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ABSTRACT 

Constitutively active mutant KRas displays a reduced rate of GTP hydrolysis via both intrinsic and GTPase-

activating protein-catalysed mechanisms, resulting in the perpetual activation of Ras pathways. We describe a 

fragment screening campaign using X-ray crystallography that led to the discovery of three fragment binding sites on 

the Ras:SOS complex. The identification of tool compounds binding at each of these sites allowed exploration of two 

new approaches to Ras pathway inhibition by stabilising or covalently modifying the Ras:SOS complex to prevent 

the reloading of Ras with GTP. Initially, we identified ligands that bound reversibly to the Ras:SOS complex in two 

distinct sites, but these compounds were not sufficiently potent inhibitors to validate our stabilisation hypothesis. We 

conclude by demonstrating that covalent modification of Cys118 on Ras leads to a novel mechanism of inhibition of 

the SOS-mediated interaction between Ras and Raf, and is effective at inhibiting the exchange of labelled GDP in 

both mutant (G12C and G12V) and wild type Ras. 

 



INTRODUCTION 

Members of the Ras family of small GTPases function as simple molecular switches. Ras is transformed into its 

active, GTP-bound state by interaction with a guanine nucleotide exchange factor (GEF) such as SOS, which 

catalyses release of GDP and allows binding of the more abundant GTP. In this active conformation, Ras is 

recognised by a range of direct effectors such as Raf, PI3 kinase and Ral proteins, which in turn can drive 

proliferation, survival and metastasis. Under normal physiological conditions, the intrinsic GTPase activity of Ras 

hydrolyses GTP back to GDP, causing inactivation. This process is significantly accelerated by GTPase activating 

proteins (GAPs) which can increase the intrinsic hydrolysis rate by up to 1000-fold. Mutations in the KRAS 

oncogene are present in a significant proportion of human tumors. Estimates of mutation prevalence vary by tumor 

type, however, they are known to be particularly associated with carcinomas of the lung, colon and pancreas.1 

Aberrant KRAS signaling drives an aggressive proliferative phenotype that is resistant to therapy and results in poor 

prognosis. These mutations, most commonly G12D and G12V, impair the ability of Ras to hydrolyse the terminal 

phosphate of GTP, limit sensitivity to GAP stimulation, and result in perpetual activation of Ras pathways. 

 Ras may be considered the archetypal ‘intractable target’ in oncology. Despite its characterisation over 30 years 

ago, reports on agents that directly target Ras, or indeed any GTPase, are limited.2 Most drug discovery efforts have 

been directed against its more tractable downstream effectors, for example inhibitors of the kinases Raf and MEK.3 

Guanine nucleotides exhibit picomolar affinity for Ras; therefore competitive binding at the nucleoside site is 

unlikely to be feasible, in contrast to conventional ATP mimetics in the field of kinase inhibition. It is possible that 

binding to Ras in an allosteric manner may promote loss of nucleotide, and indeed such a mechanism has been 

speculated for a reported inhibitor of the related GTPase Rac1, although no structural evidence for this is available4 

and no obvious structural opportunities exist for Ras. A small molecule which is able to bind to Ras-GDP and block 

SOS binding should be able to limit Ras activation. This approach to Ras inhibition via disruption of a key protein-

protein interaction has recently achieved validation by two independent groups. Sun et al. have reported a diverse 

array of small molecules that bind in a hydrophobic pocket located between the 2 helix of switch II (residues 60-

74) and the central  sheet of KRas (G12D).5 These were identified using an NMR-based screen of 11,000 fragments 

using 15N-labelled protein, with the binding mode confirmed by co-crystallization. 

 Simultaneously, Maurer et al. reported structurally distinct small molecules that also bind to this pocket.6 

Again, an NMR screen of 3,300 fragments using full-length KRas4B (G12D) yielded hits whose structures in 



complex with KRas were confirmed by X-ray crystallography. Both approaches have demonstrated that binding at 

this site in the affinity range of 100s of M is sufficient to inhibit the SOS-mediated activation of KRas. Since 

oncogenic KRas is locked in its active GTP-bound state, it is unclear whether such a strategy that prevents activation 

might be efficacious in tumors harbouring mutations in KRas, although a role in those tumors with active signalling 

through wild type Ras is plausible. Recent publications by Ostrem et al. and Lim et al. has shown that inhibition of 

the GTPase activity of the KRas(G12C) mutant can be achieved by irreversible binding of cysteine-reactive small 

molecules. Compounds are described which react close to the nucleotide binding site at Cys12, and either 

allosterically control the GTP affinity of the mutant7 or directly block the ability of GTP to bind.8 The approach 

relies on this specific KRas mutation to introduce the reactive cysteine thiolate, resulting in compounds which, while 

selective over wild type Ras, cannot inhibit other Ras mutants and which may be susceptible to resistance. 

 An alternative approach to preventing Ras activation may be envisioned in which a small molecule is able to 

bind at the interface of the Ras:SOS complex. Conceptually, such an agent might be able to stabilise these partners, 

inhibiting dissociation of SOS, and so prevent reloading of Ras with GTP. In theory this avoids some of the 

challenges implicit in other approaches, such as nucleotide competition, requiring inhibition of larger protein-protein 

interfaces, or mutant specificity, and might offer a more tractable binding pocket than the relatively featureless Ras 

protein alone. Precedent for this approach emerges from the observation that the natural product Brefeldin A (BFA) 

binds to a related small GTPase, Arf, and its exchange factor, ARNO.9 In this complex, GDP is also present, 

resulting in a quaternary complex where BFA is located in a hydrophobic pocket at the Arf-ARNO interface, one-

third of which is contributed by ARNO and two-thirds by Arf. BFA acts as an uncompetitive inhibitor that stabilises 

an abortive Arf-GDP-ARNO complex resulting in inhibition of the secretory pathway in eukaryotic cells.10 

 Compounds have recently been reported by Burns et al. which bind to the Ras:SOS complex and increase the 

rate of SOS-mediated nucleotide exchange.11 This is the reverse of the desired effect for an oncology therapy but it is 

notable that a small molecule can affect this pathway. 

 Although there is no reported structure of KRas in complex with an exchange factor, the structure of the closely 

homologous isoform HRas in 1:1 complex with a catalytic domain construct of SOS is known.12 Inhibitors of 

activation of KRas were our primary goal owing to the greater frequency of oncogenic mutations in KRas than for 

other Ras isoforms, however, molecular modelling predicted high homology to HRas in complex with SOS, so this 

was utilized as a surrogate. Indeed, in the previously described KRas fragment screen, inhibitors were reported to 



cross-react with both wild type K- and HRas.5 We therefore sought to use the HRas:SOS binary complex to screen 

for potential ligands via X-ray crystallography, through a process of soaking ‘cocktails’ of small fragments into 

crystals of the complex. Such an approach has been reported in inhibitor design against the bacterial enzyme 

nucleoside 2-deoxyribosyltransferase.13  

 

RESULTS 

X-ray screening of a fragment library 

To obtain a crystal system suitable for X-ray fragment screening, a novel co-expression construct was generated 

comprising a C-terminal truncated HRas (1-166) and the catalytic domain of SOS encompassing the Ras exchanger 

motif and cdc25 domain (564-1049). This heterodimeric protein complex was stable during purification and used to 

reproduce the structural system described by Boriack-Sjodin et al., wherein SOS has HRas bound to its catalytic 

site,12 while the allosteric Ras binding site described by Margarit et al. is unoccupied.14 

 A library of 1160 fragments was organized into four-compound cocktails using an in-house shape fingerprint 

tool to maximize the shape diversity of compounds in each cocktail.15 Protein crystals were soaked in a stabilizing 

solution containing a final concentration of 5 mM of each fragment for 1 hour prior to being flash frozen and stored 

for data collection using a synchrotron radiation source. Datasets were processed, structures solved and initial 

refinement carried out using in-house software pipelines. Electron density maps were visually inspected to identify 

fragment binding. We observed significant attrition where a large number of compound cocktails were observed to 

abolish diffraction from the soaked HRas:SOS crystals. Of the crystals that survived, 25% were found to have small 

molecules present at one or more binding sites on SOS and, more intriguingly, at the interface between HRas and 

SOS. We were able to determine binding affinities for the fragments identified by crystal soaking using TROSY-

HSQC solution NMR titrations with stable isotope-labeled HRas:SOS complex. A full description of the 

experimental methods used can be found in the Supplementary Results section. Crystallographic data collection and 

refinement statistics are detailed in Supplementary Table 1. 

 This paper describes three distinct small molecule binding sites that were identified on the complex, 

summarized in Figure 1.  



 

Figure 1 | Three fragment binding sites on the HRas:SOS complex. HRas in green, SOS in lilac. Fragment 

binding site A (gold) is located on SOS. Site B (red) is at the HRas:SOS binding interface. On the opposite face of 

the complex, covalent binding site C (black) is found on HRas. 
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Figure 2 | Fragments binding at HRas:SOS site A. HRas colored green, SOS in lilac. Where side chain 

movements occur on ligand binding, their original positions in the HRas:SOS unbound structure 1BKD are shown in 

dark purple for comparison, with arrows indicating direction of movement. (a) Binding of 1 results in no significant 

side chain movements. (b) The binding of 2 also causes no significant side chain perturbation. (c) Upon binding of 3, 

side chain reorganization occurs at the front of the pocket opening a channel to accommodate the methylsulfanyl. (d) 

Simultaneous binding of 4a and 4b is accompanied by movement of Phe890S, opening up the back of the pocket. 

 

Fragment binding site A on SOS 

The fragment binding site we identified on the SOS protein (site A in Fig. 1) is a flexible bowl-shaped pocket lined 

with several residues showing mobile side chains. Upon binding of 1 to the SOS site A (Fig. 2a), no significant side-

chain movements are observed relative to the unbound HRas:SOS structure (PDB 1BKD). Binding appears to be 



driven by aromatic ring interactions such as the edge-face interactions of the ligand thiazole with the phenyl ring of 

Phe890 of SOS (‘Phe890S’)16 (~3.6 Å), and a ʌ-stacking conformation between His905S (~3.8 Å) and the ligand 

phenyl ring. 

 Binding of 2 in site A occurs without significant perturbation of protein side chains (Fig. 2b). The key 

interaction is a hydrogen bond between the piperidine nitrogen and Asp887S (2.8 Å). The bromine atom of 2 is 

situated in a lipophilic pocket near His905S. 

 Binding of 3 at site A appears to be ‘shape-driven’ (Fig. 2c). An edge-face interaction is observed between 

Tyr884S and the ligand phenyl (~4 Å), and a ʌ-stacking interaction between Phe890S and the triazine (~3.7 Å). 

Phe890S is displaced by ~1.8 Å and rotated compared with the unbound structure 1BKD. The basic nitrogen of the 

ligand piperidine forms a hydrogen bond with the carboxylic acid of Asp887S (3.0 Å). Lys898S changes from a dual 

to a single occupancy state, moving 4.3 Å to avoid a steric clash with the methylsulfanyl group of 3, with 

concomitant movement of Glu902S which forms a salt bridge with Lys898S (4.0 Å). 

 The crystal structure solved for 4a and 4b is notable because it comprises two fragments from the same cocktail 

which each bind to site A only in the presence of their partner (Fig. 2d). An NMR-derived pKD was measurable for 

each fragment independently, however, given the small number of shifts observed, especially for 4b, the binding 

sites monitored in the solution NMR experiments may not exactly coincide with that of the partnered binding 

observed in the crystal structure. In this structure Phe890S rotates 6.3 Å out towards solvent opening up a lipophilic 

pocket at the back of site A which is filled by the 4a bromine. 4b is stacked between His905S and the pyrrolidine of 

4a, whilst 4a is sandwiched between Phe890S and Tyr884S, and lies perpendicular to the plane of 4b. 

 Binding site A corresponds to the site recently reported by Burns, et al.11 The three X-ray crystal structures they 

describe (4NYI, 4NYJ, 4NYM) show minimal side chain movements in site A compared with the unbound structure 

of SOS, and correspond most closely with our structures of 1 and 2 in complex with HRas:SOS (Figs. 2a & 2b). 
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Figure 3 | Fragments binding at HRas:SOS site B. HRas colored green, SOS in lilac. Where side chain 

movements occur on ligand binding, their original positions in the HRas:SOS unliganded structure are shown in dark 

green for comparison. (a) 5 binds in site B at the interface between HRas and SOS, with resultant movements in 

HRas protein side chains shown. (b) 6 binding at the same location causes a larger shift in Tyr71R opening up a new 

pocket. (c) The Tyr71R side chain shows a wide range of conformations, as illustrated by an overlay of the KRas 

unbound structure 4EPR (brown), HRas:SOS unliganded structure (dark green) and HRas:SOS:6 complex structure 

(light green). (d) 5 (orange carbon atoms) binds in site B between the HRas (green) and SOS (lilac) surfaces in the 

HRas:SOS complex. In comparison, the KRas ligands 75 (magenta) and 86
 (cyan) bind to KRas site 2 and place side 

chains into the space SOS would occupy in the HRas:SOS complex. 

 

 

 



Fragment binding site B at the HRas:SOS interface 

The binding site identified at the interface of HRas and SOS (‘site B’) corresponds to a site previously described in 

studies of uncomplexed Ras protein5,6 (‘site 2’). However, while Ras ligands 7 and 8, which were identified in these 

studies, inhibit SOS-mediated nucleotide exchange by preventing the binding of SOS to Ras, the fragments 5 and 6 

we identified as binding to site B interact with both Ras and SOS, and we hoped to show that this additional binding 

interaction may serve to stabilise the protein-protein interaction. 

 Fig. 3a shows 5 in complex with HRas:SOS occupying the largely solvent-inaccessible site B at the HRas:SOS 

interface. Hydrogen bonding interactions are observed between the aniline of 5 and the backbone carbonyls of 

Leu6R (3.2 Å) and Asp54R (3.0 Å). The carbonyl of the acylsulfonamide group forms an H-bond with the backbone 

NH of His911S (2.8 Å). An edge-face interaction between the phenyl ring of 5 and His911S is also observed (~3.5 

Å). The hydroxyl group of Thr74R is positioned within H-bonding distance (2.8 Å) of one of the S=O bonds of the 

acylsulfonamide. The cyclopropyl ring is positioned between to Leu56R (~3.4 Å) and Tyr912S (~3.2 Å). A 

hydrogen-bonded tyrosine bridge (3.2 Å) between the two phenols of Tyr912S and Tyr71R links HRas and SOS. 

Comparison of the unbound structure (dark green) with this ligand-bound Ras:SOS complex shows limited 

movement for the majority of protein side chains in this region, with some notable exceptions. Thr74R moves 2.4 Å, 

making room for the ligand phenylsulfonamide. A small movement in the associated -helix (residues Gln70R-

Thr74R), opens up the binding pocket slightly. Tyr71R is displaced by 1.1 Å, accommodating the cyclopropyl group 

of 5, however, it remains within H-bonding distance of Tyr912S. In contrast to HRas, SOS residues are unperturbed 

upon binding of 5. 

 Synthesis of analogues of 5 led to acylsulfonamide 6 (Fig. 3b). Similar interactions are seen with Leu6R, 

Asp54R, and His911S. Compared with 5, the distance between Thr74R and the S=O group of 6 increases to a range 

no longer conducive to hydrogen bonding. Lys5R rotates and moves ~4 Å. However, most notable is the movement 

of Tyr71R, which flips from the position observed in the unbound structure, where it forms a tyrosine bridge with 

Tyr912S, to an alternative location at the back of the pocket.  This likely results from the increased steric bulk of the 

piperidinone ring of 6 compared with the isopropyl of 5. The Tyr71R phenol OH moves 8.1 Å, opening up a new 

cavity which is occupied by a number of water molecules. Figure 3c shows the wide range of movement observed 

for the Tyr71R side chain amongst Ras structures. In unbound KRas (brown) the phenol group overlaps with site B. 

In the HRas (dark green):SOS (lilac) complex, Tyr71R forms a tyrosine bridge with Tyr912S and creates a pocket 



between the two proteins into which compounds such as 5 may bind. Increasing the size of the small molecule 

ligand, such as in 6 (grey), is accompanied by further movement of Tyr71R (light green), opening up a larger binding 

pocket between the two proteins. Disruption of the HRas:SOS tyrosine bridge does not significantly alter the binding 

affinity of the fragments (Table 1). 

 X-ray crystal structures of ligands binding solely to Ras have been published since the work described in this 

paper was completed.5,6 Comparison of published crystal structures with that of the HRas:SOS:5 complex shows that 

site B corresponds with the relatively shallow ‘binding site 2’ of the published fragments 7 and 8 on KRas (Fig. 3d). 

Compound 5 interacts with HRas through its acylsulfonamide motif, while the corresponding space is left 

unoccupied by 7 and 8, which instead extend beyond the confines of site B and place polar groups in the spaces 

occupied by Tyr912S and His911S in the HRas:SOS complex. The resulting steric clash with SOS seems likely to 

contribute to the inhibition of nucleotide exchange that has been reported for 8.6 

 

The challenge of obtaining biological activity 

While we demonstrated binding of fragments at sites A and B by X-ray crystallography, and were able to quantify 

their binding affinities by NMR, this did not translate into a measurable effect on nucleotide exchange (vide infra). 

This was not surprising, since we anticipated more potent compounds would be required to show functional activity. 

We synthesized analogues of 1 and 5, varying both substituents of the sulfonamide. The most interesting compound 

identified was 6, where the site B binding pocket was expanded. We also made analogues of triazine 3, varying the 

heteroatoms in the triazine ring, switching the thiomethyl group, and varying the piperazine side chain. We found 

that the basicity of the piperazine ring was critical to maintain the high levels of solubility required for screening and 

crystallization at high concentrations. However, after several rounds of chemistry optimization, we were unable to 

improve the affinity of these hits significantly or demonstrate that such small ligands were measurably able to 

stabilize the Ras:SOS complex.  

 A growing body of literature suggests that use of a ligand which binds covalently to a protein target may offer a 

way to permanently deactivate protein function.7,8,17,18,19 Considering the picomolar affinity of Ras for GDP, we 

hypothesised that an irreversible inhibitor may afford the only realistic chance of inhibiting GTPase activity. We 

identified Cys118R in the HRas:SOS complex as a potentially reactive protein side chain proximal to the GDP 



binding site on HRas (site C in Fig. 1) and set out to discover fragments which would irreversibly bind to it. This 

cysteine residue is conserved between HRas and KRas. 
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Figure 4 | Fragments binding at HRas:SOS site C. HRas colored green, SOS lilac. Where side chain movements 

occur on ligand binding, the relevant side chains from the HRas:SOS unbound structure 1BKD are shown in dark 

green for comparison. (a) Covalent binding of 9 (represented by a magenta line) restrains the otherwise flexible side-

chain of Cys118R into a single conformation. (b) Covalent binding of 10 causes Cys118R to adopt a different side-

chain rotamer to that observed on binding of 9, allowing the targeting of a new growth vector, marked by *. (c) The 

meta-substituents of 11 (dark grey) and 12 (light grey) follow a similar path down a lipophilic channel on Ras. (d) 

Overlay of HRas:SOS (green/lilac) in complex with 12 (grey) on the PDB KRas structure 4DSO shows that 12 

occludes the GDP (cyan) binding site on KRas (brown). A dramatic shift is seen in the position of Cys118 of KRas 

compared with Cys118R of the HRas:SOS:12 complex. 

 



 

Irreversible binders at HRas:SOS site C 

A library of 400 compounds was selected, comprising members with fragment-like properties20 (MWt  300, cLogP 

1-3, cLogD -1 to 3,  2H-bond donors,  6 H-bond acceptors,  2rings,  6 rotatable bonds and 20 heavy atoms) 

and potentially reactive functional groups. These were identified from reports in the literature21 and by mining the 

data from an in-house glutathione reactivity assay,22 in which compounds with half-lives in the range of 15-3000 

minutes were judged to be suitably reactive. Typical chemotypes represented in the library are shown in Table 2. 

Compounds were screened by mass spectrometry, by observing the mass increase of the HRas:SOS complex 

following compound addition. 

 We selected the reactive N-ethylmaleimide (NEM) group as an ideal electrophilic ‘warhead’ to bind to 

Cys118R. Other warheads were deemed either insufficiently reactive (giving incomplete cysteine adduction) or too 

reactive (reaction with multiple cysteine or histidine residues on the HRas:SOS complex) to progress. Using X-ray 

crystal structures of the HRas:SOS:inhibitor complex to guide design, we anticipated that building constructive non-

covalent binding interactions with the protein (i.e. increasing Ki) might allow replacement of the maleimide with a 

less reactive motif (i.e. reducing Kinact) whilst retaining overall inhibitory activity.23 Substitution of the maleimide 

double bond offered the possibility of modulating the electrophilicity of the Michael acceptor warhead, once 

additional non-covalent interactions had been identified. 

 Promising hits from the mass spectrometry screen of reactive fragments included N-substituted maleimides 9 

and 10. X-ray crystal structures obtained subsequently showed 9 (Fig. 4a) and 10 (Fig. 4b) binding with a distance 

of 1.8 Å between the ligand C-3 and the Cys118R sulfur atom, and continuous electron density, confirming that a 

covalent bond is formed between ligand and protein (Supplementary Fig. 1). Interestingly, the pyrrolidine-2,5-dione 

rings in 9 and 10 were observed to adopt different orientations. The C-4 atom in 10 presented an ideal vector for 

growing the fragment into a lipophilic channel (indicated with * in Fig. 4b), and a set of analogues was synthesized 

to vary at this position. Analogues 11 and 12, which carry a meta-substituted phenyl ring at C-4, were successfully 

crystallized with HRas:SOS, adopting similar binding modes in which the C-4 substituent extends down a lipophilic 

groove adjacent to Glu942S (Fig. 4c). With a meta-substituent effectively anchoring the pendant phenyl group in one 

orientation, compounds 13 and 14 were designed to probe interactions with Glu942S, via a bis-3,5-substituted ring. 



 Comparison of the published KRas:GDP crystal structure 4DSO and our HRas:SOS structures shows 

reorganization of the GDP binding pocket following association of Ras and SOS (Fig. 4d). This reconfiguration 

involves Cys118R, which is otherwise buried in the interior of the KRas:GDP complex where it may be somewhat 

protected from electrophiles. When SOS binds to Ras and displaces GDP, the Cys118R residue is exposed to solvent, 

rendering it more vulnerable to reaction with 9-14. Once such a reaction has occurred, the covalently-bound 

fragment partly occludes the nucleotide binding site and could potentially also prevent reorganization of the 

Cys118R loop of Ras, thus locking the protein into the catalytically inactive Ras:SOS complex.  

 As we had hoped, fragments which covalently modified HRas in the crystal environment also demonstrated 

functional activity in preventing wild type KRas activation. Due to the spectral properties of these compounds it was 

not always possible to use previously-reported methods for monitoring nucleotide exchange with MANT-labeled 

GDP6 as many of the compounds interfered with the excitation/emission spectra. Therefore, a novel homogeneous 

time-resolved fluorescence (HTRF) assay was designed to profile this series. In this homogenous assay, biotin-

KRas:GDP was labeled with streptavidin europium and GST-Raf was labeled with anti-GST XL665. Activation of 

KRas was initiated with the addition of SOS and GTPS. Upon binding of the active GTPS-bound 

streptavidin:biotin-KRas to Raf-GST:Anti-GST XL665, the europium donor and XL665 acceptor are brought into 

close proximity resulting in an increased acceptor emission at 665 nm (Supplementary Fig. 2). 

 Compounds 10-14 were pre-incubated with either KRas:GDP, SOS alone or a KRas:GDP:SOS mixture for 2.5 

hours to allow the compound to react, then inactivated by the addition of dithiothreitol (DTT). All samples were then 

made up to contain the same concentrations of KRas:GDP and SOS, and incubated with streptavidin-europium for 4 

hours. In a separate reaction GST-Raf was incubated with anti-GST XL665. The exchange reaction was initiated by 

the addition of GTPS and GST-Raf. The activation of KRas was then monitored via HTRF between the 

streptavidin-europium and XL665 upon binding of active KRas to GST-Raf. 

 Complete inhibition of KRas activation was achieved only when 10-14 were pre-incubated with 

KRas:GDP:SOS (Fig. 5), which supports the hypothesis that Cys118R becomes more accessible during the 

conformational changes which occur during SOS-mediated nucleotide exchange. Neither pre-incubation of 11-13 

with KRas:GDP with subsequent addition of SOS nor pre-incubation with SOS followed by addition of KRas:GDP 

led to significant inhibition of the Ras-Raf interaction. A modest degree of KRas inhibition (~40-50%) was observed 

when 10 and 14 were pre-mixed with KRas alone. This may be due to the increased reactivity of the Michael 



acceptors in these molecules causing them to behave in a less specific manner, as we had observed during the initial 

irreversible fragment screening campaign; 10 is an unsubstituted maleimide and 14 has two strong electron 

withdrawing groups on its phenyl ring. The inhibitory effects of 10-14 could be eliminated by the addition of DTT (1 

mM) during the pre-incubation step, presumably because DTT reacted with the maleimide warhead before it was 

able to irreversibly modify the KRas:SOS complex. 

 

 

Figure 5 | Inhibition of KRas:SOS functional activity by irreversible inhibitors. Compounds 10-14 (200 µM) 

were pre-incubated with either GDP-loaded Biotin-KRas alone (blue), GDP-loaded biotin-KRas plus SOS (red) or 

SOS alone (green). All samples were then made up to contain the same concentrations of KRas:GDP and SOS. 10-14 

caused complete inhibition of functional activity when pre-mixed with KRas:GDP and SOS together, but modest or 

no inhibition when pre-mixed with KRas:GDP or SOS alone. No inhibition was observed with non-covalent 

compounds 1, 3 or 5 (data not shown). Error bars show one standard deviation. Comparison of KRas and KRas:SOS 

data using the unpaired T-test shows all results to be statistically significant, p<0.0001 (****). Full data are shown in 

Supplementary Table 2. 

 

Site C irreversible binders show time-dependent inhibitory activity against both wild type and mutant KRas  

The inactivation of wild type KRas, KRas(G12V) and KRas(G12C) was monitored using a MANT-dGDP assay and 

a fluorescence assay-compatible compound, 12. Initially, the KRas constructs were pre-equilibrated with MANT-

dGDP to replace the bound unlabelled nucleotide which co-purifies with KRas. All three constructs then underwent 

SOS-mediated nucleotide exchange which resulted in an increase in fluorescence upon MANT-dGDP binding. At 



equilibrium, the reaction cycled between the MANT-dGDP and the unlabelled nucleotide. Upon the addition of 12 

(200 M), time dependent inactivation of each of the KRas constructs was observed (Fig. 6). An excess amount of 

unlabelled GDP was included as a control to compete with the MANT-dGDP resulting in a loss of fluorescence. 

Since the rate of reduction of fluorescence is similar with the addition of either excess GDP or irreversible inhibitor 

12, this supports the hypothesis that nucleotide exchange is driven in both cases by the rate of association of 

Ras:SOS. If excess GDP is present, SOS associates with Ras, the MANT-dGDP is displaced, and is then replaced 

with unlabelled GDP when SOS dissociates. If 12 is present when SOS associates with Ras and displaces MANT-

dGDP, the resulting KRas:SOS, KRas(G12V):SOS or KRas(G12C):SOS complex reacts with the irreversible 

inhibitor at Cys118R, forming a dead-end complex which prevents the subsequent re-binding of MANT-dGDP. 

 

Figure 6 | Inhibition of SOS-mediated MANT-labelled nucleotide exchange by 12 in a range of Ras mutants. KRas wild 

type, KRas(G12V) and KRas(G12C) were equilibrated with MANT-dGDP which is environmentally sensitive and significantly 

increases in fluorescent quantum yield when protein bound. 12 was added (200 µM) and inactivation was monitored over time. A 

reduction in fluorescence was observed against all three KRas constructs (red, blue and purple lines). An excess of GDP was used 

as a control to compete off the MANT-dGDP (green line). Color-coded error bars for measurements are also shown. Full data are 

shown in Supplementary Table 3. 

 

DISCUSSION AND CONCLUSIONS 

Our work with non-covalent fragments showed that it was possible to characterize compounds from multiple series 

binding on SOS and at the HRas:SOS interface, however, none of these compounds were sufficiently potent to show 



functional activity in the Ras:Raf HTRF assay. Synthesis of analogues of 1, 3, 5 and 6 led to compounds with similar 

binding affinities to the parent fragments and unproductive SAR. The report by Burns et al. that small molecules 

which bind at SOS site A cause an increase in the rate of SOS-mediated nucleotide exchange11 was not corroborated 

by experiments with our fragments, suggesting that more dramatic changes or hybridization of series may be 

required to achieve sufficient binding affinity. While we were not able to detect functional biological activity for the 

probes identified at sites A and B, we believe that our observations of specific ligandable24 interaction points may 

suggest a potential way forward using larger molecules such as macrocycles25 or constrained peptides.26 The distance 

between the closest atoms on non-covalent fragments bound in sites A and B is 9.1 Å. Precedent for linking distant 

fragment sites suggests that connecting two weak fragments can bring very large increases in potency, but is most 

likely to succeed when fragments are significantly closer together than sites A and B. If fragment ligands for sites A 

and B could be iteratively grown towards each other, however, this strategy may be more likely to succeed.27 

 While our efforts to inhibit Ras by stabilization of the Ras:SOS complex by fragments binding in a reversible 

manner were unsuccessful, we showed that reactive fragments which covalently modify site C near to the nucleotide 

binding site were effective Ras inhibitors. We demonstrated complete inhibition of KRas:SOS functional activity 

following reaction of maleimides 10-14 with Cys118R, a previously undescribed method of inhibition of Ras. A 

synthetic chemistry campaign led to fragments which showed a consistent binding mode at site C, and resulted in 

inhibition of wild type KRas in a novel HTRF assay measuring the Ras-GTP:Raf interaction. Several potential 

vectors were identified for further growth of these inhibitors; for example, along the lipophilic channel from the meta 

position of phenyl groups in 11-14, or from the maleimide N-substituent towards SOS. 

 An important objective for a covalent approach to Ras:SOS inhibition is to reconcile the need to measure 

variations in potency of molecules – and hence structure-activity relationships – with the requirement for a warhead 

of high reactivity necessary to observe any inhibitory activity. With the fragment series based on maleimides, 

although it was possible to measure potency and inhibition of nucleotide exchange, this measure was driven largely 

by Kinact, and small changes in Ki were difficult to detect. The determination of Ki changes is important to assist the 

design of more potent, but less reactive inhibitors. Tuning the reactivity of the covalent modifier by modulating the 

electrophilicity of the Michael acceptor warhead could potentially be achieved by using an electron-donating linker 

such as ether or amine. Kathman et al. recently published an example of this approach being used successfully 

against a cysteine protease.28 



 Our work has explored three small molecule binding sites on the Ras:SOS complex, and details synthetically 

accessible small molecule probes that bind at each site. We demonstrated inhibition of KRas functional activity with 

compounds which bind irreversibly at site C, and showed that covalent binding with HRas in a protein crystal 

environment translates to nucleotide exchange inhibition in the more oncology disease-relevant isoform KRas. 

Furthermore, this mechanism of KRas inactivation appears to be applicable to mutant forms of KRas which also 

share a Cys118 residue, such as KRas(G12C) and KRas(G12V). Although significant work remains to optimize the 

biological activity of the compounds we have described at site C, our discoveries open the way to a new strategy to 

target aberrant Ras signalling by intervening in the SOS-mediated activation of Ras. 
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Table 1 | Structure and NMR binding KD of HRas:SOS ligands. The crystal structures for HRas:SOS:compound 

complexes are deposited in the Protein Data Bank (PDB, http://www.rscb.org) under the accession codes above. 

Values for KD determined by NMR chemical shift mapping are shown with the standard error of the mean for each 

measurement. a Significant precipitation was observed. b 4a and 4b only bound when both ligands were present in the 

same cocktail. c KD measurements were not generated for the literature compounds 7 & 8, which bind to Ras alone, 

or covalently bound compounds 9 – 14. d See reference 5. e See reference 6. 

  



 

Table 2 | Examples of reactive functional groups represented in the covalent fragment library. R indicates any 

functional group.a See reference 21. b See reference 22. 
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