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Abstract 12 

The temperature variations on top of the core-mantle boundary are governed by the 13 

thermal conductivity of the minerals that comprise the overlying mantle. Estimates of the 14 

thermal conductivity of the most abundant phase, MgSiO3 perovskite, at core-mantle 15 

boundary conditions vary by a factor of ten. We performed ab initio simulations to 16 

determine the lattice thermal conductivity of MgSiO3 perovskite, finding a value of 6.8 ± 0.9 17 

W m-1 K-1 at core-mantle boundary conditions (136 GPa and 4000 K), consistent with 18 

geophysical constraints for the thermal state at the base of the mantle. Thermal 19 

conductivity depends strongly on pressure, explaining the dynamical stability of super-20 

plumes. The dependence on temperature and composition is weak in the deep mantle: our 21 

results exhibit saturation as the phonon mean free path approaches the interatomic 22 

spacing. Combining our results with seismic tomography, we find large lateral variations in 23 

the heat-flux from the core that have important implications for core dynamics. 24 
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1. Introduction 28 

Heat-flux at the core-mantle boundary has important implications for the thermal evolution 29 

of the core and mantle (Lay et al., 2008), the size and stability of plumes (Dubuffet et al., 30 

1999), and generation of the magnetic field (Gubbins et al., 2011). Despite this, there is a 31 

wide range of estimates of the thermal conductivity of the lower mantle (Osako and Ito, 32 

1991; Hofmeister, 2008; Goncharov et al., 2010; de Koker, 2010; Manthilake et al., 2011; 33 

Haigis et al., 2012; Ohta et al., 2012; Dekura et al., 2013; Tang et al., 2014; Ammann et 34 

al., 2014; Ohta et al., 2014).  As insulators and semi-conductors, the major lower mantle 35 

phases: (Mg,Fe)SiO3 perovskite, CaSiO3 perovskite,  and (Mg,Fe)O ferropericlase are 36 

expected to conduct heat via phonons (lattice vibrations), but experimental and theoretical 37 

studies of their lattice thermal conductivity have suffered significant limitations. 38 

   Technical constraints mean that experimental measurements are limited to temperature 39 

much lower than those in the deep Earth, and thus long extrapolations must be made to 40 

estimate values in the lowermost mantle. In addition, while the results of ambient 41 

temperature studies of MgSiO3 perovskite (Osako and Ito, 1991; Ohta et al., 2012) are in 42 

reasonable agreement, measurements at elevated temperature (500-1100 K) and 26 GPa 43 

(Manthilake et al., 2011), suggests a 300 K lattice thermal conductivity almost twice as 44 

large. This suggests that there are discrepancies even at low temperature and pressure.  45 

   Classical simulations, where simple functional forms define interactions between atoms, 46 

also have considerable uncertainties. Haigis et al. (2012) used a classical potential to 47 

compute lattice thermal conductivity via equilibrium molecular dynamics and Green-Kubo 48 

relations, while Ammann et al. (2014) used a classical potential to calculate lattice thermal 49 

conductivity via non-equilibrium molecular dynamics simulations. The difference of up to a 50 

factor of two between the studies, for the lattice thermal conductivity of MgSiO3 perovskite, 51 

illustrates the uncertainty due to the choice of classical potential. This source of 52 



uncertainty has been highlighted in other studies (Chen et al., 2012; Howell, 2012) and 53 

shows the importance of performing ab initio calculations, where forces are calculated 54 

from first-principles. 55 

   Previous ab initio calculations of the lattice thermal conductivity of MgSiO3 perovskite 56 

have also suffered important limitations. Dekura et al. (2013) and Tang et al. (2014) 57 

performed lattice dynamics calculations, which are limited by the assumption that 58 

anharmonic terms are truncated at third-order. The truncation is significant, because it 59 

requires the lattice thermal conductivity to vary as the inverse of the temperature (T-1), 60 

more rapidly than observed in silicates and oxide perovskites at temperatures greater than 61 

the Debye temperature (Marquardt et al., 2009a; Hofmeister, 2010), and leads to 62 

underestimation of the conductivity at high temperature.  63 

   Here, we take a different approach, calculating the lattice thermal conductivity of MgSiO3 64 

perovskite using the ‘direct’ non-equilibrium molecular dynamics method (NEMD), with 65 

forces calculated directly from density functional theory. The direct method, which we have 66 

used previously to compute the lattice thermal conductivity of MgO periclase (Stackhouse 67 

et al., 2010), has the advantage that anharmonicity is fully included with no truncation. The 68 

method is conceptually straightforward: lattice thermal conductivity is calculated from 69 

Fourier’s law by computing the temperature gradient induced by an imposed heat-flux. 70 

2. Theory 71 

2.1 Non-Equilibrium Molecular Dynamics Simulations 72 

The lattice thermal conductivity of MgSiO3 perovskite was calculated using ab initio non-73 

equilibrium molecular dynamics (Stackhouse and Stixrude, 2010). The method is intuitive, 74 

following the design of experimental techniques. The simulation cell is divided up into 75 

sections (Fig. 1(a)). One section is designated the ‘hot section’ and another the ‘cold 76 

section’. These are separated by a distance of half the length of the simulation cell. At 77 



regular intervals heat is transferred from the cold section to the hot section, generating a 78 

heat-flux. Over time, a temperature gradient develops between the hot and cold sections 79 

(Fig. 1(b)). Once steady state is reached thermal conductivity is calculated from Fourier’s 80 

law:  81 

k = −
J(t)

dT /dx
         (1) 82 

where k is the thermal conductivity, and 〈J(t)〉 and 〈dT/dx〉 are the time average of the heat-83 

flux and the temperature gradient. 84 

   In order to conserve the total kinetic energy and linear momentum of the system, the 85 

transfer of energy from the cold section to the hot section is achieved by assigning the 86 

hottest atom in the cold section and coldest atom in the hot section the velocities that 87 

would arise from a hypothetical elastic collision between them (Müller-Plathe, 1997; Nieto-88 

Draghi and Avalos, 2003).  89 

   The temperature gradient is determined from a linear fit to the temperature of the 90 

individual sections. Due to the periodic nature of the simulation, heat enters and leaves 91 

from both sides of the hot and cold sections and two temperature gradients develop, 92 

leading to a temperature profile resembling that shown in Fig. 1(b). Rather than discard 93 

one of them, the temperature of symmetrically equivalent sections is averaged. Due to the 94 

non-Newtonian nature of the energy transfer, the temperature gradient is non-linear 95 

around the hot and cold sections. In view of this, these sections are excluded from the fit 96 

to determine the temperature gradient (Supplementary Material Fig. S1(d)). 97 

2.2 Finite-Size Effects 98 

Our analysis of finite-size effects follows that of Schelling et al. (2002) and has been used 99 

widely as a means of obtaining results in the limit of infinite systems (Zhou et al., 2009; 100 



Sellan et al., 2010; Howell, 2011a, 2011b, 2012; Hu et al., 2011). Kinetic theory relates 101 

thermal conductivity to phonon mean free path 102 

 k =
1

3
C

v
vl          (2) 103 

where Cv is the volumetric heat capacity, v is the mean sound velocity and l is the phonon 104 

mean free path. Since phonons are scattered within the hot and cold sections, the longest 105 

possible phonon mean free path is equal to the distance between them, i.e. half the length 106 

of the simulation cell. If the true phonon mean free path is much longer than this, the 107 

thermal conductivity calculated will be significantly underestimated.  108 

   If we assume that the phonon mean free path is dependent on two independent 109 

scattering mechanisms: phonon-phonon scattering and phonon-boundary scattering 110 

occurring at the hot and cold sections, then the effective mean free path for a simulation 111 

cell of length L is  112 

 l
L

−1
= l

ph

−1
+ l

b

−1         (3) 113 

where lph is the contribution from phonon-phonon scattering and lb the contribution from 114 

phonon-boundary scattering. lb is assumed to be L/4, where L is the total length of the 115 

simulation cell. The factor of 4 arises because phonons originating between the hot and 116 

cold sections will travel, on average, a quarter of the simulation cell length before 117 

encountering the hot and cold sections. Substituting Eq. (3) into (2) and rearranging leads 118 

to 119 

 k
L

−1
= k

∞

−1
+bL

−1        (4) 120 

where kL is the thermal conductivity calculated for a simulation cell of length L, k∞ the 121 

thermal conductivity of a simulation cell of infinite length (i.e. the true value) and b a 122 

constant equal to 123 



b =
12

C
v
v

          (5) 124 

Thus by calculating the thermal conductivity for simulation cells of different length and 125 

plotting against L-1, one can estimate k∞
−1.  126 

   Previous studies (Sellan et al., 2010; Howell, 2012) have shown that the linear 127 

extrapolation (Eq. (4)) may be inaccurate when the phonon mean free path is much longer 128 

than the smallest simulation cell. For example, studies of silicon near room temperature, 129 

which has a long phonon mean free path, require simulation cells on the order of 10 000 130 

atoms. In the case of our calculations, smaller simulations cells are sufficient, since the 131 

temperature is much higher and the phonon mean free path much shorter (Tadano et al., 132 

2014). In our previous calculations of periclase (Stackhouse et al., 2010), we used 133 

simulation cells of a similar size, and found our results to be in good agreement with other 134 

theoretical methods and experimental results, and the phonon mean free path to be 135 

shorter than the smallest simulation cell. 136 

   Phonon mean free paths can be estimated from the slope of the linear relationship 137 

between k
L

−1 and L-1, combining Eqs. (2) and (5) 138 

l =
bk

∞

4
          (6) 139 

Estimated values of l (Supplementary Material Table S1) are shorter than the shortest 140 

simulation cell used at all temperature and pressures studied, indicating that our 141 

simulation cells are large enough to obtain accurate results. 142 

   Calculations may also be inaccurate if the cross-sectional area of the simulation cell is 143 

too small (Schelling et al., 2002; Zhou et al., 2009; Hu et al., 2011). This is because the 144 

phonon population is then biased towards those propagating in the long direction of the 145 

simulation cell, leading to an overestimate of the thermal conductivity. This is not expected 146 



to be a serious issue in our simulations, because the phonon mean free path is 147 

comparable to the cross-sectional dimensions. To test this issue, we have performed 148 

simulations with different cross-sectional areas at 110 GPa and 1000 K and 110 GPa and 149 

3250 K. The results are identical within uncertainty (Supplementary Material Table S1). 150 

3 Calculation Details 151 

Calculations were performed using a version of the density functional theory based VASP 152 

code (Kresse and Furthmuller, 1996a, 1996b) modified to perform NEMD. The local 153 

density approximation (Perdew and Zunger, 1981) was used for the exchange-correlation 154 

functional. Ultrasoft pseudopotentials were employed, with valence electron 155 

configurations: 3s2 for Mg, 3s23p2 for Si and 2s22p4 for O. The kinetic-energy cut-off for the 156 

plane-wave basis set was set to 400 eV and Brillouin zone sampling was restricted to the 157 

Γ-point. Fermi-smearing was applied in all calculations, with a broadening-width equal to 158 

the simulation temperature. The convergence criteria for the self-consistency loop was 10-4 159 

eV. The time-step was set to 1 fs and the Nosé thermostat was employed to maintain a 160 

constant temperature (Nosé, 1984). By calculating the forces from first-principles, we 161 

avoid issues associated with empirical pair potentials (Chen et al., 2012; Howell, 2012). 162 

   The dimensions of all simulation cells used in the current work are listed in 163 

Supplementary Material Table S2. The cell parameters at each pressure and temperature 164 

(P-T) point, were determined from equilibrium molecular dynamics simulations using 80 165 

atom MgSiO3 models.  166 

   Before each NEMD calculation, the simulation cell was equilibrated by performing 1 ps 167 

of equilibrium molecular dynamics, after which energy exchange was initiated. The energy 168 

exchange periods used are listed in Supplementary Materials Table S2. These were 169 

chosen to produce a temperature difference of 500-1000 K between the hot and cold 170 

sections and took values of between 40-80 fs. Simulations using longer exchange periods 171 



converged more slowly, and led to values with larger associated uncertainties, because 172 

the error in the temperature gradient increased. Initial tests showed that, within a certain 173 

range, using different exchange periods had little effect on the results (Supplementary 174 

Materials Fig. S2). 175 

   Most NEMD calculations were run for a minimum of about 50 ps (Supplementary 176 

Material Table S2), at least 10 ps of which was allowed for steady state to be reached. 177 

Thermal conductivity was calculated using the remaining portion. In general, this led to 178 

converged values for the heat-flux, temperature gradient and thermal conductivity 179 

(Supplementary Material Fig. S1). When a simulation was judged not to have converged 180 

fully i.e. the time average of the thermal conductivity had not have flattened out, 181 

simulations were run longer.  182 

   The uncertainty in the time average of the heat-flux was determined using the 183 

appropriate statistics (Flyvbjerg and Petersen, 1989), taking into account correlation. The 184 

same method was also used to compute the uncertainty in the time average of the 185 

temperature of individual sections. To calculate the temperature gradient the temperatures 186 

of symmetrically equivalent sections were averaged and fit using weighted least square 187 

regression, but excluding the values for the hot and cold sections and those either side of 188 

them (Fig. S1(d)). The thermal conductivity for a simulation cell of infinite length was 189 

determined from a weighted least squares fit to a plot of inverse thermal conductivity 190 

against inverse simulation cell length (Supplementary Material Figs. S3 and S4). The 191 

extrapolated values are listed in Supplementary Material Table S1. 192 

4. Results 193 

At lower mantle conditions, we find that the temperature dependence of the thermal 194 

conductivity is weak: at 75 GPa, lattice thermal conductivity decreases from 5.3 ± 0.7 Wm-
195 

1K-1 at 2500 K to 4.7 ± 0.8 at 4000 K (Fig. 2). Note that, our results indicate that the lattice 196 



thermal conductivity of MgSiO3 perovskite is isotropic at 75 GPa and 2500 K to within the 197 

uncertainty of our results (Fig. S3 and Table S1), and this is presumed to be the case at all 198 

other conditions. All values shown in Figs. 2 and 3 are for the [100] direction. Both here 199 

and throughout the manuscript the uncertainties indicate the standard error. This variation 200 

is weaker than the often-assumed T-1 dependence, and even weaker than the T-2/5
 201 

dependence recently suggested for MgSiO3 perovskite, based on experimental results at 202 

lower pressures and temperatures (Manthilake et al., 2011). Such weak temperature 203 

dependence indicates saturation (Roufosse and Klemens, 1974; Marquardt et al., 2009a; 204 

Hofmeister, 2010), where the phonon mean free path approaches the inter-atomic 205 

spacing. This means that pressure (or density) dependence dominates throughout most of 206 

the lower mantle: at 4000 K, lattice thermal conductivity increases from 5.3 ± 0.7 Wm-1K-1 207 

at 75 GPa to 9 ± 2 Wm-1K-1 at 145 GPa (Fig. 2).  208 

   Our results agree well with room temperature experimental data (Osako and Ito, 1991; 209 

Ohta et al., 2012; Ohta et al. 2014), showing comparable pressure dependence. The 210 

measurements of Manthilake et al. (2011), show similar temperature dependence, but are 211 

higher by about 5 Wm-1K-1 (Fig. 2 (main)). We note that their results also disagree with the 212 

ambient temperature values of Ohta et al. (2012). Lattice dynamics calculations of Dekura 213 

et al. (2013) agree with our results at low temperature, as expected, but predict a value 214 

half that of our study at core-mantle boundary conditions. We attribute this difference to 215 

the truncation of anharmonic terms at third order in the lattice dynamics calculation, which 216 

assumes T-1 behavior and does not capture the saturation (Roufosse and Klemens, 1974) 217 

that we find at high temperature. The values of Tang et al. (2014), which also suffer from 218 

truncation of anharmonic terms, are much lower than all other studies. It has been 219 

proposed that finite-size effects in NEMD simulations lead to erroneous values (Haigis et 220 

al., 2012), but this issue is expected to be minimal for MgSiO3 perovskite at lower mantle 221 

conditions, where the phonon mean free path is short and lattice thermal conductivity is 222 



low (Supplementary Material Fig. S4 and Table S1) (Tadano et al., 2014). Indeed, 223 

previous simulations based on classical potentials and much larger systems show 224 

remarkably similar values of the thermal conductivity at the core-mantle boundary 225 

(Ammann et al., 2014).  226 

5. Discussion 227 

Our results serve as a test of approximate theories of the density and temperature 228 

dependence of the thermal conductivity. Our results disagree with the commonly assumed 229 

T
-1

 or T-1/2 temperature dependence. Instead, we find that our results are reproduced well 230 

by a model (Supplementary Material Section S1) that combines the Leibfried-Schlömann 231 

equation with temperature dependence that includes the effects of saturation (Roufosse 232 

and Klemens, 1974)  233 
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where M is the mean atomic mass, Ω mean atomic volume, θ Debye temperature, γ 235 

Grüneisen parameter, T temperature, and TS∝  MΩ2/3θ2
/γ2 is the temperature at which 236 

saturation becomes significant. The term in the brackets accounts for saturation and 237 

causes k to vary more weakly than T-1/2 at high temperature, in excellent agreement with 238 

our results. The heat capacity C, accounts for phonon population effects at low 239 

temperature.  All quantities are computed from a thermodynamic model (Stixrude and 240 

Lithgow-Bertelloni, 2011). The two constants of proportionality are chosen by fitting to our 241 

NEMD results. 242 

   We estimate the lattice thermal conductivity across the lower mantle, arriving at a value 243 

of 8.1 ± 1.1 Wm-1K-1 at the core-mantle boundary (Fig. 3), by combining the results of the 244 

present work, with our earlier ab initio predictions for periclase (Stackhouse et al., 2010), 245 



and scaling laws for minor phases and impurities (Supplementary Material Sections S2 to 246 

S4). We approximate the lower mantle as pyrolite: (Mg,Fe)SiO3 perovskite (75 percent), 247 

CaSiO3 perovskite (6 percent) and (Mg,Fe)O ferropericlase (19 percent) (Stixrude and 248 

Lithgow-Bertelloni, 2011). Recent experimental results show that iron impurities greatly 249 

reduce lattice thermal conductivity (Manthilake et al., 2011), at least at the low 250 

temperatures at which the measurements were made. By assuming this same large 251 

reduction, previous studies (Manthilake et al., 2011; Haigis et al., 2012) arrived at values 252 

for the lattice thermal conductivity of the lower mantle similar to ours. However, we expect 253 

the impact of impurities to be reduced at lower mantle temperatures.  Based on the theory 254 

of Klemens (1960), we estimate the fractional lowering of the lattice thermal conductivity of 255 

the lower mantle due to iron impurities to be 8 percent at the core-mantle boundary, i.e. 256 

our value at the core-mantle boundary in the iron-free limit is very similar: 8.8 ± 1.2 Wm-1K-
257 

1. The influence of aluminum is expected to be less than that of iron (Ohta et al., 2014). 258 

Our value for an iron-free lower mantle is substantially smaller than that estimated in a 259 

recent experimental study (Manthilake et al., 2011) which we attribute to the long 260 

extrapolation from the experimental results to lower mantle conditions. Our value is a 261 

factor of 2 larger than the estimate based on the lattice dynamics calculations of Dekura et 262 

al. (2013) and a factor of 6 larger than that based on the lattice dynamics calculations of 263 

Tang et al. (2014), which we attribute to the truncation of anharmonic terms in these 264 

studies. 265 

  The thermal conductivity of iron-bearing phases may be influenced by electronic 266 

transitions at lower mantle conditions. The influence of the high-spin to low-spin transition 267 

on thermal conductivity is unknown. If we assume that the primary effect of the transition is 268 

to decrease the atomic spacing, and take the volume decrease of Tsuchiya et al. (2006), 269 

based on scaling relations (Supplementary Material Section S2), the lattice thermal 270 

conductivity of ferropericlase may be 3 percent higher in the low-spin state than in the 271 



high-spin state. Within the transition region, in which high-spin and low-spin iron coexists 272 

in variable amounts, the mean acoustic wave velocity is reduced. If we assume that bulk 273 

sound velocity is reduced by the amount reported by Wentzcovitch et al. (2009) and that 274 

the shear velocities are unaffected (Marquardt et al., 2009b), based on scaling relations 275 

(Supplementary Material Section S2), the lattice thermal conductivity may be 15 percent 276 

smaller than the high-spin phase. The influence of the spin transition of the lattice thermal 277 

conductivity of perovskite will be much less than in ferropericlase, because of the lower 278 

iron content and the smaller fraction of ferrous iron. The spin transition appears to 279 

decrease photon thermal conductivity and reduce the electrical conductivity (Goncharov et 280 

al., 2010). Although pure FeO becomes metallic at high pressures and temperatures 281 

(Fischer et al., 2011), thermal transport by electrons is unlikely to contribute significantly to 282 

thermal conductivity for plausible mantle iron concentrations. Extreme enrichment in iron, 283 

i.e. Fe/Si ~ 1, may produce much greater thermal conductivity by stabilizing new phases in 284 

which heat transport by electrons becomes important (Manga and Jeanloz, 1996), but 285 

seismic evidence rules out such extreme enrichments, even in ultra-low velocity zones 286 

(Rost et al., 2005). 287 

   In addition to scattering from impurities, scattering from interactions with electrons and 288 

grain boundaries can also influence lattice thermal conductivity. In the lower mantle, 289 

(Mg,Fe)SiO3 perovskite, CaSiO3 perovskite and (Mg,Fe)O ferropericlase are insulators 290 

and semiconductors. Older studies of semiconductors (e.g. Boghosian and Dubey, 1978) 291 

suggest that phonon-electron scattering is only important at low temperature (< 5 K), but a 292 

more recent first-principles investigation (Liao et al., 2015) shows that, for silicon with high 293 

carrier concentrations (> 1019 cm-3), it has a marked effect at room temperature. There are 294 

no studies of the effect of phonon-electron scattering at lower mantle conditions, but we 295 

note that the analysis of Liao et al. (2015) indicates that phonon-electron scattering is most 296 



significant for phonons with a mean free path greater than 100 nm. This is much longer 297 

than that expected for phonons in MgSiO3 perovskite (Supplementary Material Table S1) 298 

and MgO periclase (Stackhouse et al. 2010), at lower mantle conditions. Inclusion of 299 

impurities will reduce the phonon mean free paths of the phases further. In view of this,  300 

we conclude that the effect of phonon-electron scattering is negligible in the lower mantle. 301 

   The effect of phonon-boundary scattering on lattice thermal conductivity becomes 302 

important when the mean free path is comparable to the grain size. Imada et al. (2014) 303 

showed that, at 300 K, there is a significant difference between single- and poly-crystal 304 

lattice thermal conductivity measurements for MgO periclase, in particular, at high 305 

pressure where the phonon mean free path is long in the single-crystal. Their analysis 306 

suggests that at core-mantle boundary conditions the lattice thermal conductivity of the 307 

phase will be independent of grain size, because of the much shorter mean free path. 308 

Since the mean free path of phonons in MgSiO3 perovskite and iron-bearing phases is 309 

expected to be even shorter than that of MgO periclase, the lattice thermal conductivity    310 

of the lower mantle should be independent of grain size. 311 

   In some regions of the lower few hundred kilometers of the mantle, it is expected that 312 

perovskite transforms to post-perovskite (Wookey et al., 2005). Some studies indicate that 313 

the lattice thermal conductivity of post-perovskite is a factor of two greater than that of 314 

perovskite (Ohta et al., 2012; Ammann et al., 2014), but others suggest that this is only 315 

true at the low temperatures at which the experiments were conducted and at high 316 

temperature the difference is much smaller (Haigis et al., 2012). In view of this, we ignore 317 

differences in the lattice thermal conductivities of the two phases. We also neglect 318 

possible radiative contributions to the thermal conductivity, because measurements show 319 

that these are less than 0.5 Wm-1K-1 (Goncharov et al., 2008). However, we note that a 320 



consensus has not yet been reached: another experimental study concludes that the 321 

radiative contribution could be up to 5 Wm-1K-1 (Keppler et al., 2008).  322 

   Our predicted value of the thermal conductivity at the core-mantle boundary is consistent 323 

with a variety of geophysical constraints (Lay et al., 2008). A boundary layer analysis 324 

(Supplementary Material Section S4) shows that for a thermal boundary layer thickness δ 325 

~ 100 km (Fig. 4), our results satisfy independent constraints on the temperature across 326 

the thermal boundary layer from extrapolation of the mantle geotherm and inner-core 327 

freezing; the location of the seismic discontinuities caused by the perovskite to post-328 

perovskite phase transition; and bounds on the heat-flow from intra-plate volcanism and 329 

heat conducted down the core adiabat. 330 

   The increase in thermal conductivity with increasing depth (Fig. 3) that we find – nearly a 331 

factor of two across the lower mantle – is dynamically significant. Greater thermal 332 

conductivity at depth is essential for stabilizing so-called superplumes: large-scale 333 

structures in the bottom-most 1000 km of the mantle beneath Africa and the Pacific, with 334 

very low shear wave velocity indicating higher than average temperature (Dziewonski et 335 

al., 2010). Dynamical simulations (Dubuffet et al., 1999) show that the buoyant instability 336 

of hot superplumes can be counter-acted and their long-term stability explained if the 337 

thermal conductivity of the lower mantle is higher than the rest of the mantle, just as we 338 

find. 339 

  While the physical model outlined in the previous sections completely specifies the 340 

calculation of the lattice thermal conductivity at all pressure and temperature conditions, 341 

we recognize that it may be useful to have a simpler, approximate form that captures the 342 

essence of these results. We present a simple approximation to the variation of the lattice 343 

thermal conductivity of pyrolite with pressure and temperature that is value across the 344 

lower mantle regime 345 



k = (4.9 GPa + 0.105P) f
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where k is thermal conductivity (Wm-1K-1), P is pressure (GPa), T is temperature (K) and f 347 

is a function based on the theory of Roufosse and Klemens (1974), which accounts for 348 

saturation (Supplementary Material Section S1). This equation reproduces our results for 349 

pyrolite to within 10 percent along mantle geotherms with potential temperatures between 350 

1000 K and 2000 K and with or without a bottom thermal boundary layer and over the 351 

entire lower mantle pressure regime. 352 

   According to our results the thermal conductivity in the lower mantle is nearly 353 

homogeneous laterally, because of the weak dependence that we find on temperature and 354 

impurities. For example, varying the temperature by ± 500 K, changes the thermal 355 

conductivity at the core-mantle boundary by only 5 percent. Superplumes may also be 356 

stabilized by chemical heterogeneity; indeed seismic evidence of sharp sides indicates 357 

that they have a different chemical composition from normal mantle (Ni et al., 2002). We 358 

find that, in the lower mantle, the influence of chemical heterogeneity on thermal 359 

conductivity is minor (e.g. doubling the Fe/Mg ratio decreases the conductivity by only 5 360 

percent). This idea was also suggested by Manthilake et al. (2011), who showed that iron 361 

concentration has little effect on the lattice thermal conductivity of (Mg,Fe)O ferropericlase, 362 

although we note that they estimate a much larger difference between an iron-free and 363 

iron-bearing lower mantle (50 percent) than that found in this study (8 percent). It was 364 

suggested by Ohta et al. (2012), that the difference between iron-free and iron-bearing 365 

phases observed in lower pressure measurements (< 26 GPa) by Manthilake et al. (2011) 366 

should be diminished at lower mantle pressures where iron will exist in a low-spin state. 367 

Enrichment in aluminum is expected to have a smaller effect, because of the similarity in 368 

atomic mass of aluminum to magnesium and silicon. This is assumption is supported by 369 

the results of Ohta et al. (2014), but conflicts with those of Manthilake et al. (2011).  370 



   Lateral homogeneity in thermal conductivity at the core-mantle boundary is significant, 371 

because it implies a direct relationship between the temperature in the lower-most mantle, 372 

which can be inferred from seismology (Kustowski et al., 2008), and lateral variations in 373 

the heat-flux across the core-mantle boundary, via Fourier’s law (Nakagawa and Tackley, 374 

2008). Combining Fourier's law for the heat-flux q = k∂T/∂z, with a linear temperature 375 

profile near the core-mantle boundary T = TCMB - h∂T/∂z, and scaling of shear-wave velocity 376 

to temperature ξ = (∂lnVS/∂T)z we find lateral variations in the heat-flux dq = -k/h dlnVs/ξ, 377 

where T is temperature, z is depth, TCMB is the temperature at the core-mantle boundary, h 378 

is height above the core-mantle boundary, and VS is shear-wave veloctiy. To compute dq 379 

we use our value of k for pyrolite at the core-mantle boundary, dlnVS from seismic 380 

tomography at 2800 km depth, giving h = 90 km, and the scaling ξ from a thermodynamic 381 

model (Stixrude and Lithgow-Bertelloni, 2011). We do not include the influence of the 382 

perovskite to post-perovskite transition on ξ  because the pressure at which the transition 383 

occurs is uncertain.  We find substantial lateral variation in heat-flux, comparable in 384 

magnitude to the mean value (Fig. 5). The heat-flux varies from zero (i.e. no heat escaping 385 

the core) to nearly twice the mean value. Such large later variations in heat-flux have 386 

important implications for our understanding of the origin of Earth’s magnetic field (Olson 387 

and Christensen, 2002), its behaviour during reversals (Glatzmaier et al., 1999), and the 388 

structure of the inner core (Gubbins et al., 2011). Geodynamo simulations (Gubbins et al., 389 

2011) indicate that even for much smaller lateral variation in heat flow than we estimate, 390 

localized melting of the inner core may occur, which may help to explain anomalies in the 391 

structure of the inner core including its radial structure, anisotropy, and hemispherical 392 

dichotomy. We note that our estimates of the lateral variation of heat flux are based on the 393 

assumption that lateral variations in seismic wave velocity are purely thermal in origin.  An 394 



understanding of the contributions of lateral variations in chemistry to the tomographic 395 

signal will be important for understanding the pattern of heat flow. 396 

6. Conclusions 397 

In conclusion, our calculations suggest that the lattice thermal conductivity of MgSiO3 398 

perovskite depends strongly on pressure, but that temperature and compositional 399 

dependence is weak in the deep mantle. Combining our results with seismic tomography, 400 

we find large lateral variations in the heat-flux from the core that have important 401 

implications for core dynamics. Our predictions of the thermal conductivity provide a firm 402 

basis from which further to explore the influence of mantle chemical heterogeneity on the 403 

coupled thermal evolution of core and mantle. 404 

 405 
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 574 

 575 
 576 

Fig. 1. The non-equilibrium molecular dynamics method for calculating lattice thermal 577 

conductivity. The simulation cell is split into sections of equal width. At regular intervals 578 

energy is transferred from the ‘cold section’ to the ‘hot section’, by means of a virtual 579 

elastic collision between the hottest atom in the cold section and coldest atom in the hot 580 

section. Due to the periodic nature of the simulation, two temperature gradients form. The 581 

non-Newtonian nature of the virtual elastic collision means that the temperature gradient is 582 

non-linear around the hot and cold sections. Figure after Stackhouse and Stixrude (2010). 583 
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 585 



 586 

Fig. 2. Lattice thermal conductivity of MgSiO3 perovskite as a function of temperature at 587 

various pressures (main) and a function of pressure at 300 K (inset). Filled circles are the 588 

results of our NEMD simulations and lines are the values predicted by our model 589 

(described in the main text), with shading and error bars indicating standard error. Empty 590 

symbols are measured ( Osako and Ito (1991),  Manthilake et al. (2011),  Ohta et al. 591 

(2012), ⬠ Ohta et al. (2014)) and calculated ( Dekura et al. (2013),  Tang et al. 592 

(2014)) values from previous studies. Color code for the main figure: black: 0 GPa, red:26 593 

GPa, green:75 GPa, blue:110 GPa and pink:145 GPa. 594 

595 



 596 

 597 

Fig. 3. Lattice thermal conductivity of a pyrolite mantle as a function of depth (red line, with 598 

the shading indicating standard error). Our results for pure MgSiO3 perovskite (blue line) 599 

and iron-free pyrolite (green line) are shown for comparison. The geotherm (black line) is 600 

taken from a thermodynamic model (Stixrude and Lithgow-Bertelloni, 2011). 601 
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 603 
Fig. 4. Boundary layer analysis of heat flow. Temperature contrast ΔT (grey band) and 604 

thickness δ (blue band) of the thermal boundary layer plotted against core-mantle 605 

boundary heat flow, with the shading indicating the standard error in our determination of 606 

the thermal conductivity (Supplementary Material Section S4). The green shaded area 607 

denotes constraints on the temperature contrast across the core-mantle boundary. The 608 

orange regions highlight constraints on the heat flow at the core-mantle boundary: upper 609 

bound derived from the heat conducted down the core adiabat and lower bound derived 610 

from the plume heat-flux and the factor 2-3 increase in the plume thermal anomaly with 611 

depth (Davies, 2007). 612 
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 614 
 615 

Fig. 5. Heat-flow at the core-mantle boundary. Values calculated from our estimate of 616 

thermal conductivity and the seismic tomographic model of Kustowski et al. (2008) at 2800 617 

km depth. 618 

 619 


