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S1 Lattice Thermal Conductivity Model  29 

In order to derive additional physical insight into our results and relate them to experiments 30 

at lower temperatures and pressures, we develop a simple model of the variation of lattice 31 

thermal conductivity with density and temperature 32 
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where k(Ω,T) is the lattice thermal conductivity at the mean atomic volume Ω and 34 

temperature T, 35 
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is the Liebfried-Schlömann relation, with M the mean atomic mass, θ  the Debye 37 

temperature, γ the Grüneisen parameter, kB the Boltzmann constant, and !  the Planck 38 

constant divided by 2π (Roufosse and Klemens, 1974).  Since different derivations yield 39 

different values for the numerical pre-factor, but equivalent functional dependencies of the 40 

physical properties, we retain the coefficient A as a parameter of order unity to be 41 

determined (Roufosse and Klemens, 1973; Julian, 1965). The function f is based on the 42 

theory of Roufosse and Klemens (1974) and accounts for saturation. It is given by 43 
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for x>1 and is equal to unity for x<1. TS is the temperature at which the phonon mean free 45 

path approaches the inter-atomic spacing  46 
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We determine the values of the coefficients A=1.60 and B=0.91 by fitting to our first 48 

principles results and take values of all other parameters from a thermodynamic model 49 

(Stixrude and Lithgow-Bertelloni, 2011).  For example, we find TS = 960 K for MgSiO3 50 

perovskite at the density of the core-mantle boundary (5.29 gcm-3) and a saturated value 51 

for the lattice thermal conductivity in the limit T  >> TS of 5.7 Wm-1K-1. The isochoric heat 52 

capacity C accounts for the temperature dependence of phonon population at 53 

temperatures below the Debye temperature, and is important for comparing with 54 

experimental data near room temperature.  55 

S2 Scaling Relation 56 

To estimate the lattice thermal conductivity of CaSiO3 perovskite, FeSiO3 perovskite and 57 

FeO wüstite from our values for the magnesium end-members, we use the scaling derived 58 

from the Liebfreid-Schlömann relation  59 
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where v is the Debye velocity, subscript 2 refers to the phase whose lattice thermal 61 

conductivity is being estimated and subscript 1 refers to a magnesium end-member: 62 

MgSiO3 perovskite in the case of CaSiO3 perovskite and FeSiO3 perovskite and MgO 63 

periclase in the case of FeO wüstite. Values of all physical parameters were computed 64 

using a thermodynamic model (Stixrude and Lithgow-Bertelloni, 2011). For illustration, the 65 

values of k2/k1 obtained at core-mantle boundary conditions are: CaSiO3 perovskite (1.02), 66 

FeSiO3 perovskite (0.65), and FeO wüstite (0.41). 67 

S3 Influence of Iron Impurities 68 

The influence of iron impurities on lattice thermal conductivity is approximated using the 69 

theory of Klemens (1960) and Padture and Klemens (1997), which estimates the lattice  70 



thermal conductivity of a binary solid solution as 71 
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where ωS is the phonon frequency where the mean free path is equal to that due to the 73 

solute atoms, ωD the Debye frequency and kV the lattice thermal conductivity of the solid 74 

solution in the absence of impurity scattering (i.e. the Voigt average of the two end-75 

member values) given by 76 

 k
V
= (1− x)k

1
+ xk

2
        (S7) 77 

where k1 and k2 are the lattice thermal conductivities of the component end-members, and 78 

x the mole fraction of component 2. 79 

   Based on Eq. (17) of Klemens (1960) and replacing the Debye frequency with the 80 

appropriate expression involving the Debye velocity and atomic volume we obtain 81 
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where ε is related to the difference in the masses of the two component end-members M1 83 

and M2 84 
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where M is the mean atomic mass of the solid solution. Substituting Eq. (S2) [LARS: 86 

Please check this the original Eq. S5 no longer exists] for kV into (S8) 87 
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where the second ratio on the right-hand side is related to TS (S4 is no longer the same 89 

expression, so is this true? Yes.)  90 
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Eqs. (S6) and (S11) show that the effect of scattering due to impurities increases with 92 

decreasing temperature, increasing mass difference and increasing impurity 93 

concentration. In the lower mantle impurity scattering is weak, because the temperature is 94 

high: T  >> TS  so that ωS  >> ωD,  arctan(ωD/ωS) ≈ ωD/ωS and kS ≈ kV (Eq. (S6)). We note that, 95 

in his application, Klemens (1960) focused on the opposite, low-temperature, strong-96 

scattering limit, for which arctan(ωD/ωS) = π/2 and kS ∝ T
-1/2, assuming kV ∝ T

-1.  97 

   Taken together, Eqs. (S6), (S7) and (S11) can be used to estimate the lattice thermal 98 

conductivity of iron-bearing mineral phases. For example, using this method the lattice 99 

thermal conductivity of (Mg0.94Fe0.06)SiO3 perovskite is estimated to be 3 % less than that 100 

of the pure magnesium end-member. The effect of impurity scattering is somewhat larger 101 

for (Mg0.8Fe0.2)O ferropericlase, because of the larger mass difference and more 102 

concentrated solution. Its lattice thermal conductivity is found to be 21 % less than that of 103 

the pure magnesium end-member.  We note that while our knowledge of the influence of 104 

impurities on thermal conductivity is still uncertain and requires further experiments, the 105 

model outlined here has been tested on similar systems including garnets (Padture and 106 

Klemens, 1997, Marquardt et al., 2009), and predicts a value for (Mg0.8Fe0.2)O at 2000 K 107 

and 14 GPa (7. W m-1 K-1) that is identical to that of a more elaborate model that contains 108 

a free parameter fit to experimental data (Dalton et al., 2013). 109 

 S4 Heat-flux Analysis 110 

The properties of the thermal boundary layer are related by (Jeanloz and Richter, 1979; 111 

Davaille and Jaupart, 1993) 112 

 Q = bk
αg

κv

!

"
#

$

%
&

1/3

ΔT 4/3
=
kΔT

δ
       (S12) 113 



where k is the thermal conductivity, α the thermal expansivity, g the gravitational 114 

acceleration, κ the thermal diffusivity, and ν the kinematic viscosity, ΔT the temperature 115 

contrast across and δ the thickness of the thermal boundary layer. The coefficient b is 116 

empirically determined and equal to 0.1636. Thermodynamic properties at core-mantle 117 

boundary conditions were determined from a thermodynamic model (Stixrude and 118 

Lithgow-Bertelloni, 2011), while values for the kinematic viscosity were taken from recent 119 

first-principles calculations (Ammann et al., 2010). 120 

   Constraints on the temperature contrast across the core-mantle boundary are based on 121 

estimates of the mantle isentrope (derived from extrapolation of the mantle temperature 122 

from constraints at 660 km depth to the core-mantle boundary (Brown and Shankland, 123 

1981; Stixrude and Lithgow-Bertelloni, 2011)) and the temperature at the top of the core 124 

(from knowledge of the melting point of iron alloys, and extrapolation from the inner core 125 

boundary to the core-mantle boundary (Brown and McQueen, 1986; Pozzo et al., 2012)). 126 

   Constraints on the heat-flux at the core-mantle boundary are based on: 1. The heat-flux 127 

carried by plumes and plume heads (3.5 TW) (Davies, 2007) and accounting for the 128 

increase in plume heat with depth due to the steeper isentrope in the plume (Stixrude and 129 

Lithgow-Bertelloni, 2011) and possible sub-adiabaticity in the background mantle 130 

(Schuberth et al., 2009), factors that may increase the heat-flux by a factor of three. This is 131 

a lower bound because mantle convection models show that not all the heat-flux from the 132 

core-mantle boundary is expressed as plumes (Lay et al., 2008).  2. The heat conducted 133 

down the core adiabat according to first principles calculations of the thermal conductivity 134 

and the adiabatic gradient of the outer core (de Koker et al., 2012; Pozzo et al., 2012). 135 

This is an upper bound because the top of the outer core may have a sub-adiabatic 136 

gradient (stably stratified). 137 
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 184 
 185 

Fig. S1. Time average of the temperature gradient (a) heat-flux (b) and thermal 186 

conductivity (c), as a function of simulation length. Values are shown for calculations of the 187 

thermal conductivity in the [100] direction at 75 GPa and 2500 K. The first 10 ps of each 188 

simulation is allowed for equilibration. d, Corresponding temperature profiles for each 189 

simulation. The temperatures of the hot and cold sections (shown as an ×) are not 190 

included in the fit (solid line), used to estimate the temperature gradient. The labels refer to 191 

the dimensions of the simulations cells i.e. n×2×1 refers to a simulation cell with 192 

dimensions na×2b×c, where a, b and c are the unit cell parameters of perovskite.  193 

194 



 195 

 196 
 197 

Fig. S2. Influence of exchange-frequency. Calculated thermal conductivity as a function of 198 

simulation length, for different exchange periods (40, 60 and 80 fs). Values are shown for 199 

the calculation of the thermal conductivity in the [100] direction, at 145 GPa and 4000 K, 200 

using a simulation cell with the dimensions 6a×2b×c, where a, b and c are the unit cell 201 

parameters of perovskite. All the simulations converge on the same value, irrespective of 202 

exchange period, indicating that Fourier’s law is valid. 203 

204 



 205 
 206 

Fig. S3. Extrapolation to infinite simulation cell length. (a) At 75 GPa and 2500 K back 207 

extrapolation suggests that the thermal conductivity of MgSiO3 perovskite is isotropic. (b) 208 

For all other temperature and pressure conditions studied the thermal conductivity was 209 

determined only in the [100] direction. Thermal conductivity is almost identical at 145 GPa 210 

and 2500 K and 145 GPa and 4000 K, suggesting saturation. 211 

212 



 213 

 214 
 215 

Fig. S4. Influence of cross-sectional area on calculated thermal conductivity. Doubling the 216 

cross-sectional perpendicular to the direction of the heat-flux appears to have only a minor 217 

influence on the estimated thermal conductivity values. The legends refer to the 218 

dimensions of the simulations cells i.e. n×m×1 refers to a simulation cell with dimensions 219 

na×mb×c, where a, b and c are the unit cell parameters of perovskite. 220 

 221 

222 



 Table S1 Thermal conductivity (k) calculated by extrapolation to infinite simulation cell 223 

length and phonon mean free path (l) calculated from Equation 6, at each pressure and 224 

temperature condition. At 110 GPa and 1000 K and 110 GPa and 3250 K values are 225 

reported for simulation cells with different cross-sectional areas, giving an indication of 226 

finite-size effects. 227 

 228 

P (GPa) T (K) Direction Cross-Section k (Wm
-1

K
-1

) l (nm) 

26 1000 [100] 2b×c 7 ± 1.4 0.8 ± 0.3 
75 2500 [100] 2b×c 5.3 ± 0.7 0.3 ± 0.1 
75 2500 [010] 2a×c 5.2 ± 0.7 0.2 ± 0.2 
75 2500 [001] 2a×2b 5.3 ± 0.7 0.2 ± 0.1 

75 4000 [100] 2b×c 4.7 ± 0.8 0.2 ± 0.2 
110 1000 [100] b×c 16 ± 5 1.4 ± 0.6 
110 1000 [100] 2b×c 13 ± 3 1.5 ± 0.5 
110 3250 [100] b×c 6 ± 1 0.2 ± 0.2 
110 3250 [100] 2b×c 5.8 ± 0.8 0.3 ± 0.2 

145 2500 [100] 2b×c 9 ± 1 0.9 ± 0.2 

145 4000 [100] 2b×c 9 ± 2 0.8 ± 0.4 

 229 

230 



Table S2 Time average of the temperature gradient (〈dT/dx〉), heat-flux (〈J(t)〉) and thermal 231 

conductivity 〈k〉 for each simulation cell (x, y and z), at each pressure and temperature 232 

condition. tex is the time period between energy exchanges. 233 

 234 

 235 

x (nm) y (nm) z (nm) tex (fs) 〈dT/dx〉 (TKm
-1

) 〈J(t)〉 (TWm
-2

) 〈k〉 (Wm
-1

K
-1

) time (ps) 

26 GPa and 1000 K in the [100] direction 

2.779 0.960 0.665 80 0.148 ± 0.011 -0.515 ± 0.006 3.480 ± 0.273 112 

3.706 0.960 0.665 80 0.127 ± 0.007 -0.498 ± 0.005 3.921 ± 0.232 134 

4.632 0.960 0.665 80 0.119 ± 0.006 -0.487 ± 0.005 4.083 ± 0.243 85 

5.559 0.960 0.665 80 0.102 ± 0.004 -0.480 ± 0.006 4.692 ± 0.199 97 

75 GPa and 2500 K in the [100] direction 

2.690 0.934 0.647 40 0.676 ± 0.048 -2.490 ± 0.024 3.682 ± 0.265 68 

3.586 0.934 0.647 40 0.586 ± 0.056 -2.493 ± 0.084 4.257 ± 0.433 50 

4.483 0.934 0.647 40 0.519 ± 0.020 -2.247 ± 0.041 4.328 ± 0.181 51 

5.379 0.934 0.647 40 0.490 ± 0.013 -2.148 ± 0.026 4.380 ± 0.131 51 

75 GPa and 2500 K in the [010] direction  

0.897 2.800 0.647 40 0.679 ± 0.074 -2.569 ± 0.036 3.786 ± 0.417 50 

0.897 3.734 0.647 40 0.531 ± 0.025 -2.454 ± 0.036 4.623 ± 0.229 56 

0.897 4.668 0.647 40 0.511 ± 0.017 -2.381 ± 0.031 4.657 ± 0.174 54 

0.897 5.601 0.647 40 0.475 ± 0.015 -2.213 ± 0.045 4.659 ± 0.175 50 

75 GPa and 2500 K in the [001] direction  

0.897 0.934 1.941 40 0.578 ± 0.066 -1.963 ± 0.027 3.393 ± 0.390 114 

0.897 0.934 2.588 40 0.487 ± 0.032 -1.976 ± 0.021 4.058 ± 0.272 53 

0.897 0.934 3.235 40 0.469 ± 0.025 -1.894 ± 0.022 4.042 ± 0.220 52 

0.897 0.934 3.882 40 0.452 ± 0.013 -1.854 ± 0.036 4.099 ± 0.141 50 
75 GPa and 4000 K in the [100] direction  

2.722 0.937 0.653 80 0.645 ± 0.092 -2.206 ± 0.049 3.419 ± 0.495 73 

3.630 0.937 0.653 80 0.514 ± 0.048 -2.173 ± 0.060 4.226 ± 0.414 53 

4.538 0.937 0.653 80 0.548 ± 0.025 -2.044 ± 0.043 3.732 ± 0.186 58 

5.445 0.937 0.653 80 0.483 ± 0.015 -1.991 ± 0.034 4.124 ± 0.145 88 
110 GPa and 1000 K in the [100] direction  

2.596 0.458 0.628 80 0.159 ± 0.025 -0.903 ± 0.013 5.666 ± 0.886 132 

2.596 0.458 0.628 80 0.149 ± 0.028 -0.905 ± 0.013 6.079 ± 1.162 72 

3.461 0.458 0.628 80 0.138 ± 0.009 -0.866 ± 0.010 6.259 ± 0.394 189 

3.461 0.458 0.628 80 0.151 ± 0.010 -0.853 ± 0.014 5.655 ± 0.399 83 

5.191 0.458 0.628 80 0.115 ± 0.004 -0.819 ± 0.009 7.126 ± 0.275 141 

5.191 0.458 0.628 80 0.100 ± 0.007 -0.854 ± 0.029 8.528 ± 0.675 37 

2.596 0.916 0.628 80 0.148 ± 0.016 -0.580 ± 0.006 3.926 ± 0.423 181 

2.596 0.916 0.628 80 0.121 ± 0.024 -0.577 ± 0.010 4.768 ± 0.958 116 

3.461 0.916 0.628 80 0.134 ± 0.007 -0.573 ± 0.011 4.264 ± 0.247 108 

4.326 0.916 0.628 80 0.103 ± 0.005 -0.565 ± 0.009 5.428 ± 0.251 117 

5.191 0.916 0.628 80 0.100 ± 0.004 -0.555 ± 0.011 5.549 ± 0.257 109 

5.191 0.916 0.628 80 0.078 ± 0.005 -0.551 ± 0.008 7.079 ± 0.498 73 
110 GPa and 3250 K in the [100] direction  

2.636 0.459 0.635 60 0.774 ± 0.080 -3.605 ± 0.059 4.659 ± 0.488 108 

3.514 0.459 0.635 60 0.694 ± 0.047 -3.448 ± 0.108 4.969 ± 0.376 53 

5.271 0.459 0.635 60 0.594 ± 0.026 -3.138 ± 0.070 5.286 ± 0.260 50 

2.636 0.919 0.635 60 0.595 ± 0.081 -2.424 ± 0.046 4.073 ± 0.562 50 

3.514 0.919 0.635 60 0.547 ± 0.023 -2.331 ± 0.022 4.263 ± 0.180 142 

4.393 0.919 0.635 60 0.462 ± 0.016 -2.267 ± 0.037 4.901 ± 0.188 78 

5.271 0.919 0.635 60 0.456 ± 0.013 -2.135 ± 0.033 4.686 ± 0.152 65 
145 GPa and 2500 K in the [100] direction  

2.562 0.907 0.622 40 0.674 ± 0.031  -2.692 ± 0.023 3.997 ± 0.189 110 

3.416 0.907 0.622 40 0.541 ± 0.029 -2.551 ± 0.031 4.718 ± 0.264 74 

4.270 0.907 0.622 40 0.491 ± 0.015 -2.475 ± 0.026 5.043 ± 0.167 58 

5.124 0.907 0.622 40 0.423 ± 0.031 -2.389 ± 0.025 5.644 ± 0.163 62 

145 GPa and 4000 K in the [100] direction 

2.586 0.909 0.626 80 0.548 ± 0.063 -2.355 ± 0.021 4.301 ± 0.493 137 

3.448 0.909 0.626 80 0.493 ± 0.038 -2.349 ± 0.033 4.765 ± 0.375 56 

4.310 0.909 0.626 80 0.457 ± 0.030 -2.228 ± 0.023 4.879 ± 0.325 104 

5.172 0.909 0.626 80 0.391 ± 0.018 -2.271 ± 0.040 5.805 ± 0.282 52 


