.0% 42.0% 53.9% 46.1% 

40% 74.5% 25.5% 72.2% 27.8% 61.1% 38.9% 54.4% 45.6% 

60% 72.1% 27.9% 65.4% 34.6% 59.9% 40.1% 58.1% 42.0% 

80% 73.0% 27.0% 73.2% 26.8% 66.1% 33.9% 59.0% 41.1% 

100% 66.4% 33.6% 60.3% 39.7% 59.4% 40.6% 58.6% 41.4% 
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The values in Table 2 indicate the percentages for the lateral position observations. Here, the results did show 

a quite different behaviour of drivers negotiating the 20% preview curve compared to the rest of the scenarios. 

There is a noticeable difference especially throughout the curve section (from 0m to 150m) where the majority of 

the lateral placement observations are assigned into a different cluster for the 20% preview than for the rest of 

the preview percentages (75% v 25%). 

 
Tab. 2: Lateral position clustering results for 150m radius curves 

Preview 
[-200,-100] [-100,0] [0,150]  [150,350] 

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 

20% 58.6% 41.4% 46.8% 53.2% 75.0% 25.0% 50.3% 49.7% 

40% 38.6% 61.4% 61.5% 38.5% 35.0% 65.0% 45.1% 54.9% 

60% 45.2% 54.8% 52.0% 48.0% 36.7% 63.3% 46.2% 53.8% 

80% 49.2% 50.8% 50.4% 49.6% 34.2% 65.8% 42.9% 57.1% 

100% 44.3% 55.7% 49.1% 50.9% 35.9% 64.1% 49.9% 50.1% 

 

Regarding the clustering results for the 250m radius curves, these are shown in Table 3 and Table 4, for 

speed and lateral position respectively. In the 250m curves there is little difference between the visibility 

conditions for the speed data, however the lateral position data shows a clear difference with the 20% visibility 

condition being markedly different from the rest (82% v 17%) as measured at curve entry (0-250m). 

 
Tab. 3: Speed clustering results for 250m radius curves 

Preview 
[-200,-100] [-100,0] [0,250]  [250,450] 

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 

20% 73.2% 26.8% 68.2% 31.8% 56.2% 43.8% 26.4% 73.6% 

40% 65.0% 35.0% 70.8% 29.2% 42.2% 57.8% 38.6% 61.4% 

60% 62.7% 37.3% 74.0% 26.0% 40.6% 59.4% 39.4% 60.6% 

80% 57.3% 42.7% 74.6% 25.4% 48.9% 51.1% 32.5% 67.5% 

100% 58.6% 41.4% 70.7% 29.3% 43.4% 56.6% 33.0% 67.0% 

 
 

Tab. 4: Lateral position clustering results for 250m length curves 

Preview 
[-200,-100] [-100,0] [0,250]  [250,450] 

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 

20% 49.6% 50.4% 60.4% 39.6% 82.6% 17.4% 47.1% 52.9% 

40% 64.1% 35.9% 43.3% 56.7% 38.0% 62.0% 52.9% 47.1% 

60% 45.1% 54.9% 47.5% 52.5% 43.7% 56.3% 51.5% 48.6% 

80% 63.4% 36.6% 44.1% 55.9% 35.3% 64.7% 56.5% 43.6% 

100% 55.9% 44.1% 51.1% 48.9% 43.0% 57.0% 53.4% 46.6% 

 

Overall, the cluster analysis showed a quite different lateral positioning behaviour of drivers negotiating the 

20% preview curves compared with the ones with greater visibility levels.   

3.2 The effect of arc visibility 

From the cluster analysis it can be seen that drivers approach a curve with limited view in a different way 

compared to when presented with a full view of the curve. This is particularly so when visibility is limited to 

only a 20% preview.  However drivers approaching with more modest reductions in view do not appear to be 

adapting their speed, compared to full view. The cluster analysis focused on speed and lateral positioning 

profiles; further analysis was undertaken using spot measurements at approach, entry and apex of the curve. Data 

were inspected for normality within the groups (via the Shapiro-Wilk test) and homogeneity of variance (via the 

Levene's test). Therefore, repeated measures ANOVA were performed to test differences in driver performance 

between the two factors of Visibility (5 levels) and Radius (2 levels), with a significance level set at p<.05. 

Interaction effects were also tested.  

3.2.1 Driver speed 

There was a main effect of Radius on apex speed [F(1,29)=14.04, p<.001; Șp²=0.326], see Figure 3 whereby, 

speeds at the apex of the curve were higher in the 250m radius curve by approximately 3km/h.  A main effect of 

Visibility on speed at apex was also found [F(4,116)=2.98, p<.05]; post-hoc testing using repeated contrasts 

revealed a significant difference between 20% and 40% visibility, being around 4km/h. No additional additive 

changes in speed were found as visibility increased. There were no effects of either Radius or Visibility on 

approach or entry speeds. 



 - 7 -

 

 
 

Fig. 3: Speed at curve apex across Visibility and Radius conditions 
 

Regarding the differential between the speed on the approach tangent (200m prior to curve entry) and speed 

at the apex of the curve, a main effect of Visibility [F(4,116)=3.98, p<.01; Șp²=0.267], was found with post-hoc 

testing revealing that the difference lay solely between the 20% and 40% visibility conditions. The speed 

reduction reported for the lowest visibility curve was approximately 14 km/h (Figure 4). A main effect of Radius 

was also present [F(4,116)=4.14, p<.01; Șp²=0.371], with drivers reducing their speed more on approach to the 

lower radius curves. 

 
 

Fig. 4: Speed differential from the approach tangent to the curve’s apex 

3.2.2 Lateral position 

There was no main effect of Radius on any of the lateral position parameters. However, there were 

significant effects of Visibility on lateral position at curve approach [F(4,116)=2.54, p<.05; Șp²=0.108], curve 

entry [F(4,116)=7.57, p<.001; Șp²=0.207] and at the apex of the curve [F(4,116)=12.24, p<.001; Șp²=0.297], 

Figure 5. At all locations, lateral position on the 20% visibility curves was significantly different to that on all 

other curves such that as preview of the curve decreased, drivers tended to position themselves more towards the 

centre of the road. 
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5 Implications 
This study used a low-cost simulator to investigate a little-researched area. Whilst the simulator may not have 

the face validity of more high-fidelity facilities, we have been able to demonstrate subtle difference in behaviour 

which varies according to the road design. Low-cost simulators can be a useful first tool for road safety 

engineers to carry out behavioural research. High-fidelity (wide projection, motion-base) are often not available 

to city planners and transport engineers, due to resource restrictions. As usual in any experimental research 

made, there are some caveats to be raised at this stage, especially those relating to driver behaviour and the level 

of perceived risk in a simulated environment. A driving simulator is not the real world; nevertheless, it can still 

allow the collection of reliable data, looking for relative and not absolute changes in driver behaviour under 

different conditions.  Furthermore, the sample size of 30 is on the boundary between a small and a large sample 

size, while, regarding age and gender distribution of the participants, mostly young male drivers participated in 

the experiment. However, due to time constraints a largest sample that could be more representative was not 

feasible. Another possible limitation of the experimental design is that it is known that drivers will move away 

from an object that they perceive as an obstacle. If the obstacle is located on the left side (UK), it will cause 

drivers to move closer to other traffic [39]. 

The results from this research suggest that visual obstructions on the inner part of a rural horizontal curve can 

limit the sight distance of the driver negotiating the curve, and affect their curve negotiation performance in 

terms of lane position and speed profile. This study has not only replicated known findings relating to speed 

choice on curves, but also shown that drivers attempt (either consciously or not) not to reduce their travel speed 

unless the conditions are critical – a curve arc visibility of only 20% appears to be the tipping point. Such a cut-

off point has not been reported in the literature as yet and serves as a useful benchmark for transport engineers. 

Similarly Glennon et al. [17] found that drivers wait until they are close to the curve before beginning to adjust 

their speed, independent of the curve’s radius. The authors suggest that this reflects the desire to estimate an 

appropriate curve speed based on their own assessment of curve sharpness. Where visibility is poor, this could 

lead to even later decision making.  

The driver should have as full visibility as possible of the curve ahead in order to anticipate the severity of 

the curve and adjust their road path. Such consideration should be taken into account when designing new roads 

such that where possible a curve should be site away from landscape that might reduce visibility (banking etc.). 

For existing curves with such poor arc visibility additional speed reducing measures should be considered. For 

example, transverse bars, have been found to be effective at reducing speed on curves [1, 40]. Alternatively, the 

curve arc could be highlighted using vertical posts in order to improve accuracy in judging radius [25].    Further 

research should focus on broadening the range of curve radius investigated and including right-hand curves in 

the experimental design. 
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