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Abstract—We study the breakdown characteristics and timing
statistics of InP and In� ��Al� ��As single-photon avalanche
photodiodes (SPADs) with avalanche widths ranging from
0.2 to 1.0 m at room temperature using a random ioniza-
tion path-length model. Our results show that, for a given
avalanche width, the breakdown probability of In� ��Al� ��As
SPADs increases faster with overbias than InP SPADs. When we
compared their timing statistics, we observed that, for a given
breakdown probability, InP requires a shorter time to reach break-
down and exhibits a smaller timing jitter than In� ��Al� ��As.
However, due to the lower dark count probability and faster
rise in breakdown probability with overbias, In� ��Al� ��As
SPADs with avalanche widths � � m are more suitable
for single-photon detection at telecommunication wavelengths
than InP SPADs. Moreover, we predict that, in InP SPADs with
avalanche widths � � m and In� ��Al� ��As SPADs with
avalanche widths � � m, the dark count probability is higher
than the photon count probability for all applied biases.

Index Terms—Avalanche breakdown, InP, In� ��Al� ��As,
single-photon avalanche photodiodes (SPADs), timing statistics.

I. INTRODUCTION

G
EIGER-MODE avalanche photodiodes (APDs), com-

monly known as single-photon avalanche diodes

(SPADs), have recently emerged as a key technology for appli-

cations requiring single-photon detection such as in quantum

key distribution systems [1], in time-of-flight laser ranging

applications [2], and in time-resolved photon counting [3].

While linear-mode InP and In Al As-based APDs have

been characterized extensively [4]–[9] for applications at the

telecommunication wavelength of 1.55 m, their performance

in geiger-mode has not yet been fully optimized. Since the

early studies by Oldham et al. [10] and by McIntyre [11] on

the breakdown characteristics of SPADs, several works have

significantly contributed to the understanding of the dynamics

in SPADs.

Using a history-dependent analytical model, Wang et al. [12]

suggested that a faster increase in breakdown probability with

Manuscript received May 27, 2008; revised August 14, 2008. Current version
published April 17, 2009.

The authors are with the Department of Electronic and Electrical
Engineering, University of Sheffield, Sheffield S1 3JD, U.K. (e-mail:
s.liew-tat-mun@shef.ac.uk; c.h.tan@shef.ac.uk; s.dimler@shef.ac.uk;
lionel.tan@shef.ac.uk; j.s.ng@shef.ac.uk; elp03ylg@shef.ac.uk; j.p.
david@shef.ac.uk).

Digital Object Identifier 10.1109/JQE.2009.2013094

overbias ratio, , can be achieved in In Al As

diodes than in InP diodes while Ng et al. studied the effects of

deadspace [13] and field dependences of ionization coefficient

ratio [14] on the rate at which increases using a

hard deadspace model. In [13] and [14], these authors found

that a large dead-space-to-avalanche-width ratio and a large

ionization coefficient ratio leads to faster increase in .

Ramirez et al. [15] investigated a set of design parameters

using the recursive deadspace multiplication model [16] and

showed that a larger increase in is achieved using

InP and In Al As SPADs with thicker avalanche width.

Interestingly, they also found the single-photon quantum effi-

ciency (SPQE), a figure of merit incorporating the dark count

probability, the photon count probability, and the probability

that there is at least one photon during the gated time, to be

higher in InP SPADs than in In Al As SPADs for a given

avalanche width. However, these works [12]–[15] relied on

ionization coefficients derived using limited experimental data.

Moreover, their analysis omitted timing statistics which are

critical in applications where the timing resolution can be the

limiting factor to the photon detector’s performance.

When APDs are biased to a metastable condition, a single

absorbed photon can initiate breakdown, and the time taken for

the avalanche current to build up to the circuit threshold current

depends on the ionization process. This process is stochastic in

nature, hence, creating a spread in the time taken to breakdown,

commonly termed as the timing jitter. Spinelli et al. [17] inves-

tigated the timing statistics of Si SPADs and they concluded that

diffusion-assisted process dominates the timing statistics. Using

a random path length (RPL) model, Tan et al. [18] later demon-

strated that these timing statistics are also affected by deadspace

and ionization coefficient ratios. They showed that, in materials

with similar ionization coefficients and having low deadspace

contribution, the time taken to reach breakdown is low and the

timing jitter is small.

In this study, we compare the timing statistics of InP and

In Al As SPADs at room temperature using a RPL model

that employs ionization coefficients derived from a wide range

of devices for these two materials and that is similar to the model

used in [18]. We also study the competing effects of the in-

crease in dark count due to tunneling current and photon count

whilst the timing jitter decreases as the avalanche width is re-

duced. This model has been shown to be accurate in modeling

the avalanche breakdown voltage of APDs [19] and is equivalent

0018-9197/$25.00 © 2009 IEEE
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to models based on solving the recurrence equations as demon-

strated in [18]. Moreover, the model has been demonstrated to

give comparable avalanche breakdown current features to those

calculated in full band Monte Carlo model [20].

II. MODEL

The RPL model uses the ionization path-length probability

density functions (PDFs) as input parameters to calculate the

ionization probability. Under constant electric fields, these elec-

tron PDFs can be described analytically as

(1)

where represents the electron deadspace, is the enabled

electron ionization coefficient, and represents the electron

ionization path length. A similar expression for the hole PDFs

is obtained by replacing , , and with , , and

respectively. Further details on the RPL model can be found

in [18]–[20]. In our calculations, we used In Al As and

InP ionization coefficients and threshold energies published in

[7] and [9], respectively, as these parameters were derived using

multiplication and excess noise factors measured on a series of

devices covering a wide range of electric fields using pure elec-

tron and pure hole injection. Hence, we believe that [7] and [9]

provide the most reliable ionization coefficients and parameters

to date.

To calculate the avalanche current , we used Ramo’s the-

orem [21], which is given by , where is the elec-

tronic charge, is the avalanche width, and is the saturated

velocity. We assumed values of ms for electrons

and ms for holes for both InP and In Al As.

As a result, the timing statistics obtained was solely functions of

, ionization coefficient ratio, and deadspace. In our simulation,

the circuit threshold current was set to 50 A, the breakdown

probability was calculated as the ratio of the number of car-

riers triggering breakdown to the number of injected carriers, the

mean time to breakdown was taken as the mean time required

for the avalanche current to reach the circuit threshold current,

and the timing jitter was taken as the standard deviation of

the mean time to breakdown. Interestingly, we found that using

higher threshold current does not affect obtained for a given

but merely increases as previously observed by Groves et

al. [22]. To achieve convergence of our results, particles

were simulated. In this study, the electric field was assumed to

remain constant as the avalanche current builds up.

In real SPADs, the timing jitter can arise as a result of the

random position of the absorbed photon in the absorption

layer and from the random impact ionization events occurring

during avalanche breakdown. As both InP and In Al As

SPADs have InGaAs as their absorption layer, the timing jitter

resulting from the former process is expected to be similar

in both SPADs for a given InGaAs absorption layer. Thus, to

compare the timing statistics occurring due to the ionization

events in InP and In Al As multiplication layers, we

simulated breakdown events in ideal p i n and n i-p

Fig. 1. Calculated breakdown probability for In Al As � � and InP

� � as a function of overbias ratio for SPADs with � of 0.20, 0.50, and 1.00

�m. The results for SPADs with� of 0.30 and 0.40�m are not shown for clarity.

structures with , 0.30, 0.40, 0.50 and 1.0 m. Due to

the different majority ionizing carriers in these materials, pure

electrons were injected into the p side of the multiplication

layer for In Al As while pure holes were injected into

the n side of the multiplication layer for InP. As for the dark

carriers, we assumed that they are generated uniformly and

randomly in the avalanche region during the gated time.

III. RESULTS AND DISCUSSION

Fig. 1 shows the calculated breakdown probability as a func-

tion of overbias ratio, defined as ,

where is the applied bias and is the breakdown voltage,

assumed to be the voltage that yields a breakdown probability

of 0.001. At a given overbias ratio, the thickest diode produces

the largest breakdown probability. Our results also show that

In Al As diodes exhibit a larger increase in than

InP diodes for a given , confirming the trend obtained by Wang

et al. [12] and Ramirez et al. [15] despite the different ioniza-

tion coefficients and threshold energies used.

McIntyre [11] showed that rises more rapidly in

diodes with large ionization coefficient ratio while Ng et al.

[13] demonstrated, and later confirmed by Tan et al. [20], that

larger deadspace also leads to a more rapid rise in .

Thus, to assess the dominant effect that is causing the more

rapid rise in in In Al As diodes, we compared

the ionization coefficient ratio of InP and In Al As as a

function of breakdown probability in Fig. 2. For a given , it

is evident that the electron-to-hole ionization coefficient ratio

in In Al As is larger than the hole-to-electron ionization

coefficient ratio in InP. As expected, in the thinnest diode and

at high breakdown probabilities, the difference between the

two ratios reduces as a result of the convergence of ionization

coefficients at high electric fields. We then assessed the ratio

of deadspace calculated as where is the

threshold energy and the electric field, to for each diode.

As pure electrons were injected for In Al As SPADs

and pure holes for InP SPADs, Fig. 3 compares the calculated
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Fig. 2. Ionization coefficient ratios for InP (open symbols) and In Al As
(closed symbols) calculated as a function of breakdown probability for SPADs
with � of 0.20 � � �, 0.50 ��� �, and 1.00 �m ��� ��. The results for SPADs
with � of 0.30 and 0.40 �m are not shown for clarity.

Fig. 3. Deadspace-to-avalanche-width ratio for InP (open symbols) and
In Al As (closed symbols) calculated as a function of breakdown prob-
ability for SPADs with � of 0.20 � � �, 0.30 � � �, 0.50 ��� �, and 1.00
�m ��� ��. The results for diodes with � of 0.40 �m are not shown for clarity.

for In Al As and for InP as a function of the

breakdown probability. Interestingly, we can observe that, in

SPADs with m, the contribution of deadspace is more

significant in In Al As than in InP but, as increases,

an opposite behavior is observed; the deadspace becomes more

significant in InP than in In Al As. However, as the

difference in values between InP and In Al As is

not significant for a given breakdown probability, our results

therefore suggest that the steeper rise in observed

for In Al As is caused by the more pronounced effect of

the larger ionization coefficient ratio than that of the deadspace

effect.

When the values of calculated for InP and In Al As

SPADs were compared in Fig. 4, we observed smaller values in

InP than in In Al As for a given . Moreover, the lowest

was obtained in the thinnest diodes. These timing results can be

explained by the shorter transit time combined with the effects

Fig. 4. Calculated mean time to breakdown for In Al As � � and InP

� � as a function of breakdown probability for SPADs with � of 0.20, 0.50

and 1.00 �m. The results for SPADs with � of 0.30 and 0.40 �m are not shown
for clarity.

of the ionization coefficient ratio and deadspace, as previously

discussed by Tan et al. [18]. These authors showed analytically

that the lowest is obtained in thin diodes having similar elec-

tron and hole ionization coefficients and small deadspace effect.

As shown earlier, for a given breakdown probability, InP has a

smaller ionization coefficient ratio and similar when com-

pared with In Al As, resulting in the smaller for InP

SPADs. Moreover, the values of recorded for In Al As

SPADs is found to be approximately 12% longer than those

recorded for InP SPADs for a given . However, the exact dif-

ference between the values of for real diodes will not only

be dependent on the saturation velocities, ionization coefficients

ratio, and deadspace contribution but also on the effect of the en-

hanced velocity occurring in early ionizing carriers [18] and on

the space charge effect [17].

The values of calculated for InP and In Al As

SPADs are shown in Fig. 5. As expected, we observed that

diodes having the smallest produce the lowest for a given

avalanche material, which is consistent with the findings of [18].

When the two materials were compared, InP shows a smaller

than In Al As for a given due to the smaller ionization

coefficients ratio in InP. Moreover, we obtained the difference

in values between InP and In Al As SPADs to be ap-

proximately equal to 18% for all . However, as commercially

available time-to-amplitude converter (TAC) equipment [23]

has at best, a timing resolution of 7 ps, the smaller in InP

SPADs does not always provide significant timing advantages.

As the timing jitter of the SPAD and the timing resolution of

the TAC are independent of each other, the combined

timing jitter would be measured as .

For instance, in SPADs with m and operating at a

breakdown probability of 0.5, InP and In Al As SPADs

exhibit values of 9.8 and 11.5 ps, which would yield values

of 12.0 and 13.5 ps, respectively. Therefore, the difference in

between the two materials decreases from 18.0% to 12.5%

for these SPADs, suggesting that the difference could become
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Fig. 5. Calculated timing jitter for In Al As � � and InP � � as a

function of breakdown probability for SPADs with� of 0.20, 0.50, and 1.00�m.
The results for SPADs with � of 0.30 and 0.40 �m are not shown for clarity.

Fig. 6. Tunneling current calculated for circular SPADs with radius of 10 �m
for InP (open symbols) and In Al As (closed symbols) as a function of
breakdown probability for SPADs with � of 0.20 � � �, 0.30 � � �, and 0.50
�m ��� �. The results for SPADs with� of 0.40�m are not shown for clarity.

less significant depending on the applications and limitations

of existing measuring apparatus.

In SPADs, besides , , and , it is also crucial to analyze

the dark counts. As Karve et al. [24] suggested, band-to-band

tunneling in the multiplication layer of thin SPADs can con-

tribute to the majority of dark counts. Thus, in order to assess

the dark count rates of InP and In Al As, we analyzed

the tunneling currents of SPADs having m. In our

calculation, the band-to-band tunneling current was cal-

culated using experimentally derived tunneling parameters for

In Al As [6] and InP [9] for diodes having circular mesas

and radius of 10 m. As shown in Fig. 6, InP exhibits higher tun-

neling current than In Al As for a given breakdown prob-

ability, suggesting a higher number of dark carriers in InP. In-

terestingly, this observation is in contradiction to that predicted

by Ramirez et al. [15] who approximated the tunneling current

Fig. 7. Dark count probability calculated as a function of photon count proba-
bility for InP (open symbols) and In Al As (closed symbols) SPADs with
� of 0.20 � � �, 0.30 � � �, 0.40 ��� �, and 0.50 �m ��� �. Lines asso-
ciated with the symbols are plotted to assist visualization. The line ����� shows
the condition where the dark count probability is equal to the photon count prob-
ability.

of InP using parameters derived for In Al As. As a re-

sult, these authors underestimated the tunneling current in InP

SPADs.

For most single-photon detection applications, low dark

count and high photon count are desirable. Thus, we calculated

the photon count probability and the dark count probability in

InP and In Al As SPADs with m using Pois-

sonian statistics for a given set of conditions. The dark count

probability was calculated as [25], where

is the breakdown probability of dark carriers generated

randomly in the avalanche region and is the number of dark

carriers during the on-time given as

where is the gated time and taken as 2 ns in this study. As

for the photon count probability, we assumed that all carriers

generated by photons absorbed in the absorption layer reach the

multiplication layer. Therefore, the photon count probability

was calculated as , where is the quantum

efficiency taken as 0.5 and is the number of photon per

pulse taken as 1. As shown in Fig. 7, In Al As has a

lower dark count probability than InP for a given photon count

probability. Interestingly, we also observed that, in InP SPADs

with m and In Al As SPADs m, the

dark count probability is always larger than the photon count

probability, suggesting that these diodes would be impractical

for most single-photon applications. These observations are

consistent with those reported by Ramirez et al. [15]. More-

over, as increases, the range over which the probability of

achieving higher photon count than dark count also increases.

For instance, in InP SPADs with 0.4 and 0.5 m, we

obtained equal dark and photon count probabilities at photon

count probabilities of 0.25 and 0.34, which correspond to

overbias ratios of around 0.06 and 0.12, respectively. As for

In Al As SPADs with 0.4 and 0.5 m, equal dark

count and photon count probabilities were obtained for photon

count probabilities of 0.32 and 0.37, which correspond to over-

bias ratios of around 0.07 and 0.13, respectively. These results
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Fig. 8. Dark count probability and timing jitter calculated at a breakdown prob-
ability of 0.5 as a function of � for InP ��� and In Al As � �. Lines as-
sociated with the symbols are guides to the eyes.

therefore suggest that, due to the lower dark count probability

for a given photon count probability and the larger increase in

in In Al As SPADs, these diodes would out-

perform InP SPADs for applications at the telecommunication

wavelength despite their poorer timing statistics.

To study the performance of SPADs with , Fig. 8 shows the

dark count probability and calculated at a breakdown proba-

bility of 0.5 for different . It can be seen that, as increases,

the dark count probability decreases. As tunneling current de-

creases exponentially with electric field, the lower electric field

required to achieve a given breakdown probability in thicker

SPADs yields smaller tunneling current, resulting in fewer dark

carriers and hence smaller dark count probability. However, the

same increase in will cause and to increase. Thus, as in-

creases, there exists a trade-off between and dark count prob-

ability for SPADs. A similar trade off between tunneling current

and breakdown probability was also observed by Ramirez et al.

[15].

IV. CONCLUSION

We have shown that InP SPADs has better timing character-

istics than In Al As SPADs assuming that these materials

have similar saturated velocities. The lower values of and

observed in InP can be explained by the more pronounced

effect of the ionization coefficient ratio than the deadspace ef-

fect. Moreover, we found that In Al As SPADs with

m and InP SPADs with m would be unsuit-

able for applications requiring larger photon count probability

than dark count probability. As In Al As SPADs exhibit

a larger increase in , lower dark count probability and

provide a larger range over which the ratio of photon to dark

count probability exceeding 1, they will be more suited than InP

SPADs for applications at telecommunication wavelengths de-

spite their poorer timing statistics.
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